
Harvard Journal of Law & Technology

Volume 32, Number 1 Fall 2018

APPLICATION PROGRAMMING INTERFACES AND THE

STANDARDIZATION-VALUE APPROPRIATION PROBLEM

Parth Sagdeo*

TABLE OF CONTENTS

I. INTRODUCTION .. 236

II. FROM API TO IP ... 237
A. A Short Introduction to APIs .. 238

1. Software Libraries as a Means for Abstraction 238
2. The Application Programming Interface 239

B. Copyright Law is the Only Existing IP Right That Can

Protect Many APIs ... 240
1. Patenting APIs ... 241
2. Protecting APIs as Trade Secrets .. 241
3. Copyrighting APIs... 243

III. THE RIGHT TO EXCLUDE OVERCOMPENSATES API

OWNERS .. 244
A. Prior Scholarship ... 245
B. The Right to Exclude Enables Appropriation of an API’s

Standardization Value.. 247
C. API-Related Switching Costs as the Origin of

Standardization Value.. 249
D. The Standardization-Value Appropriation Problem................ 252

1. The Appropriation of Standardization Value Has

Social Costs ... 252
2. API Owners Need Not Appropriate Standardization

Value To Be “Rewarded” for Their Creation 253
3. Preventing Appropriation of Standardization Value

Does Not Disturb the API Owner’s “Prospect” for

Desirable Post-Creation Activity 255

* Law Clerk, U.S. District Court for the District of Delaware; J.D., Harvard Law School,

2018; M.S. in Electrical & Computer Engineering, University of Illinois at Urbana-Champaign,

2013; B.S. in Electrical Engineering & Computer Science, University of California, Berkeley,

2010.

I would like to thank Prof. Ted Sichelman for teaching the fascinating class that led to this

Note, Prof. William Fisher for his advice, and the staff of the Harvard Journal of Law and

Technology, especially Article Editor King Xia, for their thoughtful and thorough editing of

this Note.

That being said, all opinions and errors are my own.

236 Harvard Journal of Law & Technology [Vol. 32

IV. POSSIBLE SOLUTIONS TO THE STANDARDIZATION-VALUE

APPROPRIATION PROBLEM .. 256
A. Should APIs Be Uncopyrightable?... 257
B. Should Use of an API for Interoperability Be Fair Use? 258
C. Should APIs Be Subject to Fixed-Rate Statutory

Licensing? .. 259

V. A VARIABLE-RATE COMPULSORY LICENSING REGIME FOR

APIS .. 260

VI. CONCLUSION .. 262

I. INTRODUCTION

Application programming interfaces (“APIs”) are the electrical

sockets of modern software systems. Just as every electric device with a

certain type of plug fits every outlet of the corresponding type, APIs al-

low software written at different times, by different people, and in differ-

ent organizations to work together seamlessly. They have enabled, for

example, millions of applications, worth billions of dollars, to be written

for Android, iOS, and Windows by companies other than Google, Apple,

and Microsoft, respectively.1

An API specifies how software components are supposed to interact

with each other.2 At a high level, this interface includes a list of com-

mands that a first component can use to access functionality in a second

component, and includes the specific format in which the first compo-

nent should give those commands to the second component.3 Some

software components, such as a web browser’s user interface, are readily

visible to the user.4 Many more components are hidden but perform key

functions. For example, various software components are responsible for

sending and receiving web page data over the Internet, parsing that data

and rendering it in a graphical format, and managing persistent data

(e.g., browser cookies) stored by websites.5 APIs define the interaction

between these components.

1. See, e.g., Number of Apps Available in Leading App Stores, STATISTA (2018),

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores

(last visited Dec. 20, 2018); Sarah Perez, App Revenue Climbed 35 Percent to $60 billion in

2017, TECHCRUNCH (Jan. 5, 2018), https://techcrunch.com/2018/01/05/app-revenue-

climbed-35-percent-to-60-billion-in-2017 [https://perma.cc/SH7X-RG69].

2. API (Application Programming Interface) Definition, TECHTERMS (June 20, 2016),

https://techterms.com/definition/api [https://perma.cc/27P6-W7A8].

3. See id.

4. See, e.g., UIKit, APPLE DEVELOPER DOCUMENTATION, https://developer.apple.com/

reference/uikit [https://perma.cc/4ZNC-RNCT].

5. See, e.g., WebKit, APPLE DEVELOPER DOCUMENTATION, https://developer.apple.com/

reference/webkit [https://perma.cc/H26D-YKNB].

No. 1] Standardization-Value Appropriation 237

As discussed in Part II of this Note, the creation of APIs can involve

considerable creativity and investment of resources. Depending on the

circumstances, APIs can be protected by trade secret, patent, and/or cop-

yright law. In practice, however, many APIs cannot be adequately pro-

tected by trade secret or patent law. Thus, copyright provides the most

reliable means of intellectual property (“IP”) protection for APIs.

Part III of this Note notes that IP protection of APIs has drawn criti-

cism for decades. In particular, commentators have identified two fea-

tures of APIs — network effects and switching costs — that acting

together can cause market monopolization and other negative externali-

ties including spurring excessive marketing costs, increasing prices for

consumers (generating deadweight losses), and increasing barriers to

further innovation.

Part III of this Note contributes to this longstanding discussion by

examining the value of API copyrights, and finds that copyright over-

compensates API owners in one key dimension: namely, the ability of

owners to appropriate user switching costs. This overcompensation is the

“standardization-value appropriation problem.” This Note argues that

preventing API copyright owners from appropriating standardization

value averts the above-mentioned harms to general welfare (at least to

the extent that they are greater for APIs than for other copyrighted

works) and does not disturb the incentive structure underlying copyright.

Part IV of this Note discusses three possible legal regimes that pre-

vent a copyright owner from appropriating standardization value: (1) a

regime where APIs are uncopyrightable; (2) a regime where use of an

API for interoperability is fair use; and (3) a statutory fixed-rate licens-

ing regime. The Note concludes that all three of these regimes have sub-

stantial problems in optimally incentivizing innovation.

Part V of this Note proposes a variable-rate compulsory licensing

regime for APIs. Under this regime, API owners must provide a compul-

sory license to others. The royalty rate for the license is calculated using

fair, reasonable, and nondiscriminatory (“FRAND”) licensing principles.

The Note concludes that such a regime provides the closest-to-optimal

incentive for innovation, while having higher but still-manageable trans-

action costs.

II. FROM API TO IP

This Part provides background on the technical and legal concepts

discussed in this Note. Section II.A provides a short technical introduc-

tion to APIs. Section II.B discusses the types of intellectual property pro-

tection that an API can receive, and the circumstances in which

intellectual property protection of APIs is effective.

238 Harvard Journal of Law & Technology [Vol. 32

A. A Short Introduction to APIs

1. Software Libraries as a Means for Abstraction

Virtually all computer programs written today are useless in isola-

tion. Each depends on functionality provided by other software. Much of

this functionality is provided by libraries: prewritten code that imple-

ments a series of related functions given well-defined inputs.6 For exam-

ple, operating system libraries (e.g., those provided by Windows,

macOS, and Android) allow programs to communicate over a network,

access storage devices, and modify what the computer displays.7 Most

programming languages (e.g., C, Python, and Java) also provide a

“standard library” for that language.8 Standard libraries allow program-

mers working in that particular language to access a computer’s operat-

ing system.9 Standard libraries also provide programmers with premade

building blocks that implement commonly used functionality. For in-

stance, Python has libraries for natural language processing, statistics,

and bioinformatics.10

The use of libraries has many benefits, including increased reliabil-

ity, more readable code, and faster development of new applications.11

Most importantly, libraries allow programmers to work at higher levels

of abstraction — tying together “building blocks” of functionality rather

than having to construct software from scratch. By using libraries built

on top of libraries, application developers can create high-level software

6. See Library, COMPUTER DESKTOP ENCYCLOPEDIA, http://lookup.

computerlanguage.com/host_app/search?cid=C999999&term=library [https://perma.cc/

HN5G-FG7U] (definition (3)).

7. See, e.g., Windows API Index, MICROSOFT (May 30, 2018), https://docs.

microsoft.com/en-us/windows/desktop/apiindex/windows-api-list [https://perma.cc/K3JY-

B832]; API Reference, APPLE DEVELOPER DOCUMENTATION, https://developer.apple.com/

reference [https://perma.cc/YGS7-N22E].

8. See, e.g., C Standard Library Reference Tutorial, TUTORIALSPOINT, https://

www.tutorialspoint.com/c_standard_library [https://perma.cc/AL3J-4ZVB]; The Python

Standard Library, PYTHON 3.7.1 DOCUMENTATION, https://docs.python.org/3.7/library

[https://perma.cc/3C2K-36AL]; Overview, JAVA PLATFORM SE 7, https:/docs.oracle.com/

javase/7/docs/api [https://perma.cc/5FWZ-QC6S].

9. See, e.g., Generic Operating System Services, PYTHON 3.7.1 DOCUMENTATION,

https://docs.python.org/3.7/library/allos.html [https://perma.cc/JX28-V9JC]; C Library Func-

tion - System(), TUTORIALSPOINT, https://www.tutorialspoint.com/c_standard_

library/c_function_system.htm [https://perma.cc/AH39-KCJB].

10. Natural Language Toolkit, NLTK 3.3 DOCUMENTATION (May 6, 2018),

https://www.nltk.org [https://perma.cc/8JWP-ZPQ8]; 9.7. Statistics — Mathematical Statistics

Functions, PYTHON 3.7.1 DOCUMENTATION, https://docs.python.org/3.7/library/statistics.html

[https://perma.cc/CAR3-WWTN]; Biopython, BIOPYTHON, https://biopython.org/

[https://perma.cc/ZF99-SZ6B].

11. See Pierre Mengal, 6 Advantages to Using Third Party Libraries over Developing Your

Own, MINDFULHACKER (Apr. 14, 2012), http://www.mindfulhacker.com/6-advantages-

using-third-party-libraries-over-developing-your-own [https://perma.cc/9FHR-K7Z6].

No. 1] Standardization-Value Appropriation 239

that does not concern itself with specific methods of computation or the

manner in which the hardware needs to be used to achieve a specific

result. This abstraction is incredibly powerful: it allows, for example, a

quickly-written Android application to run on thousands of hardware

configurations. Figure 1 shows how a hypothetical Android dialer appli-

cation called “CustomDialer” can be built on several layers of libraries to

leverage library abstraction.

CustomDialer

TelephonyManager

Radio Interface Layer (RIL)

Internet Protocol (IP) Stack

Baseband

APPLICATION

ANDROID

LIBRARY

LINUX LIBRARY

LINUX KERNEL

HARDWARE

CustomDialer

TelephonyManager

Radio Interface Layer (RIL)

Internet Protocol (IP) Stack

Baseband

APPLICATION

ANDROID

LIBRARY

LINUX LIBRARY

LINUX KERNEL

HARDWARE

Figure 1: The Libraries that Might Be Used by an Android Dialer

Application12

2. The Application Programming Interface

An application programming interface (“API”) is the interface be-

tween an application and a library.13 It consists essentially of two parts:

(1) its declaring code, and (2) its structure, sequence, and organization.14

“Declaring code” is the code an application developer (i.e., a developer

using the API) needs to use to call upon specific functionality in the li-

brary.15 The API’s structure, sequence, and organization (“SSO”) is es-

12. See Radio Layer Interface, ANDROID OPEN SOURCE PROJECT, https://wladimir-

tm4pda.github.io/porting/telephony.html [https://perma.cc/3PM4-9HAE].

13. See Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222 (3d Cir. 1986).

14. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1349 (Fed. Cir. 2014).

15. Id.

240 Harvard Journal of Law & Technology [Vol. 32

sentially the taxonomy under which the declaring code is structured.16

Figure 2 shows the relationship between an application, an API, and a

library. On one side of the interface, an application can use the API

without knowing anything about how the underlying library works (i.e.,

about its implementing code), so long as they conform to the API’s de-

claring code and SSO. On the other side, an API implementer can im-

plement a library in any manner they see fit, so long as they conform to

the API’s SSO and declaring code. And although an API and a corre-

sponding library are often both created by the same organization, in

principle they are completely independent works.17

APPLICATION

API (DECLARING CODE + SSO)

LIBRARY

(IMPLEMENTING CODE)

Figure 2: The Relationship Between an Application, an API, and a

Library

B. Copyright Law is the Only Existing IP Right That Can Protect

Many APIs

The API’s relationship with intellectual property law has been

evolving for decades.18 APIs have been held to be patent eligible,19 pa-

tent ineligible,20 copyright eligible,21 copyright ineligible,22 trade secret

16. Id.; see also Whelan, 797 F.2d at 1248 (introducing the term “structure, sequence, and

organization” to describe the organization of an API).

17. The ECMAScript (more commonly referred to as JavaScript) API is an example of an

API that is created and implemented by different entities. ECMAScript is defined by Ecma

International, a standards body. See generally Standard ECMA-262, ECMA INTERNATIONAL

(June 2018), https://www.ecma-international.org/publications/standards/Ecma-262.htm

[https://perma.cc/H25M-SHE8]. ECMAScript is implemented by every modern web browser,

including Chrome, Edge, Firefox, Internet Explorer, and Safari. JavaScript Versions, W3

SCHOOLS, https://www.w3schools.com/js/js_versions.asp [https://perma.cc/76YE-YQJ3].

18. See Pamela Samuelson, The Strange Odyssey of Software Interfaces and Intellectual

Property Law 12–13 (Univ. Cal. Berkeley Pub. Law Research Paper No. 1323818, 2009),

https://ssrn.com/abstract=1323818 [https://perma.cc/N2TH-YFSA].

19. Apple Inc. v. Motorola, Inc., 757 F.3d 1286, 1307 (Fed. Cir. 2014), overruled by Wil-

liamson v. Citrix Online, LLC, 792 F.3d 1339 (Fed. Cir. 2015).

20. Allvoice Devs. US, LLC v. Microsoft Corp., 612 F. App’x 1009, 1017 (Fed. Cir. 2015).

No. 1] Standardization-Value Appropriation 241

eligible,23 and trade secret ineligible.24 But, currently, copyright is the

only form of intellectual property that can reliably protect publicly avail-

able software APIs.

1. Patenting APIs

Most APIs are not patent eligible, especially post-Alice.25 Consider-

ing the components of an API — declaring code and its SSO — this is

not surprising. Declaring code falls squarely within the printed matter

exception to patentability because: (1) source code is printed matter; (2)

it is nonfunctional (only the implementing code is functional); and (3) it

is nonstructural (it has nothing to do with the structure of the computer

readable medium it is typically stored on).26 Because the SSO is how the

declaring code is organized, it is essentially a “mere arrangement of

printed matter,” and so it too is patent ineligible.27 APIs may become

patentable if they are combined with novel hardware elements,28 though

in such cases it is not the API in itself that is protected, but its combina-

tion with patent-eligible elements.

2. Protecting APIs as Trade Secrets

APIs can theoretically be protected as trade secrets, but this protec-

tion is significantly limited by the secrecy requirement of, and reverse

engineering exception to, trade secret law. One of the most important

benefits of APIs is the ability for a platform owner (e.g., Apple, Google,

or Microsoft) to enable third-parties to develop applications for the plat-

form. To encourage third-party developers, platform owners will not

only publish their APIs, but typically provide extensive documentation

and tooling on how to use their APIs.29 In view of this extensive public

21. Oracle, 750 F.3d at 1381.

22. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 721 (2d Cir. 1992).

23. Altavion, Inc. v. Konica Minolta Sys. Lab. Inc., 171 Cal. Rptr. 3d 714, 731 (Cal. Ct.

App. 2014) (holding that the “detailed design concepts underlying Altavion’s [software]” were

protectable as a trade secret).

24. See DVD Copy Control Ass’n, Inc. v. Bunner, 75 P.3d 1, 27 (Cal. 2003), modified, 2003

Cal. LEXIS 7676 (Cal. 2003).

25. See generally Alice Corp. Pty. v. CLS Bank Int’l, 573 U.S. 208 (2014) (curtailing the

patent eligibility of computer-implemented inventions substantially).

26. See In re Gulack, 703 F.2d 1381, 1385 (Fed. Cir. 1983).

27. In re Russell, 48 F.2d 668, 669 (C.C.P.A. 1931).

28. Apple Inc. v. Motorola, Inc., 757 F.3d 1286, 1307–08 (Fed. Cir. 2014).

29. See, e.g., Windows API Index, MICROSOFT (May 30, 2018), https://docs.microsoft.

com/en-us/windows/desktop/apiindex/windows-api-list [https://perma.cc/7V4G-342X]; Pack-

age Index, ANDROID DEVELOPERS (June 6, 2018), https://developer.android.com/

reference/packages.html [https://perma.cc/6THV-N3B4].

242 Harvard Journal of Law & Technology [Vol. 32

disclosure, it would be difficult for a platform owner to argue that their

API is secret.

Some APIs are not published but are used internally in publicly

available software. For example, a video game cartridge may communi-

cate with a console using an API. Developers seeking to design a custom

cartridge may reverse engineer the video game’s API in two ways: disas-

sembly and black box reverse engineering. In “disassembly,” the devel-

opers examine the game’s executable binary code to determine how the

game communicates with the API.30 In “black box” reverse engineering,

the developers determine how the game communicates with the API by

observing the behavior of the game (e.g., memory writes and reads) as it

is being played.31 With enough time and resources, both methods allow a

motivated developer to derive the API. They can then use the API to

program custom cartridges. This is essentially how Accolade bypassed

Sega’s potential trade secret claims in Sega v. Accolade.32

API creators can attempt to prevent this problem by licensing their

software under a clause prohibiting reverse engineering.33 This has been

met with varying degrees of approval by the courts. Although the Federal

Circuit (applying First Circuit law) has enforced a shrinkwrap license

that prohibits reverse engineering,34 the Fifth Circuit has held that any

prohibition on reverse engineering is preempted by 28 U.S.C. § 117,

which provides various rights for computer program copy owners.35 Giv-

en this circuit split, the ability for trade secret law to protect publicly

available APIs is far from guaranteed.

On the other hand, an API is clearly protectable as a trade secret if it

is defined, implemented, and used entirely internally to an organiza-

tion.36 In such circumstances, there is no issue of reverse engineering or

secrecy, because anyone authorized to access the API would be under a

duty of secrecy to the organization.37 However, the risk of appropriation

for these kinds of APIs is limited because there is likely little commercial

value in an API that is not used by anyone outside of the organization.

30. See JOHNATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL 2.0 4 (2011).

31. Id.

32. See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514–15 (9th Cir. 1992).

33. BAND, supra note 30, at 121.

34. Bowers v. Baystate Techs., Inc., 320 F.3d 1317, 1323 (Fed. Cir. 2003).

35. Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 270 (5th Cir. 1988).

36. See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 475 (1974) (explaining that the el-

ement of secrecy required for trade secret protection “is not lost, however, if the holder of the

trade secret reveals the trade secret to another ‘in confidence, and under an implied obligation

not to use or disclose it.’”); MELVIN F. JAGER, TRADE SECRETS LAW § 3:17 (2018).

37. Kewanee, 416 U.S. at 475; JAGER, supra note 36 (“In general, an employee owes a duty

of loyalty to the employer with respect to all conduct within the scope of the employment. This

loyalty obligation includes . . . the duty to refrain from using or disclosing confidential infor-

mation acquired during employment.” (citations omitted)).

No. 1] Standardization-Value Appropriation 243

3. Copyrighting APIs

In view of the deficiencies in patent and trade secret protection of

APIs described above, it falls to copyright law to provide robust intellec-

tual property protection for APIs. Copyright is the most intuitive IP right

for APIs for several reasons. First, computer programs are copyright-

eligible,38 and APIs are often embodied in computer programs. Second,

the substance of an API — the declaring code and the SSO — is suited

for copyright for the same reason it is unsuited for patentability: it is es-

sentially information fixed in a tangible medium.39 Third, the work of

creating an API — writing the declaring code and designing the SSO —

is undoubtedly an “original work of authorship”; it involves creative

choices that have nothing to do with functional considerations.40 The two

biggest challenges to API copyright, however, are the merger and fair

use doctrines. Both doctrines have been applied to preclude copyright

infringement claims where the purpose of copying was interoperability

between two programs.

Under the merger doctrine, a work is not copyright eligible when its

expression has merged with an idea.41 In Lotus v. Borland, Borland re-

leased a spreadsheet program, Quattro, that used the same menu struc-

ture as Lotus’s spreadsheet program, Lotus 1-2-3.42 Borland copied

Lotus’s menu structure so that Quattro could run user macros (i.e., pro-

grams) written for Lotus 1-2-3.43 The First Circuit held that the menu

structure of Lotus 1-2-3 was an uncopyrightable method of operation (at

least to the extent of Borland’s use), in part because copying the menu

structure was the only way Quattro could be functionally interoperable

with Lotus 1-2-3.44 On the other hand, the Federal Circuit in Oracle v.

Google found that the Java API was copyrightable.45 In that case,

Google had copied the declaring code and SSO of Java, but did not re-

lease it in a way that was functionally interoperable with Sun/Oracle’s

Java.46 Although Oracle was decided under Ninth Circuit law (and thus

did not consider Lotus precedential), one can square these decisions by

38. See U.S. COPYRIGHT OFFICE, COPYRIGHT REGISTRATION OF COMPUTER PROGRAMS 1

(Sept. 2017), https://www.copyright.gov/circs/circ61.pdf [https://perma.cc/4K9P-9Q5B].

39. See 17 U.S.C. § 102(a) (2018) (“Copyright protection subsists . . . in original works of

authorship fixed in any tangible medium of expression” (emphasis added)).

40. See id.

41. 17 U.S.C. § 102(b).

42. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 809–10 (1st Cir. 1995), aff’d, 516

U.S. 233 (1996). A menu structure is essentially an API because, like other APIs, it provides an

interface through which a program can control external functionality.

43. Id.

44. Id. at 815.

45. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1348 (Fed. Cir. 2014).

46. Id. at 1351.

244 Harvard Journal of Law & Technology [Vol. 32

considering functional interoperability essential to the merger doctrine:

an API is only uncopyrightable to the extent that copyright would pre-

vent functional interoperability between programs.

The fair use doctrine under Ninth Circuit law considers functional

interoperability similarly important. For example, Sega v. Accolade held

that Accolade’s unauthorized copying of Sega’s code was nevertheless

fair because Accolade's purpose was to “discover the interface specifica-

tions for the Genesis console” in order to understand “the functional re-

quirements” for Genesis compatibility.47 Similarly, Sony v. Connectix

held that Connectix’s copying of Sony's BIOS was fair use because

Connectix’s aim was to “observe the signals sent between the BIOS and

other programs on the computer” (i.e., to understand the BIOS’s inter-

face).48 This would allow Connectix to develop its own, functionally

compatible software.49 In Oracle II, the Federal Circuit, interpreting

Ninth Circuit law, reversed the jury’s finding of fair use, holding that

Google’s interoperability arguments were not of the same nature as those

of the defendants in Sega and Sony.50 In particular, the court noted that

“even the ‘modest’ level of transformation at issue in Sony was more

transformative than what Google did: copy code verbatim to attract pro-

grammers to Google’s ‘new and incompatible platform.’”51

In sum, despite the fair use and merger doctrines, copyright remains

the best way to protect APIs.

III. THE RIGHT TO EXCLUDE OVERCOMPENSATES API OWNERS

This Part examines the value of API copyrights and concludes that

copyright overcompensates API owners in one key dimension — name-

ly, the ability of right holders to appropriate user switching costs (the

“standardization value” of the APIs). This Part argues that preventing

API copyright owners from appropriating standardization value averts

harms to general welfare (at least to the extent that they are greater than

for other copyrighted works), and does not disturb the incentive structure

underlying copyright.

Section III.A discusses prior scholarship, which has identified sever-

al negative externalities that result from intellectual property protection

of APIs. Section III.B divides the value of an IP right on an API into two

discrete components: (1) the “expression value” of the API and (2) the

“standardization value” of the API. Section III.C describes in further

47. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1525–26 (9th Cir. 1992) (emphasis

added), amended Jan. 6, 1993.

48. Sony Comput. Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 599–600 (9th Cir. 2000).

49. Id. at 600.

50. Oracle Am., Inc. v. Google LLC (Oracle II), 886 F.3d 1179, 1210 (Fed. Cir. 2018).

51. Id. at 1200 (emphasis added).

No. 1] Standardization-Value Appropriation 245

detail the ways in which switching costs create standardization value.

Section III.D posits that the negative externalities identified in prior

scholarship are caused not due to IP protection of APIs per se, but in-

stead because an unqualified right to exclude allows API owners to ap-

propriate standardization value. Section III.D argues that an API’s

standardization value need not be appropriable for there to be sufficient

incentive to create APIs. Section III.D further argues that preventing

appropriation of standardization value, while leaving copyright protec-

tion of APIs otherwise intact, does not disturb API owners’ “prospects”

for desirable post-creation activity.

A. Prior Scholarship

 Many commentators have pointed out the potentially detrimental re-

sults of intellectual property protection of software interfaces, such as

APIs.52 Underlying this conclusion is a longstanding recognition of net-

work effects and switching costs inherent to software interfaces.53 As

Professor Pamela Samuelson points out, the value of an interface to each

user increases with the number of developers and consumers using that

interface.54 Adoption of an interface by some developers and consumers

makes it easier for the interface to attract new developers and consum-

ers.55 Thus, over time, a small and possibly arbitrary market advantage

can result in a “positive feedback effect” that causes de facto monopoli-

zation — even where there are many other interfaces that are technically

equivalent.56 Commentators have also identified several types of nega-

tive externalities that can result from intellectual property rights over a

standard interface.

First, competitors, in attempting to establish their interface as the de

facto standard, may be incentivized to act in a manner contrary to social

52. See e.g., Pamela Samuelson, Are Patents on Interfaces Impeding Interoperability?, 93

MINN. L. REV. 1943, 1964–65 (2009) [hereinafter Samuelson, Patents on Interfaces] (exten-

sively discussing proposed and existing intellectual property rights regimes for software inter-

faces); Daniel Lin, Research Versus Development: Patent Pooling, Innovation and

Standardization in the Software Industry, 1 J. MARSHALL REV. INTELL. PROP. L. 274, 279–81

(2002); Peter S. Menell, Rise of the API Copyright Dead? An Updated Epitaph for Copyright

Protection of Network and Functional Features of Computer Software, 31 HARV. J.L. TECH.

305, 455–64 (2018).

53. See Brief Amicus Curiae of Economics Professors and Scholars in Support of Respond-

ent, Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1995) (No. 94-2003), 1995 WL

728562, at *6–10; Samuelson, Patents on Interfaces, supra note 52, at 1951.

54. See Pamela Samuelson & Suzanne Scotchmer, The Law and Economics of Reverse En-

gineering, 111 YALE L.J. 1575, 1618 (2002).

55. See id.

56. See Lin, supra note 52, at 280–82; see also Joseph Farrell, Standardization and Intellec-

tual Property, 30 JURIMETRICS J. 35, 46 (1989) (discussing the effect of network effects on

intellectual property policy in general).

246 Harvard Journal of Law & Technology [Vol. 32

welfare.57 For instance, standard owners may engage in “penetration

pricing”: pricing the standard below cost to spur adoption.58 This prac-

tice distorts market incentives and may lead to an inferior interface being

adopted simply because its owner could bear a loss longer than the com-

petition. In addition, where a government or other body influences adop-

tion of a standard, an interface owner may be incentivized to lobby the

decision maker to mandate use of their standard.59 Where there are mul-

tiple lobbying parties, each with a satisfactory interface, these lobbying

expenditures have the potential to fully consume any social benefit pro-

vided by the interfaces.60

Second, intellectual property on interfaces can increase costs to in-

terface users beyond the social value that the interfaces create. If an in-

terface emerges as a market standard, its owner will be able to set

monopolistic, rather than competitive, prices.61 Even if a market has

multiple alternative interfaces, interface owners can price their interfaces

to take advantage of their users’ collective inertia, switching costs, and

other network lock-in effects.62 These higher prices will exclude con-

sumers from the market, creating a social deadweight loss.63

Third, granting IP rights to interfaces can have a detrimental effect

on further innovation. For example, imagine the following scenario: (1)

all users currently use Graphing Software A, which runs user macros

written for API A; (2) a newcomer to the market releases Graphing

Software B, which runs user macros written for API B; (3) Graphing

Software B provides better features such that the users are willing to pay

$10 more for it than for Graphing Software A; and (4) the switching cost

from API A to API B is $20 per user, of which $5 is the price of API B,

and $15 is the cost of rewriting the user’s macros for API B.64 Even

though Graphing Software B is superior to Graphing Software A (it pro-

vides $10 of utility for a price of $5), no users will switch over. Thus, the

superior product will be unable to enter the market. Professors Joseph

Farrell and Garth Saloner have generalized this result; they show that in

the absence of perfect information and coordination, consumers may

57. See Lin, supra note 52, at 282.

58. See id. at 282 n.41.

59. See Pamela Samuelson, Questioning Copyrights in Standards, 48 B.C.L. REV. 193, 223

(2007) [hereinafter Samuelson, Questioning Copyrights].

60. See WILLIAM M. LANDES & RICHARD A. POSNER, THE ECONOMIC STRUCTURE OF

INTELLECTUAL PROPERTY LAW 17–20 (2003) (discussing deadweight losses caused by duplica-

tive development costs).

61. Lin, supra note 52, at 282.

62. Menell, supra note 52, at 456–59.

63. Id.

64. This scenario is inspired by the facts of Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d

807 (1st Cir. 1995).

No. 1] Standardization-Value Appropriation 247

unanimously favor a new technology but never actually make the switch

because no single consumer is sufficiently motivated to start the “band-

wagon” that will overcome current network effects.65 Thus, IP protec-

tions for APIs can prevent innovators from entering the market.

B. The Right to Exclude Enables Appropriation of an API’s

Standardization Value

All of the negative externalities discussed above — overspending on

marketing, increased costs to consumers, and heightened barriers to in-

novation — arise from the right to exclude. And yet the exclusionary

right undergirds both dominant theories of intellectual property. Under

the traditional “reward” theory, the right to exclude is the reward for cre-

ation.66 Under Edmund Kitch’s “prospect” theory, the right to exclude

defines the prospect upon which the creator may develop beneficial post-

invention value (commercialization, future innovation, etc.).67 So what

makes the negative externalities described above for IP on APIs any dif-

ferent from IP on other subject matter? This Section answers that ques-

tion by dividing the value of an API into two components: expression

value and standardization value. The right to exclude from an API, un-

like the right to exclude from any other copyright-eligible work, has

standardization value. As will be discussed in further detail below,68 an

API owner’s attempt to create and later appropriate its standardization

value can cause negative externalities to such an extent that they over-

whelm any benefit to social value incentivized by the right to exclude.

The “expression value” of a protected work is the amount of value

provided by the work that can be appropriated because of the right to

exclude. For example, the expression value of an action movie includes

the excitement and suspense it generates in the watcher. The expression

value of a textbook includes the clarity with which it explains a difficult

subject. The expression value of a computer program (i.e., a software

implementation) includes the value that comes from what the program

does. Importantly, the expression value of a work can be increased by

65. See Joseph Farrell & Garth Saloner, Standardization, Compatibility, and Innovation, 16

RAND J. ECON. 70, 78 (1985). Farrell and Saloner’s analysis is slightly different from the ex-

ample discussed above because they assume that the benefit of the new product derives in part

from whether others are using it (i.e., network effects). The example above illustrates the same

point but with user switching costs (which can be — but need not be — due to network ef-

fects). For many real-world APIs, network effects and switching costs play distinct and im-

portant roles in maintaining market dominance.

66. Henry E. Smith, Intellectual Property as Property: Delineating Entitlements in Infor-

mation, 116 YALE L.J. 1742, 1814–18 (2007).

67. See Edmund W. Kitch, The Nature and Function of the Patent System, 20 J.L. & ECON.

265, 266 (1977).

68. See infra Section III.D.

248 Harvard Journal of Law & Technology [Vol. 32

post-creation commercialization activities. Marketing, for instance, can

increase a protected work’s popularity. This, in turn, can increase the

work’s expression value. For example, part of the expression value of the

latest Game of Thrones episode is being able to talk about it with friends

and acquaintances who have also seen it. The price that a rights holder

can charge for a protected work includes the expression value of that

work.

APIs, like any other type of copyrighted work, can have substantial

expression value. An API’s expression value may arise, for example,

from the API having a particularly elegant design or a large number of

features, or from the amount of time and resources it took to design the

API. The API’s expression value can also be increased by a variety of

post-creation activities. For example, an API’s expression value can in-

crease if its creator releases very extensive and easy-to-understand doc-

umentation for the API.

On the other hand, the “standardization value” of a protected work is

the cost to switch to an alternative to the protected work that can be ap-

propriated because of the right to exclude. The standardization value of

an API includes the cost to developers who use an API to redevelop their

existing applications for another API, and also includes the cost to end

users (e.g., users of the applications developed by the third-party devel-

opers) to switch to a platform that uses another API. The price a rights

holder can charge for a work also includes its standardization value.

It is important to note what standardization value does not include. It

does not include transaction costs that the rights holder cannot appropri-

ate, switching costs that would still exist even without the right to ex-

clude, or the value of network externalities per se. Thus, standardization

value would not include: (1) the cost of a new consumer deciding which

of many alternative APIs to use, (2) the expense of cancelling a business

relationship with one platform and starting one with another, or (3) the

value to a new end user of an API with millions of other users.

There is a reason for this relatively narrow definition: The other

types of transaction costs, switching costs, and network effects all exist

in other subject matter covered by copyright. Virtually every copyright

creates transaction costs that the rights holder cannot appropriate.69

Many copyrighted works create switching costs that would still exist

even without the right to exclude.70 And many copyrighted works derive

their value in part from network effects.71

69. One example of this is the cost of obtaining a copyright license.

70. For example, a book publisher would incur costs in switching its presses to a different

book even if had a license to print both books.

71. The Game of Thrones example discussed above is just one example of this; part of the

copyright’s value is the community around the show.

No. 1] Standardization-Value Appropriation 249

APIs are the only copyright-eligible works for which the right to ex-

clude, in itself, can create substantial switching costs. In other words,

standardization value, as defined above, is unique to APIs. This is be-

cause a third-party reimplementation of an API (though prevented by the

right to exclude) would essentially eliminate developer and end-user

switching costs. The following Section discusses in further detail the

components that make up an API’s standardization value.

C. API-Related Switching Costs as the Origin of Standardization

Value

This Section discusses the ways in which an API owner can appro-

priate value from the right to exclude. It does this by introducing the

concepts of “API heterogeneity” and “API homogeneity.” The right to

exclude allows an API owner to maintain API heterogeneity in a market.

API heterogeneity, in turn, allows the API’s owner to appropriate its

standardization value from two sources: (1) the costs for API developers

to develop their software for a new API; and (2) the costs for API end-

users to switch to a new API.

A software market has “API heterogeneity” if each software plat-

form within a market uses a different API. Figure 3 shows an example of

a software market with API heterogeneity. The desktop operating system

market is a classic example of API heterogeneity: each of the major op-

erating systems (Windows, macOS, and Linux) cannot run applications

written for any other operating system.72 Markets with API heterogenei-

ty have high switching costs; for example, it would be expensive for a

Windows user that owns several Windows-only applications to switch to

macOS. In contrast, a market with “API homogeneity” is one where each

software platform implements the same API. Figure 4 shows an example

of a software market with API homogeneity. The modern web browser

market has API homogeneity; all browsers today implement essentially

the same API for web pages (which includes HTML, JavaScript, and

CSS). In other words, a web page written for any specific web browser

will run on any other web browser. Markets with API homogeneity have

low switching costs; for example, an average Google Chrome user can

switch to Mozilla Firefox at virtually no cost.73

72. This is not strictly true (see the Wine project on Linux, macOS’s limited POSIX compat-

ibility with Linux, and macOS’s Parallels software), but I ignore these applications for the sake

of simplicity.

73. This example is not perfect because Chrome and Firefox use different browser extension

and add-on APIs. But, incidentally, many add-ons are compatible with multiple browsers be-

cause their browser add-on APIs tend to be very similar.

250 Harvard Journal of Law & Technology [Vol. 32

App 1 App 2 App 3

API A API B API C

Platform

A

Platform

B

Platform

C

Figure 3: A Market with API Heterogeneity

App 1 App 2 App 3

Common API

Platform

A

Platform

B

Platform

C

Figure 4: A Market with API Homogeneity

API heterogeneity is maintained by an API owner’s right to exclude.

This is because a self-interested owner of an API with substantial stand-

ardization value would either refuse to license it (thus allowing the own-

er to appropriate the standardization value of the API from the API’s

users, as discussed below), or only license the API for an exorbitant

amount (i.e., by pricing the API’s standardization value into the license

fee). Both of these positions push new entrants to independently develop

their own, competing APIs. This results in API heterogeneity.

API heterogeneity allows an API owner to increase prices on its us-

ers. The extent to which the owner can increase prices depends on the

switching costs (1) for third-party API developers, and (2) for end users.

Because these costs are only appropriable because of the API owner’s

right to exclude, they contribute to the API’s standardization value.

No. 1] Standardization-Value Appropriation 251

An API’s standardization value comprises switching costs for third-

party application developers because API owners can raise prices in pro-

portion to a developer’s difficulty in switching APIs. APIs often vary

substantially even when serving essentially the same purpose.74 Thus,

porting software written for a first API to a second API can entail con-

siderable expense. For example, the developer needs to learn the second

API or needs to hire someone who already knows it. In addition, for the

second API, the developer may need to acquire new software develop-

ment tools, which may also cost money. Furthermore, depending on the

differences between the APIs, porting the application may require essen-

tially rewriting the application’s source code, a substantial cost. An API

owner that understands these costs may increase the price charged to the

developer to be above the price of competitors, but just below the price

at which the developer would switch despite the switching costs. Thus,

the API owner can essentially appropriate the developer switching costs.

An API’s standardization value further comprises switching costs

for end users. Some applications will be exclusive to a platform because

their developers do not want to undertake the expense of reimplementing

them using other APIs. Users of a platform will naturally use some of

these applications. However, by using platform-exclusive applications,

end users set themselves up for substantial switching costs. The most

obvious switching cost is the actual cost of purchasing equivalent appli-

cations on the new platform. For example, a consumer with an iPhone

may purchase a $5 iOS-only fitness app. If the consumer later wished to

switch to a Samsung Galaxy phone, they would have to purchase an

equivalent Android app (which might also cost $5). Switching costs also

result from user familiarity with applications. For example, the iPhone

user switching to a Samsung phone would need to spend the time to

learn how to use the Android fitness app for the same purpose for which

they used the iOS app. In addition, switching costs can result from plat-

form-specific data. For example, the user may have data regarding prior

workouts on their iOS fitness app that may be difficult or impossible to

transfer to the equivalent Android app. An API owner that understands

these costs may increase the price charged to the API’s end users to be

above the price of competitors, but just below the price at which the user

would switch despite the switching costs. Thus, the API owner can also

essentially appropriate end user switching costs.

This does not need to be the case. In a regime where the owner of an

API cannot appropriate its standardization value, new entrants would be

able to enter the market by licensing the existing API for a fair price,

leading to API homogeneity. This would enable the market to enjoy the

74. For example, in many software markets, competitor APIs are written in different pro-

gramming languages.

252 Harvard Journal of Law & Technology [Vol. 32

efficiencies of a natural monopoly without a natural monopoly’s anti-

competitive effects.

D. The Standardization-Value Appropriation Problem

This Section discusses the problem of standardization-value appro-

priation. It argues that all three social costs discussed at the start of

Part III — overspending on marketing, increased costs to consumers, and

higher barriers to innovation — are significantly amplified by an API

owner’s ability to appropriate standardization value. Although all three

of these negative externalities are present to some extent with any grant

of copyright, when an API owner is allowed to appropriate standardiza-

tion value, these social costs can actually exceed the value of the API

itself. This Section argues that preventing an API owner from appropri-

ating standardization value (e.g., by forcing an API’s owner to license

the API for its expression value) will bring these social costs back in line

with those of other subject matter protected by copyright. This Section

separately examines the two dominant theories of intellectual property

protection — the “reward” theory and the “prospect” theory — and con-

cludes that preventing an API owner from appropriating standardization

value does not thwart the incentive to innovate under either theory.

1. The Appropriation of Standardization Value Has Social Costs

Marketing expenses, in themselves, are not undesirable social costs.

In fact, the commercialization theory of intellectual property considers

them as expenditures that IP law ought to incentivize.75 For most copy-

rightable works, marketing costs are limited to the expression value of

the protected work; it would not make sense for a party to spend more

because they would not be able to appropriate any more value from the

copyright. However, an API’s standardization value can be substantially

more than its expression value.76 Thus, when multiple firms are lobbying

for their API to become a governmental or industry standard, they would

each be willing to spend far more than the social value of the API. These

duplicated lobbying costs increase deadweight losses to an extent greater

than if the only value “at stake” for each API owner was its API’s ex-

pression value.

Preventing an API owner from appropriating standardization value

would also lower consumer deadweight losses. As discussed in detail

above, an API’s owner can charge higher prices by exploiting developer

and end-user switching costs. However, if an API’s owner was forced to

75. See Ted Sichelman, Commercializing Patents, 62 STAN. L. REV. 341, 366–67 (2010).

76. See supra Section III.C.

No. 1] Standardization-Value Appropriation 253

license it to a competitor for the API’s expression value, end users and

developers would be able to switch to the competitor for a lower cost.

Accordingly, the API’s owner could no longer incorporate switching

costs into the price of the API, thus reducing the API’s price and overall

deadweight losses.

Barriers to innovation would also be reduced by preventing an API

owner from appropriating standardization value. Recall the scenario dis-

cussed earlier in Part III.77

Now let us assume: (5) the expression value of API A is $1 per user;

and (6) it costs $2, amortized per user, for the developer of Graphing

Software B to reimplement API A (so that users can run macros written

for API A in Graphing Software B). Under a regime where API A must

be licensed to the developer of Graphing Software B for its expression

value, the developer of Graphing Software B will reimplement API A to

eliminate its potential customers’ switching costs. The reimplementation

increases the price of Graphing Software B to $8: $5 to develop the

software, $1 to license API A, and $2 to reimplement API A. In this re-

gime, Graphing Software B will be able to enter the market because us-

ers can switch to it without having to rewrite their macros; users will be

willing to spend $8 on the price of the software to gain $10 of utility.

Thus, preventing standardization-value appropriation reduces barriers to

innovation.

2. API Owners Need Not Appropriate Standardization Value To Be

“Rewarded” for Their Creation

One could argue that the right to exclude — and the concomitant

ability for an API owner to appropriate standardization value — is nec-

essary to provide the optimal incentive to API creators.78 In particular,

because of the network effects inherent to APIs, competitors in a regime

without standardization-value appropriation may adopt a “wait and see”

approach. Instead of creating an API (which may involve considerable

77. In the scenario: (1) all users currently use Graphing Software A, which runs user macros

written for API A; (2) a newcomer to the market releases Graphing Software B, which runs user

macros written for API B; (3) Graphing Software B provides better features such that the users

are willing to pay $10 more for it than for Graphing Software A; and (4) the switching cost

from API A to API B is $20 per user, of which $5 is the price of API B, and $15 is the cost of

rewriting the user’s macros for API B. As noted earlier, Graphing Software B will be unable to

enter the market if the developer of Graphing Software A is allowed to appropriate API A’s

standardization value (i.e., the $15 switching costs), because the developer of Graphing Soft-

ware A will refuse to license API A to Graphing Software B. See supra Section III.A.

78. Cf. William M. Landes & Richard A. Posner, An Economic Analysis of Copyright Law,

18 J. LEGAL STUD. 325–26 (1989) (describing copyright as a tradeoff between “the costs of

limiting access to a work” and “the benefits of providing incentives to create the work in the

first place”).

254 Harvard Journal of Law & Technology [Vol. 32

expense and has no guarantee of being successful in the market), they

will wait to license the API that is ultimately adopted by the market. This

approach could delay or even preclude the development of APIs. Yet

there are several reasons to believe that any API creation would be suffi-

ciently incentivized even without the creator’s ability to appropriate

standardization value.

First, people build APIs because they have to and would do so even

if they were not provided any exclusionary right over them. People cre-

ate computer programs for many reasons, including the fact that they can

appropriate the expression value of computer software via copyright. In

order to create computer programs that communicate with each other,

people need to design and implement APIs. So, the ability to appropriate

the value of a computer program that uses an API may be sufficient re-

ward to incentivize the creation of the API. The history of API copyright

eligibility seems to support this view: APIs were uncopyrightable for

many years,79 yet those years saw a great deal of API development.

Second, to the extent that API creation needs to be “rewarded” sepa-

rately from computer programs, API creators can be sufficiently incen-

tivized by several other appropriation mechanisms. For example, API

creators can appropriate an API’s value via first-mover advantage and

the difficulty of reverse engineering the API. In addition, a legal regime

may require those who copy an API to pay the API’s creator a license

fee commensurate with its expression value.80

Third, the chance to appropriate standardization value may have lit-

tle motivational impact. Corporations, especially those large enough to

have a high chance of API adoption, tend to be risk-averse.81 That is,

they prefer lower-risk investments, even if the expected value return on

the low-risk investment is lower than that of a high-risk investment.

Risk-averse corporations are unlikely to be motivated by standardization

value because, although the potential rewards are great, there is high

uncertainty as to which players, of all participants in the market, will

ultimately become one of the few market leaders with standardization

value.

Fourth, assuming that software is copyrightable, an API cannot be

commercialized by a third party without that party also reimplementing

79. See Samuelson, supra note 18, at 13.

80. See Ted Sichelman & Stuart J.H. Graham, Patenting by Entrepreneurs: An Empirical

Study, 17 MICH. TELECOMM. & TECH. L. REV. 111, 118 (2010).

81. See George Deeb, The 5 Reasons Big Companies Struggle with Innovation, FORBES

(Jan. 8, 2014), https://www.forbes.com/sites/georgedeeb/2014/01/08/the-five-reasons-big-

companies-struggle-with-innovation/#7f62685e2958 [https://perma.cc/74MT-SG3Y]; Ben

Casselman, Risk-Averse Culture Infects U.S. Workers, Entrepreneurs, WALL STREET J. (June

2, 2013), http://www.wsj.com/articles/SB10001424127887324031404578481162903760052

 (last visited Dec. 20, 2018).

No. 1] Standardization-Value Appropriation 255

the API. Reimplementing an API can require large amounts of time and

money, which reduces the risk of free riding.82

Fifth, assuming the API’s owner continues to hold rights to deriva-

tive works, only the API’s owner can improve the API. Thus, an API

licensee would be perpetually playing “catch up” to the API owner’s

implementation, and the licensee would not be able to add any value to

the API over the API owner.

In sum, innovation is likely to occur whether or not API owners are

permitted to appropriate standardization value in order to incentivize

innovation in APIs and allowing for standardization-value appropriation

may not substantially increase innovation.

3. Preventing Appropriation of Standardization Value Does Not

Disturb the API Owner’s “Prospect” for Desirable Post-Creation

Activity

Under Edmund Kitch’s “prospect” theory, the right to exclude de-

fines the prospect upon which the creator may develop beneficial post-

invention value.83 Beneficial post-invention value can include “any ac-

tivity following the initial invention that leads to a commercially availa-

ble product or service — including developing, testing, manufacturing,

sales, and service of the initial invention, as well as the invention and

subsequent development of improvements”84 Under this view, pre-

venting the API owner from appropriating standardization value — thus

voiding the right to exclude — reduces the efficiency by which post-

creation value will be developed.

For example, one could argue that preventing appropriation of

standardization value reduces the creator’s incentive to market the

API.85 In turn, consumers are less informed than they otherwise would

have been. But marketing that aims to better inform developers and con-

sumers of the benefits of an API (e.g., documentation) would still be

incentivized because such marketing would increase the expression val-

ue of the platform (i.e., the utility the users derive from the API). On the

other hand, marketing would not be incentivized where it does not in-

crease the expression value of the API. Both effects are socially desira-

ble. As noted at the start of Part III, allowing an API owner to

appropriate standardization value would create perverse incentives for

82. See LANDES & POSNER, supra note 60 (“[W]hen costs of duplication are high, free riding

may be eliminated, and intellectual property protection may therefore become relatively unim-

portant.”).

83. Kitch, supra note 67.

84. Sichelman, supra note 75, at 354.

85. Cf. Landes, supra note 78, at 326.

256 Harvard Journal of Law & Technology [Vol. 32

API owners to invest excessive amounts of money persuading govern-

ments to adopt their API as a standard.

One also could argue that the right to exclude provides an important

incentive to commercialize an API. In particular, the right to exclude

may be necessary to incentivize creation of software that implements that

API. Yet, there is reason to doubt this view. Most importantly, imple-

menting software is separately protectable by copyright.86 Thus, the law

already prevents a free-rider from copying the implementing software

without compensating its creator. Without this risk of free riding, there

appears to be no reason to provide the implementing software with addi-

tional IP protection.87

One also might contend that the right to exclude gives an API crea-

tor much-needed breathing room for further innovation. In particular, the

Kitchian view is that an API creator is in the best position to conduct

and/or coordinate follow-on innovation. However, preventing standardi-

zation-value appropriation does not disturb this view because it does not

require abrogating an API copyright holder’s derivative works right. For

example, one way to prevent standardization-value appropriation is with

a regime that provides for copyright but also compulsory licensing, of

APIs.88 In such a regime, competitors may license an API for a fair roy-

alty but cannot make any changes. Any improvements or other changes

to the API would have to be made by the owner, and the owner could

appropriate the value of these changes via its own profits and via royal-

ties from its licensees. Thus, the owner would remain in control of, and

the beneficiary of, follow-on innovation.

In sum, an API’s owner does not need to appropriate the API’s

standardization value to be incentivized to commercialize the API.

IV. POSSIBLE SOLUTIONS TO THE STANDARDIZATION-VALUE

APPROPRIATION PROBLEM

If we accept that an API owner should not be able to appropriate its

standardization value, the next task is to determine what the scope of

legal protection for APIs should be. Should APIs be uncopyrightable

altogether? Should an API user have a fair use defense if their use of an

API is predominantly for its standardization value, and not for its expres-

sion value? Should there be a compulsory licensing regime for APIs,

86. 17 U.S.C. § 102 (2018).

87. See Landes, supra note 78, at 370 (“[I]f one believes that unprotected ex post commer-

cialization activity does not lead to pernicious free riding by others . . . then these reactions

[i.e., the narrowing of the scope of IP rights] largely seem sensible.”).

88. See infra Section IV.C.

No. 1] Standardization-Value Appropriation 257

similar to the existing regime for songs? This Part concludes that all of

these approaches have significant problems.

A. Should APIs Be Uncopyrightable?

One tempting solution to the problem of standardization-value ap-

propriation is to simply declare APIs to be uncopyrightable subject mat-

ter. This type of bright-line rule would have the advantage of certainty;

actors could easily tell whether their behavior was permissible or not.

Such a rule also would have low enforcement costs: a lawsuit alleging

copyright infringement of an API likely would be dismissed at the plead-

ings stage. However, a strict rule banning copyright on APIs would be

undesirable for several reasons.

First, there is no conceptual reason why API creators should be pre-

vented from appropriating the expression value of what is undoubtedly a

creative work. The work of designing an API — choosing method and

class names, writing declaring code, and arranging the SSO of classes,

packages, etc. — is clearly a creative endeavor.89 Copyright incentivizes

creators in many other fields — art, literature, filmmaking, etc. — to

appropriate the expression value of their creations via copyright. To deny

API creators the same right is arbitrary and ultimately risks disincentiviz-

ing API creation relative to the creation of other works. Without API

copyrights, market participants would be even more likely to take a “wait

and see” approach of waiting until an API gained traction and free riding

on that API. Where multiple market participants take this approach, de-

velopment of APIs could be delayed or even be precluded.

Second, making APIs uncopyrightable would disincentivize post-

creation development of an API’s value. Much of the utility of many

APIs arises not from the definition of the API itself but from comple-

mentary products that make using the API easier and more effective:

clear documentation, intuitive tutorials, powerful development tools, etc.

These products may, to some extent, be separately protectable by IP. But

even if the documentation, tutorials, and other complementary products

are protected, they can still create “positive spillover” effects such that

competitors who use the API also benefit from those products.90 Thus,

without copyright, an API creator (or others) would be less likely to in-

vest in increasing the API’s value, even if it would be socially desirable.

89. See supra Section II.A; Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1361 n.6 (Fed.

Cir. 2014) (“Java’s creators had to determine whether to include a java.text package in the first

place, how long the package would be, what elements to include, how to organize that package,

and how it would relate to other packages [I]t took years to write some of the Java”).

90. Cf. Sichelman, supra note 75, at 370.

258 Harvard Journal of Law & Technology [Vol. 32

Third, a complete lack of rules on the use of APIs could lead to op-

portunism whereby a new entrant can abuse their power in other markets

to disadvantage their competitors. The archetypal example of this was

Microsoft Corporation’s strategy of “Embrace, Extend, and Extinguish”

in the 1990s.91 The strategy involved Microsoft adopting, or “embrac-

ing,” an existing standard API and tapping into the existing market.

Then, once Microsoft had sufficient market share (which might be

achieved by bundling, as in the case of Internet Explorer), it would “ex-

tend” the API in non-standard ways that its competitors did not support.

Thus, the Microsoft product would provide a superior user experience.

Finally, over time, network effects would cause competitors to lose their

market share and to fade into obscurity.92 In essence, Microsoft would

disadvantage its competitors by making subtle and undocumented modi-

fications to the open standard.93

Although such practices could be actionable under antitrust law ex

post,94 copyright’s derivative work right allows API owners to stop these

types of actions ex ante by preventing competitors from releasing propri-

etary extensions.95 For example, Adobe famously refused to license the

PDF standard to Microsoft for fear that Microsoft would “embrace and

extend” it.96

B. Should Use of an API for Interoperability Be Fair Use?

The courts’ current answer to the standardization-value appropria-

tion problem appears to be the fair use doctrine. Specifically, the courts

in Sega, Sony, and Oracle appear to inject interoperability into the “pur-

pose and character of use” prong of the fair use doctrine.97 If the purpose

of an API’s use is functional interoperability, then the use is judged to be

fair.98

All three of these decisions are consonant with the policy argument

put forth in Part III of this Note: an API owner should not be permitted

91. Embrace, Extend, and Extinguish, WIKIPEDIA, https://en.wikipedia.org/wiki/

Embrace,_extend,_and_extinguish [https://perma.cc/4TQW-KE3A].

92. See U.S. v. Microsoft: Proposed Findings of Fact, U.S. DEP’T. OF JUSTICE (2015),

https://www.justice.gov/atr/us-v-microsoft-proposed-findings-fact [https://perma.cc/L6GT-

Y4JY].

93. See id.

94. See id.

95. See 17 U.S.C. § 106(2) (2018).

96. CIO Staff, Adobe Speaks Out on Microsoft PDF Battle, CIO (Jun. 14, 2006),

http://www.cio.com/article/2446013/compliance/adobe-speaks-out-on-microsoft-pdf-battle.

html [https://perma.cc/XT6W-JTEW].

97. See discussion supra Section II.B.3.

98. See id.

No. 1] Standardization-Value Appropriation 259

to appropriate their API’s standardization value. In particular, competitor

reimplementation of an API is desirable because it reduces switching

costs for consumers. Allowing an API owner to exclude competitors

from such reimplementation would keep those switching costs in place,

allow the API owner to appropriate standardization value, and increase

consumer deadweight losses. Thus, courts use the fair use doctrine to

limit the API owner’s right to exclude.

However, the binary nature of the fair use doctrine makes it a prob-

lematic mechanism for preventing standardization-value appropriation.

An accused use is either infringing, and injunctive relief may be granted,

or the use is fair, and there is no liability. This can be a less-than-optimal

result because, in many cases, a competitor makes use of an API for both

its standardization value and its expression value.

Consider, for example, the Java API. Sun, and later Oracle, have

spent significant resources creating and documenting the Java API to

make it one of the easiest programming languages to learn and use.99

Yet, the district court in Oracle held on remand that a reasonable jury

could have found that Google’s use of the API was fair because it was

necessary for, as one commentator put it, “human interoperability.”100

Human interoperability, where a person becomes “trained, experienced,

accustomed to using [an API] in the course of developing new works,”

could be considered a component of standardization value. In sum,

Google ostensibly has taken advantage of both Java’s expression value

and its standardization value.101 A finding of fair use thus swings the

pendulum from overcompensating API owners to undercompensating

them and disturbs the incentives to both create and commercialize APIs.

C. Should APIs Be Subject to Fixed-Rate Statutory Licensing?

Yet another solution to the standardization-value appropriation prob-

lem is through a statutory licensing regime similar to that which exists

for musical works under Section 115 of the Copyright Act.102 In such a

regime, APIs would be licensable for a fee calculated based on a base

99. Alan Henry, Five Best Programming Languages for First-Time Learners, LIFEHACKER

(Jan. 5, 2014), http://lifehacker.com/five-best-programming-languages-for-first-time-learners-

1494256243 [https://perma.cc/56D7-MWA3]; Kavita Iyer, Five Simple Coding Languages to

Learn for First-Time Learners, TECHWORM (Mar. 31, 2016), https://

www.techworm.net/2016/03/5-simple-coding-languages-learn-first-time-learners.html [https://

perma.cc/46HT-78SN].

100. See Oracle Am., Inc. v. Google Inc., No. C 10-03561 WHA, 2016 WL 3181206, at *6

(N.D. Cal. June 8, 2016); see also Johnathan Band, Oracle v. Google and Interoperability, 23,

https://www.law.berkeley.edu/wp-content/uploads/2015/09/Jonathan-Band-oracle-vs-

google-interoperability.pdf [https://perma.cc/7VAY-LY7Y].

101. See Band, supra note 100.

102. 17 U.S.C. § 115 (2018).

260 Harvard Journal of Law & Technology [Vol. 32

rate set ex ante by an administrative board like the Copyright Royalty

Board. For example, the administrative board might set a per-user, per-

device, or per-core rate on the use of an API. The API license fee would

be that rate multiplied by the number of users, devices, or processor

cores that use the licensee’s API implementation. Alternatively, the roy-

alty rate might be a certain percentage (e.g., 5%) of the total revenue of

the software product that uses the API. Such a regime would ensure that

API owners would be compensated for use of their API in a way that has

relatively low delineation, abiding, and enforcement costs.103

The main problem with the fixed-rate statutory licensing regime de-

scribed above is its inflexibility. APIs can vary substantially in size,

complexity, and other factors that influence the investment needed to

create one. In addition, some APIs may be far easier to commercialize

than others. Thus, the optimal size of a “reward” or “prospect” is likely

to vary significantly depending on the API. A fixed-rate licensing regime

can take into account this variety in some limited ways. For example, if

APIs that run on more processor cores require more investment to create,

licensing on a per-core basis would be a relatively low-information-cost

means for calculating an optimal royalty rate. However, any correlations

between the optimal reward for innovation and low-information-cost

variables like the number of users or processor cores are likely to be

weak at best.104 Thus, a fixed-rate statutory licensing regime is likely to

undercompensate certain types of APIs and overcompensate others, lead-

ing to a lopsided incentive structure for innovation.

V. A VARIABLE-RATE COMPULSORY LICENSING REGIME FOR

APIS

All three regimes discussed above in Part IV solve the standardiza-

tion-value appropriation problem, but they all have the side effect of

less-than-optimally incentivizing innovation. This Part proposes a varia-

ble-rate compulsory licensing regime for APIs.

Under this regime, an owner of an API with significant standardiza-

tion value would be required to license use of the API for a fee that is

commensurate with the API’s expression value but does not consider the

103. See generally Robert P. Merges, Compulsory Licensing vs. the Three “Golden Oldies”

Property Rights, Contracts, and Markets, 508 POL’Y ANALYSIS 1 (2004); cf. Henry E. Smith,

Property and Property Rules, 79 N.Y.U. L. REV. 1719, 1719–31 (2004).

104. For example, the Fortran programming language, which has a relatively simple API, is

the de facto standard for supercomputers, despite the existence of far more sophisticated lan-

guages. Lee Phillips, Scientific Computing’s Future: Can Any Coding Language Top a 1950s

Behemoth?, ARSTECHNICA (May 7, 2014) https://arstechnica.com/science/2014/05/scientific-

computings-future-can-any-coding-language-top-a-1950s-

behemoth [https://perma.cc/8G24-444C].

No. 1] Standardization-Value Appropriation 261

API’s standardization value. In practice, the fee could be calculated in a

similar manner to fees calculated for patent holders who have promised

to license on fair, reasonable and nondiscriminatory (“FRAND”) terms.

Using FRAND-patent licensing fee cases as the baseline,105 a variable

rate-license scheme could operate as follows:

Identify the “smallest salable unit” that requires the use of the

API.106 For example, if the API at issue is that of a graphing application,

the smallest saleable unit would be the graphing application itself — not

the laptop or desktop computer that runs the application.

(1) Imagine a hypothetical arms-length negotiation between the

API owner and the potential licensee at a time after the API is

designed and commercialized but before the API has been

adopted by any users.107

(2) Determine whether any alternative APIs existed at the time of

the hypothetical negotiation, and the extent to which they

could have been substituted for the API at issue. If the alterna-

tive APIs are proprietary they should not reduce the royalty

rate as much as if they are in the public domain.108

Keeping in mind the smallest saleable unit, the time of the hypothet-

ical negotiation, and the alternative APIs available at that time, deter-

mine the royalty rate that would have been arrived at in the hypothetical

negotiation using the Georgia-Pacific factors.109

Under this regime, an injunction would only be awarded if an API

user either refused to accept a royalty in accordance with the above prin-

ciples or failed to pay a previously-negotiated royalty.

Determining a royalty rate as described above has several ad-

vantages. First, it allows the API owner to get a reasonable return on

105. Stan Lewis, Valuing FRAND-Obligated Patents: An Emerging Consensus, LAW360

(Nov. 27, 2013), https://www.law360.com/articles/487354/valuing-frand-obligated-patents-

an-emerging-consensus (last visited Dec. 20, 2018).

106. Cf. LaserDynamics, Inc. v. Quanta Comput., Inc., 694 F.3d 51, 67 (Fed. Cir. 2012)

(“[I]t is generally required that royalties be based not on the entire product, but instead on the

‘smallest salable patent-practicing unit.’” (citation omitted)).

107. Cf. Ericsson, Inc. v. D-Link Sys., Inc., 773 F.3d 1201, 1232 (Fed. Cir. 2014) (“[T]he

patentee’s royalty must be premised on the value of the patented feature, not any value added

by the standard’s adoption of the patented technology.”).

108. Cf. Microsoft Corp. v. Motorola, Inc., No. C10-1823JLR, 2013 WL 2111217, at *19

(W.D. Wash. Apr. 25, 2013) (“[T]he parties to a hypothetical negotiation under a RAND com-

mitment would consider alternatives that could have been written into the standard instead of

the patented technology. The focus is on the period before the standard was adopted and im-

plemented”).

109. See Georgia-Pacific Corp. v. U.S. Plywood Corp., 318 F. Supp. 1116, 1120 (S.D.N.Y.

1970). The Georgia-Pacific factors include the royalties obtained by the IP owner from the

accused infringer or others, the duration of the license, the profitability of the IP, and the utility

advantages of the IP over its alternatives. Id.

262 Harvard Journal of Law & Technology [Vol. 32

their creative work and subsequent commercialization efforts — ensur-

ing continued incentives for API creation and beneficial post-creation

activity.110 Second, it allows the API owner the ability to control future

changes to the API, preventing “extend, embrace, extinguish” types of

abuse. Third, because all third-party API use would require a license fee,

this regime would not suffer from the over- and under-compensation

problems of a fair use regime or a compulsory fixed-rate licensing re-

gime. Thus, the variable-rate compulsory licensing regime described

above solves the standardization-value appropriation problem without

suffering from the same side effects as uncopyrightability, fair use, and

compulsory licensing regimes.111

However, this regime likely would have higher transaction costs

than any other regimes described above. In particular, a royalty rate

would have to be separately determined — possibly in court — for each

API, or maybe even for each API licensee. But the API market may be

able to bear these transaction costs better than industries that use fixed-

rate schemes, like the music industry, for several reasons. First, the aver-

age value of a single use of an API is likely much higher than that of a

single public performance of a song. In addition, a single song might be

played by thousands of different entities such as restaurants, movie thea-

ters, etc. Negotiating with each of these parties would be cost-

prohibitive. The average API would likely be licensed to far fewer licen-

sees.

In addition, there are ways to lower the transaction costs of such a

regime. Professors Mark Lemley and Carl Shapiro haveproposed a

FRAND licensing system whereby an API owner and a potential licen-

see attempt to negotiate a fee.112 If that negotiation fails, the parties can

move to “baseball-style” binding arbitration. In this arbitration style,

each party submits a single offer to the arbitrator, who then picks one of

those two offers. In eliminating costly rounds of argument, this process

presents a relatively low-cost way to set a reasonably accurate royalty.

VI. CONCLUSION

This Note divides the value of an API copyright into two compo-

nents: the API’s “expression value” and its “standardization value.” An

API’s standardization value is essentially the user switching costs that

the right to exclude allows an API owner to appropriate. The Note notes

that APIs are the only copyright-eligible works that allow their owner to

110. See supra Sections III.D.2, III.D.3.

111. See supra Part IV.

112. Mark A. Lemley & Carl Shapiro, A Simple Approach to Setting Reasonable Royalties

for Standard-Essential Patents, 28 BERKELEY TECH. L.J. 1135 (2013).

No. 1] Standardization-Value Appropriation 263

appropriate standardization value, and thus copyright overcompensates

API owners. The Note argues that appropriation of standardization value

is unnecessary to incentivize innovation, and actually causes many of the

social harms that commentators have long associated with copyright on

APIs. The Note discusses four legal regimes that prevent an API’s owner

from appropriating its standardization value and concludes that a varia-

ble-rate compulsory licensing regime has manageable transaction costs

and provides creators with the closest-to-optimal incentives for innova-

tion.

	Table of Contents
	I. Introduction
	II. From API to IP
	A. A Short Introduction to APIs
	1. Software Libraries as a Means for Abstraction
	2. The Application Programming Interface

	B. Copyright Law is the Only Existing IP Right That Can Protect Many APIs
	1. Patenting APIs
	2. Protecting APIs as Trade Secrets
	3. Copyrighting APIs

	III. The Right to Exclude Overcompensates API Owners
	A. Prior Scholarship
	B. The Right to Exclude Enables Appropriation of an API’s Standardization Value
	C. API-Related Switching Costs as the Origin of Standardization Value
	D. The Standardization-Value Appropriation Problem
	1. The Appropriation of Standardization Value Has Social Costs
	2. API Owners Need Not Appropriate Standardization Value To Be “Rewarded” for Their Creation
	3. Preventing Appropriation of Standardization Value Does Not Disturb the API Owner’s “Prospect” for Desirable Post-Creation Activity

	IV. Possible Solutions to the Standardization-Value Appropriation Problem
	A. Should APIs Be Uncopyrightable?
	B. Should Use of an API for Interoperability Be Fair Use?
	C. Should APIs Be Subject to Fixed-Rate Statutory Licensing?

	V. A Variable-Rate Compulsory Licensing Regime for APIs
	VI. Conclusion

