
Harvard Journal of Law & Technology
Volume 31, Special Issue Spring 2018

COMPUTER SOFTWARE AS COPYRIGHTABLE SUBJECT

MATTER: ORACLE V. GOOGLE, LEGISLATIVE INTENT, AND
THE SCOPE OF RIGHTS IN DIGITAL WORKS

Ralph Oman*

TABLE OF CONTENTS

I. INTRODUCTION .. 639

II. COPYRIGHT LAW AND COMPUTER SOFTWARE 641
A. CONTU and the Protection of Software via Copyright 641
B. Functionality and Expressiveness Can Coexist 644

III. WHAT COPYRIGHT PROTECTION FOR COMPUTER
SOFTWARE MEANS .. 646
A. Defining and Protecting Software’s Constituent Parts 646
B. Non-Literal Similarity and Computer Software 649

IV. CONCLUSION .. 651

I. INTRODUCTION

It was not a foregone conclusion that Congress would choose to
make computer software copyrightable. In the lengthy period of study
preceding the 1976 Copyright Act, as well as afterward, some schol-
ars advocated sui generis intellectual property protection for the digi-
tal code that would run certain hardware devices.1 And even the
commission that Congress convened to study the issue split in its rec-
ommendation.2

* Pravel Professorial Lecturer in Intellectual Property and Patent Law, George Washing-
ton University Law School. Former United States Register of Copyrights; Chief Counsel,
Senate Subcommittee on Patents, Copyrights, and Trademarks of the U.S. Senate Judiciary
Committee.

1. See, e.g., Elmer Galbi, Proposal for New Legislation to Protect Computer Program-
ming, 17 BULL. COPY. SOC’Y 280, 283–92 (1970) (proposing that the Copyright Act be
amended specifically to add protection to computer programs); Joseph Scafetta, Jr., Com-
puter Software Protection: The Copyright Revision Bills and Alternatives, 8 J. MARSHALL J.
PRAC. & PROC. 381, 398–99 (1975) (proposing the creation of the “petty patent” with a
shorter duration that would protect computer software based on elements of copyright law
and patent law); Michael Alan Pope & Patrick Bruce Pope, Protection of Proprietary Inter-
ests in Computer Software, 30 ALA. L. REV. 527, 529 (1979) (proposing new legislation to
protect computer software that would require both expressive and innovative ideas); Kay H.
Pierce, Copyright Protection for Computer Programs, 30 COPY. L. SYMP. 1, 26–29 (1980)
(proposing a “hybrid system” of protection where exclusive rights would be granted to the
creator of a program for a shorter period of time than is granted to the recipient of a patent).

2. NAT’L COMM’N ON NEW TECH. USES OF COPYRIGHTED WORKS, FINAL REPORT 1, 26,
27, 37 (1979) [hereinafter CONTU REPORT].

640 Harvard Journal of Law & Technology [Vol. 31

But when Congress made clear that computer programs would, in
fact, be copyrightable, it effectively imported several centuries’ worth
of well-studied (if often misunderstood) legal doctrines to bear on the
questions that would inevitably follow from its decision to categorize
software as a “literary work,” protectable like any other. Sorting out
the proper application of these copyright doctrines — to operating
systems, video displays, nested hierarchies embedded in functional
menus, and other elements of software — has not always been
straightforward.3 But the essential, threshold proposition stands: by
bringing software into the world of copyright, Congress plainly did
not mean to abrogate longstanding copyright principles; it meant to
subject software to them.

Are non-literal elements of computer software — for example, its
“structure, sequence, and organization”4 — protectable in their own
right, separate and apart from the literal code? The answer is to be
found in pre-existing principles of copyright protection: because the
non-literal elements of “literary works” had, at the time, long been
understood to be protectable, and because Congress chose to classify
software as a “literary work,” the non-literal elements of software are
indeed protectable. There is no indication in the text or history of the
Copyright Act to suggest otherwise. And it is no answer to say that
computer software should be treated differently — with a thinner
scope of protection in this and other respects — because it is “func-
tional.” Congress was well aware that computer software is inherently
functional in respects that other literary works are not. Yet it still
made computer software copyrightable.

It seems to me that Professor Menell, in his valuable contribution
to this volume, implicitly embraces the view that Congress meant for
the protection afforded computer software to be different from the
protection afforded other works, because computer software is func-
tional. From that premise, he argues that the Federal Circuit in Oracle
v. Google erred at every turn. But the premise is, I think, mistaken.
And to the extent that critics of Oracle v. Google base their com-
plaints on the notion that the functional nature of software should

3. See, e.g., Lotus Dev. Corp. v. Borland Int’l Corp., 49 F.3d 807 (1st Cir. 1995), aff’d by

an equally divided court, 516 U.S. 233 (1996) (“Applying copyright law to computer pro-
grams is like assembling a jigsaw puzzle whose pieces do not quite fit.”) (Boudin, J., con-
curring).

4. See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175
(9th Cir. 1989) (Computer programs are composed “of several different components
Whether the non-literal components of a program, including the structure, sequence and
organization and user interface, are protected depends on whether . . . the component in
question qualifies as an expression of an idea, or an idea itself.”); Oracle Am., Inc. v.
Google Inc., 750 F.3d 1339, 1350–51 (Fed. Cir. 2014) (defining Java’s “structure, sequence,
and organization” as “the elaborately organized taxonomy of all the names of methods,
classes, interfaces, and packages — the ‘overall system of organized names — covering 37
packages, with over six hundred classes, with over six thousand methods’”).

Special Issue] Copyrightable Software 641

yield a meaningfully narrower scope of protection from that afforded
other works, it is incumbent on such critics to articulate precisely
where Congress evinced that intention. As the Register of Copyrights
in the era when many questions of first impression concerning the
scope of digital rights initially presented themselves, I am not aware
of any evidence that Congress ever did so.

II. COPYRIGHT LAW AND COMPUTER SOFTWARE

A. CONTU and the Protection of Software via Copyright

In 1980, as the world sat on the brink of the digital age, Congress
amended the Copyright Act to provide computer programs the same
copyright protection as all other literary works.5 Its choice to do so,
however, was far from preordained. Within academia and beyond,
scholars and practitioners debated the proper type — and the proper
scope — of protection for computer programs. Some recommended
denying copyright protection to computer software altogether, observ-
ing, for example, that “[o]ne should become suspicious of the need for
protection at present upon learning that the software industry is cur-
rently burgeoning without the use of copyright”6 Others pro-
posed protecting computer programs with specially tailored
legislation, whether appended to an existing statute or in new, stand-
alone provisions.7 One scholar, for example, proposed creating what
he termed “the petty patent,” which would protect computer programs
for a shorter time period than the typical seventeen-year patent, and
which would require elements borrowed from both copyright and pa-
tent law: originality, novelty, and utility.8 Another suggested that a
special section be added to the Copyright Statute wherein Congress
could account for the fact that “in some respects . . . a new computer
program is similar to a new machine,” but in other respects “a com-
puter program can be duplicated with the same ease that one can du-
plicate a literary work.”9

In view of the longstanding debate on the subject, Congress
tasked a commission — the National Commission on New Techno-
logical Uses of Copyrighted Works (“CONTU”) — with analyzing
and recommending appropriate copyright protection for software. Af-
ter careful study and consideration, CONTU released a final report in

5. Computer Software Copyright Act of 1980, Pub. L. No. 96–517, § 10, 94 Stat. 3015,

3018 (1980).
6. Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in Books, Pho-

tocopies, and Computer Programs, 84 HARV. L. REV. 281, 344 (1970).
7. See, e.g., Galbi, supra note 1, at 280–81; Scafetta, supra note 1, at 398.
8. Scafetta, supra note 1, at 398.
9. Galbi, supra note 1, at 281.

642 Harvard Journal of Law & Technology [Vol. 31

which it recommended that federal law treat computer software as
copyrightable material.10

Congress adopted CONTU’s recommendations wholesale, mak-
ing its report particularly useful in terms of shedding light on Con-
gress’s intent.11 In the report, CONTU made clear its view that
software should be treated no different than any other work of author-
ship12 — protectable if original. CONTU recommended that Congress
amend the 1976 Copyright Act to “make explicit that computer pro-
grams, to the extent they embody an author’s original creation, are
proper subject matter of copyright.”13 Accordingly, under CONTU’s
recommendation, software would be protected as long as “the ‘author’
contributed something more than a ‘merely trivial’ variation, some-
thing recognizably ‘his own.’”14

CONTU addressed at some length what protecting computer
software should entail and how such protection would fit within exist-
ing copyright doctrines. Even then, it was apparent that the limitations
contained in section 102(b) of the Copyright Act could pose particular
challenges for computer software. That section states: “In no case
does copyright protection for an original work of authorship extend to
any idea, procedure, process, system, method of operation, concept,
principle, or discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work.” Recognizing that
essentially everything about software could, from a certain perspec-
tive, be characterized as falling under one or more of these rubrics,
CONTU observed that “the distinction between copyrightable com-
puter programs and uncopyrightable processes or methods of opera-
tions does not always seem to ‘shimmer with clarity.’”15 The majority
of the commission thus thought it “important that the distinction be-
tween programs and processes be made clear.”16 To do so, it drew on
the “venerable copyright case” Baker v. Selden, which it described as
holding “that a valid copyright in a book describing a system of ac-
counting, based upon the now-universal T-accounts, did not bar others
from using that accounting system.”17 That holding, CONTU went on,

10. See CONTU REPORT at 12.
11. Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1519 n.5 (1992) (“Congress adopted

all of the statutory changes recommended by CONTU verbatim. Subsequent Congresses, the
courts, and commentators have regarded the CONTU Report as the authoritative guide to
congressional intent.”).

12. See CONTU REPORT at 12–13, 18–19.
13. Id. at 1.
14. Id. at 25.
15. Id. at 18.
16. Id. at 19.
17. Id. at 19 (citing Baker v. Selden, 101 U.S. 99 (1879) (discussing extensively the dis-

tinction between copyright law and patent law and finding that copyright does not give an
author exclusive rights to “useful art” described in a book, only the description of such
“useful art” is protectable by copyright)).

Special Issue] Copyrightable Software 643

“is often misconstrued as imposing a limit on copyrightability of
works which express ideas, systems, or processes.” But, CONTU con-
tinued, “[a]s Professor Nimmer observes, ‘the rationale for the doc-
trine of Baker v. Selden in no event justifies the denial of
copyrightability to any work.’”18

Congress enshrined Baker’s holding in section 102(b) of the Cop-
yright Act long before CONTU was formed. Under Baker and section
102(b), CONTU explained, “[c]opyright . . . protects the program so
long as it remains fixed in a tangible medium of expression but does
not protect the electro-mechanical functioning of a machine.”19
“Thus,” CONTU concluded, “one is always free to make a machine
perform any conceivable process (in the absence of a patent), but one
is not free to take another’s program.”20 CONTU’s understanding
accords with Congress’s own description of 102(b) as “intend[ing] . . .
to make clear that the expression adopted by the programmer is the
copyrightable element in a computer program,” but “that the actual
processes or methods embodied in the program are not.”21

Just as important as what Congress did do — protect computer
software in the Copyright Act — is what Congress did not do. Con-
gress rejected Commissioner John Hersey’s view that computer soft-
ware should not be protected by existing copyright law. Hersey voiced
his vehement opposition to CONTU’s recommendations in a dissent
that consumed more than a quarter of CONTU’s thirty-eight-page
report. In it, he thoroughly addressed what he viewed as the many
dangers posed by the Commission’s recommendations. According to
Hersey, “copyright is an inappropriate, as well as unnecessary, way of
protecting usable forms of computer programs.”22 Warning against
“distortion [of copyright] by shoehorn,” Hersey continued:

In the early stages of its development, the basic ideas
and methods to be contained in a computer program
are set down in written forms, and these will pre-
sumably be copyrightable with no change in the
1976 Act. But the program itself, in its mature and
usable form, is a machine-control element, a me-
chanical device, which on constitutional grounds and
for reasons of social policy ought not be copyright-
ed.23

18. Id. (quoting 1 MELVILLE NIMMER, NIMMER ON COPYRIGHT, § 37.31 (1976)).
19. Id. at 20.
20. Id.
21. H.R. Rep. No. 94–1476 (1976).
22. CONTU REPORT at 27.
23. Id.

644 Harvard Journal of Law & Technology [Vol. 31

In other words, there is — and always has been — copyright protec-
tion for the written expression of the initial plans of a program, but
there should be no protection for the ultimate program because it
merely controls a machine. Commissioner Karpatkin shared Commis-
sioner Hersey’s “doubts and concerns sufficiently to lead” her to dis-
sent.24 She also noted that “the late Commissioner Nix, who passed
away before the Commission’s final report, indicated that he shared
them as well.”25

Although Commissioner Melville Nimmer concurred in the
Commission’s ultimate recommendation, he too “share[d] in a number
of the doubts and concerns expressed [by] Commissioner Hersey[] [in
his] thoughtful dissenting opinion.”26 Nimmer was “most troubl[ed]
[by] the Commission’s recommendation of open-ended copyright pro-
tection for all computer software” because of the Commission’s “fail-
ure to articulate any rationale which would not equally justify
copyright protection for the tangible expression of any and all original
ideas”27

Congress was unmoved.28 Its decision to adopt the CONTU ma-
jority’s recommendations, especially in the face of such criticism,
makes it indisputably clear that computer programs are copyrightable
in the same manner as all other works. As a result, “[t]he sine qua non
of copyright” for computer software “is originality,” a “requirement
[that] is not particularly stringent.”29 As long as a work “possesses at
least some minimal degree of creativity,”30 then it merits copyright
protection.

B. Functionality and Expressiveness Can Coexist

Perhaps the most important principle for purposes of understand-
ing copyright protection for computer software is that a literary work
can be both functional and expressive.31 At the most basic level, all
computer code is functional — it tells a machine, whether physical or
virtual, what to do. And as the foregoing explains, CONTU recog-

24. Id. at 38.
25. Id.
26. Id. at 26.
27. Id.
28. Representative Robert W. Kastenmeier of Wisconsin, the legendary Chairman of the

House Intellectual Property Subcommittee, stated in his floor remarks on final passage of
H.R. 6933 that his legislation “eliminates confusion about the legal status of computer soft-
ware by enacting the recommendations of [CONTU]” 126 CONG. REC. 29,895 (1980).

29. Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 345, 358 (1991).
30. Id. at 345.
31. Consider an instructional manual, for instance. Copyright typically protects the au-

thor’s particular articulation of which steps to take to achieve the desired result — but does
not, of course, wall off others from writing their own descriptions of how to achieve the
same result.

Special Issue] Copyrightable Software 645

nized that reality when recommending copyright protection for com-
puter software and explained why it did not foreclose protection.
When Congress acted on CONTU’s recommendation, it demonstrated
that it too understood the dual nature of a computer program, defining
it as “a set of statements or instructions to be used directly or indirect-
ly in a computer to bring about a certain result.”32 Even Professor
Menell recognizes that “[c]omputer software” is “written work in-
tended to serve utilitarian purpose”33 So it cannot be that the
functional nature of computer code precludes protection.34

Even before Computer Associates Int’l v. Altai, Inc.,35 in which
the Second Circuit examined and balanced the complexities of mixed
functional and expressive aspects in software copyright, courts recog-
nized that software should not be denied protection even if its expres-
sive components are also functional. In Apple Computer, Inc. v.
Franklin Computer Corp.,36 for example, the Third Circuit considered
Apple’s claim that Franklin copied Apple’s operating system in an
effort to provide a competitive personal computer that also operated
Apple programs. Franklin contended that operating systems were per
se excluded from copyright protection under the express terms of sec-
tion 102(b) because they are “put to utilitarian use.”37 The court re-
jected that view, instead distinguishing between “the method which
instructs the computer to perform its operating functions” and “the
instructions themselves.”38 The court observed that there is “nothing
in the copyright statute to support the argument that the intended use
or use in industry of an article eligible for copyright bars or invali-
dates its registration. We do not read such a limitation into the copy-
right law.”39 The court also noted that CONTU’s majority rejected the
expansive view some courts have given Baker v. Selden.40

32. 17 U.S.C. § 101 (2012).
33. Peter Menell, Error! Main Document Only.Rise of the API Copyright Dead?: An

Updated Epitaph for Copyright Protection of Network and Functional Features of Comput-
er Software, 31 HARV. J.L. & TECH. (SPECIAL ISSUE) 305, 315 (2018).

34. See Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240, 1251 (3rd Cir.
1983) (“[t]hat the words of a program are used ultimately in the implementation of a process
should in no way affect their copyrightability.”); Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366,
1372 (10th Cir. 1997) (holding that although an element may be “characterized as a method
of operation, that element may nevertheless contain expression that is eligible for copyright
protection. Section 102(b) does not extinguish the protection accorded a particular expres-
sion of an idea merely because that expression is embodied in a method of operation at a
higher level of abstraction.”); Apple Comput., Inc. v. Formula Int’l, Inc., 725 F.2d 521,
523–24 (9th Cir. 1984) (rejecting the notion that operating systems are “processes” and thus
unprotectable).

35. 982 F.2d 693 (2d Cir. 1992).
36. 714 F.2d 1240.
37. Id. at 1252; see also id. at 1250.
38. Id. at 1251.
39. Id. at 1252 (quoting Mazer v. Stein, 347 U.S. 201, 218 (1954)).
40. Id. (citing CONTU REPORT at 21 (“[t]hat the words of a program are used ultimately

in the implementation of a process should in no way affect their copyrightability.”)).

646 Harvard Journal of Law & Technology [Vol. 31

The Third Circuit’s Franklin decision does not stand alone. In To-
ro Co. v. R & R Products Co.,41 for example, the Eighth Circuit ex-
plained that when a literary work, like computer software, is a system,
the “particular expression” of that system is copyrightable even
though, under section 102(b), the system itself is not. And in Mitel,
Inc. v. Iqtel, Inc.,42 the Tenth Circuit observed: “[A]lthough an ele-
ment of a work may be characterized as a method of operation, that
element may nevertheless contain expression that is eligible for copy-
right protection.”43

While the utilitarian nature of software creates additional chal-
lenges, requiring courts to identify a program’s protectable expression
as distinct from the underlying function, denying copyright protection
to software altogether is not the answer. Rather, existing methods
such as the abstraction-filtration-comparison test, developed by the
Second Circuit in Altai,44 provide a roughly effective means for iden-
tifying when a follow-on software product infringes a pre-existing
one, accounting for elements of the original that cannot properly sup-
ply the basis for copyright liability (e.g., the use of scenes-a-faire and
similar long-studied, well-understood elements of a work).

III. WHAT COPYRIGHT PROTECTION FOR COMPUTER
SOFTWARE MEANS

Once Congress brought computer software under copyright’s um-
brella, questions abounded about how to apply traditional copyright
principles to these relatively new works. The answers, almost invaria-
bly, lie in the Copyright Act and the doctrines that have developed
around it. Although we now have almost forty years of experience
with protection for computer software, it is still the source of much
disagreement. When the basic principles of copyright law are under-
stood, however, it becomes clear that the Federal Circuit in the Oracle
v. Google case reached the right decision.

A. Defining and Protecting Software’s Constituent Parts

Conspicuously absent from the Copyright Act is any limitation
specific to the protection of computer software or its constituent parts.
Nevertheless, identifying the line where protectable expression ends
and unprotectable function begins requires defining both the work for
which protection is sought, as well as the function it performs. Doing

41. 787 F.2d 1208, 1212 (8th Cir. 1986).
42. 124 F.3d 1366 (10th Cir. 1997).
43. Id. at 1372.
44. 982 F.2d 693.

Special Issue] Copyrightable Software 647

so, however, can open the door to quite a bit of mischief, for in defin-
ing both concepts in a given instance, one can simultaneously remove
wide swaths of software from copyright’s orbit.

Professor Menell’s analysis of the works at issue in Oracle v.
Google provides a case study in the dangers posed by defining works
at too granular a level. Take his assertion that “Oracle does not dis-
pute that Google needed to include the particular declarations to make
its Android platform perform the particular functions of the thirty-
seven Java APIs.”45 Professor Menell seems to be implying that the
functionality of the declarations and the expression of that functionali-
ty cannot be separated and thus the declarations are not protected.
That view, in turn, is premised on his assertion that “the particular
functions of the thirty-seven Java APIs” require the declarations.

In a limited sense, Menell’s suggestion that the functionality of
the declarations and their expression cannot be separated is of course
correct: if the “function” to be achieved is framed as “the ability to
write software code using the precise phraseology that the original
author created,” then it is in fact an a priori truth that there is no way
to achieve that function except by including the same phraseology in
the follow-on work. But the Copyright Act has never sanctioned such
a tautological approach to defining the “function” a follow-on work is
entitled to achieve in its own right, using its own creative expression.
As the Federal Circuit explained, “nothing prevented Google from
writing its own declaring code, along with its own implementing
code, to achieve the same result.”46 That is an eminently saner vision
of the “function” for purposes of the analysis that Title 17 prescribes:
look to what the thing does, rather than defining what the thing does
such that its “function” necessarily encompasses its expression.

Professor Menell also says that the “API packages, unlike words,
function as the gears and levers of a virtual machine.”47 He returns to
this point again, stating:

APIs function as the levers and gears of particular
digital machines. The declarations must be repro-
duced to replicate the particular functionality. An-
droid programmers needed to reproduce the same
package (java.security), class name (ProtectionDo-
main), and method name (ClassLoader) to effectuate

45. Menell, supra note 33, at 443.
46. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1361 (Fed. Cir. 2014) (emphasis

added). In fact, there were myriad ways Google could have organized the API packages and
“nothing in the rules of the Java language . . . required that Google replicate the same group-
ings.” Id. at 1352. Google thus had the ability to achieve the ultimate result it desired —
utilizing the admittedly non-protected Java language.

47. Menell, supra note 33, at 364 n.316.

648 Harvard Journal of Law & Technology [Vol. 31

a computer program that responds to the same inputs
and produces the same outputs as the (ja-
va.security.machine).48

Here, too, it appears Professor Menell finds himself at least in the
neighborhood of tautology. He seems to be suggesting that Google
had to copy Oracle’s packages — including both the declaring code
and the SSO — because that was the only way to use Oracle’s pack-
ages. Maybe so, but that does not mean using Oracle’s packages is the
only way to accomplish the desired function. Again, it is important to
expressly acknowledge here that all of this turns to a large degree on
the question: what is the function at issue?

The answer simply cannot be, “allowing users already familiar
with the SSO of Oracle’s packages to continue using them.” If it were,
then any follow-on work targeted at an existing base of adherents
could indiscriminately replicate elements of the original that were
necessary to the “function” of free-riding off of the pre-existing com-
munity’s affinity for the creative, unconstrained choices made by the
original author. It should go without saying that the Copyright Act
simply does not tolerate that result.

Professor Menell further contends that “implementing code is the
protectable computer program,” but “declaring code constitutes ‘the
actual processes or methods embodied in the program [which] are not
within the scope of the copyright law.’”49 He asserts that this view is
“faithful to the text and specific legislative history of [§ 102(b) of] the
Copyright Act.”50 I respectfully disagree. There is no basis for draw-
ing a distinction between types of code — let alone declaring and im-
plementing code — for purposes of copyright protection.

Professor Menell’s reliance on the Ninth Circuit’s decisions in
Sega Enterprises Ltd. v. Accolade, Inc.51 and Sony Computer Enter-
tainment, Inc. v. Connectix Corp.52 also misses the mark. Contrary to
Professor Menell’s contention, neither case holds that “the software
code necessary for interoperability is unprotectable by copyright
law.”53 In fact, both cases were fair use cases in which copyrightabil-
ity was addressed only tangentially. In Sega, the defendant made in-
termediate copies of Sega’s software in order to reverse engineer it, to
understand how Sega’s game console interfaced with Sega’s own
game cartridges.54 The only question before the court, however, was

48. Id. at 434.
49. Id. at 424.
50. Id.
51. 977 F.2d 1510 (9th Cir. 1992).
52. 203 F.3d 596 (9th Cir. 2000).
53. Menell, supra note 33, at 430.
54. Sega, 977 F.2d at 1514–15.

Special Issue] Copyrightable Software 649

whether the defendant’s intermediate copying was fair use; the Ninth
Circuit was not presented with the question whether the software code
that incorporated the functional aspects that the defendant sought to
mimic also contained separable creative expression.55 Nor was it pre-
sented with the question whether, notwithstanding the functional as-
pects of Sega’s interface procedures, there was protectable expression
in those procedures as well. Likewise, in Sony, the court addressed
only whether the program at issue contained functional aspects, and it
did so for purposes of determining fair use.56 The court did not even
consider whether Sony’s software also had expressive aspects. 57

Try as one might, one will find no place in the Copyright Act that
distinguishes between the types of code in a computer program.
“[T]he Act makes no distinction between the copyrightability of those
programs which directly interact with the computer user and those
which simply manage the computer system.”58 Nor does it make a
distinction between code that invokes other components of a computer
program — thus acting in a more “indirect” fashion — and code that
implements aspects of a program on a machine. In fact, the Act spe-
cifically contemplates protection for both types of code in the defini-
tion of computer program. The definition of “computer program”
establishes that copyrightability does not turn on how closely tied the
computer code is to the ultimate function the computer performs.59

B. Non-Literal Similarity and Computer Software

Protection for literary works, in general, is not limited to the lit-
eral expression that the reader sees, i.e., the specific words on the
page. Instead, copyright protection extends to the non-literal parts of a
work, such as the contours of the plot of a play,60 or the creative ag-
gregation of pre-existing but previously separate design elements.61
Thus, even if a follow-on work borrows none of the literal words of
the original, it can still be infringing if it impermissibly copies non-
literal elements that fall within the ambit of copyright protection.

In the context of software, in particular, “[i]t is well-
established . . . that non-literal similarity of computer programs can
constitute copyright infringement.”62 It is important to note that a giv-

55. Id. at 1514.
56. Sony, 203 F.3d at 598.
57. Id.
58. Apple Comput., Inc. v. Formula Int’l Inc., 725 F.2d 521, 524 (9th Cir. 1984).
59. 17 U.S.C. § 101 (2012) (“[A] set of statements or instructions to be used directly or

indirectly in a computer in order to bring about a certain result.”).
60. See Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930).
61. See, e.g., Boisson v. Banion, 273 F.3d 262 (2d Cir. 2001).
62. Softel, Inc. v. Dragon Med. and Sci. Comm’ns, Inc., 118 F.3d 955, 963 (2d Cir.

1997).

650 Harvard Journal of Law & Technology [Vol. 31

en element of a computer program may be unprotectable in its own
right, but that does not preclude protection for non-literal elements of
the work as a whole, where they are assembled or organized in a crea-
tive fashion. As the Second Circuit has explained:

In Altai, the district court held many aspects of the
program at issue in that case to be not protectable for
various reasons (e.g., because they were in the public
domain or were computer scenes a faire). Neverthe-
less, the court proceeded to a higher level of abstrac-
tion and responded to the plaintiff’s claim of
infringement based on alleged similarities between
the two programs’ “organizational charts.” . . . This
Court approved that approach63

I have understood these principles to be non-controversial: of
course the copyrightable elements of a complex work include particu-
lar combinations of features that reflect the author’s creative choices,
irrespective of whether the features themselves are independently
copyrightable in their own right. And the implications of these princi-
ples for a software product like Oracle’s in the Oracle v. Google case
should be straightforward — though they have seemed to elude many
commentators. If Oracle went out and created, from the ground up, a
software program including 166 API packages; and if Google then
went out and copied, down to the last jot and tittle, the precise struc-
ture of 37 of those packages; then Google engaged in a prima facie act
of infringement of protected non-literal elements of Oracle’s software
program. We do not need to know anything else to reach that conclu-
sion. It makes no difference whether, as Professor Menell insists, the
declaring code in the API packages is independently copyrightable. If
you create a cookbook consisting of 166 historic recipes, selected
from the hundreds of thousands of recipes available — each of which
is in the public domain and not subject to copyright protection in its
own right — and I create a follow-on cookbook that copies the crea-
tive selection and arrangement of the first 37 recipes in your book, in
precisely the same sequence and in deliberately exacting detail, then I
have infringed the copyright in your cookbook, which you earned by
selecting and arranging the recipes together in the first place.64

Compare Professor Menell’s approach: he appears to believe that
the non-literal elements of Oracle’s software program — which he
(like courts before him) calls its “SSO,” for “structure, sequence and

63. Id. at 963–64.
64. More precisely, I have engaged in a prima facie act of infringement, which will yield

liability if I have no defense — which I surely hope I do!

Special Issue] Copyrightable Software 651

organization”65 — are not copyrightable because the “declaring code
constitutes ‘the actual methods embodied in the program [which] are
not within the scope of the copyright law.’”66 I understand him to
mean that because the constitutive parts of Oracle’s program — the
lines of code that he calls declaring code — are themselves uncopy-
rightable (in his view), then assembling them together in various hier-
archies, sub-hierarchies, and sub-sub-hierarchies can never yield a
protectable work (or part of one) that can be infringed by even studi-
ous replication. But that is simply not the law. Taking even pre-
existing unprotected components and selecting or arranging them in a
new way can result in a protected work that precludes copying of the
original selection and/or arrangement.67 Creating the components
from the ground up, and then organizing them in complex hierarchies,
is an even easier case.

Here, again, Congress has never suggested that these basic,
longstanding principles of copyright law should cease to apply be-
cause the work at issue is a work of software. Perhaps it should have.
Perhaps we would all be better off if, in the late 1970s and early
1980s, Congress had embraced the recommendations of those com-
mentators who advocated sui generis protection for computer pro-
grams, and rejected the recommendations of those who preferred to
bring computer programs into the universe of copyright law. I person-
ally doubt that we would have done so, but I cannot rule out the pos-
sibility. As events in fact unfolded, however, that is not the course
that Congress chose. And in view of this history, the burden should
fall on those who advocate a departure from standard copyright prin-
ciples for computer software to identify where, precisely, they under-
stand Congress to have made such a radical departure part of our law.
As a participant in some of the debates about copyright and software
in the 1980s and ‘90s, I am hard-pressed to think of an instance when
Congress did so (aside, of course, from computer-specific provisions
of Title 17, which have nothing to do with the topics at issue here).68

IV. CONCLUSION

Despite Professor Menell’s ominous warnings about the import of
the Federal Circuit’s ruling, the sky has not fallen. Nor has it fallen in
the nearly forty years since Congress expanded the Copyright Act to
protect computer programs — a critically important area of creative

65 Menell, supra note 33, at 326.
66. Id. at 424.
67. See Key Publ’ns, Inc. v. Chinatown Today Publ’g Enters., 945 F.2d 509, 513–14 (2d

Cir. 1991).
68. See, e.g., 17 U.S.C. § 119(a) (2012). Tellingly, Congress chose the sui generis option

in 1984 when it enacted the Semiconductor Chip Protection Act.

652 Harvard Journal of Law & Technology [Vol. 31

development and innovation. Copyright protection continues to stimu-
late creativity, competition, and technological advancement. It sup-
presses piracy and predatory commercial practices. It encourages
investment in new and better works. It contains the nuance necessary
for complex technological environments. And, under the leadership of
the United States, it has led to international consensus that computer
programs are best protected with the application of general copyright
principles. Diverting from this well-trod, proven path, chosen by
Congress and relied on by innovators, requires more than policy ar-
guments and disagreements with outcomes. The Federal Circuit right-
ly recognized as much and should be applauded for doing so.

	Table of Contents
	I. Introduction
	II. Copyright Law And Computer Software
	A. CONTU and the Protection of Software via Copyright
	B. Functionality and Expressiveness Can Coexist

	III. What Copyright Protection For Computer Software Means
	A. Defining and Protecting Software’s Constituent Parts
	B. Non-Literal Similarity and Computer Software

	IV. Conclusion

