
Harvard Journal of Law & Technology
Volume 31, Special Issue Spring 2018

PLATFORMS AND INTEROPERABILITY IN ORACLE V. GOOGLE

Joseph Gratz & Mark A. Lemley*

TABLE OF CONTENTS

I. INTRODUCTION .. 603	
II. COPYRIGHT LAW ENCOURAGES INTEROPERABILITY 604	
III. INTEROPERABILITY PROMOTES INNOVATION 609	
IV. CONCLUSION .. 613	

I. INTRODUCTION

Copyright exists to promote creativity. As a result, the copyright
laws strike a series of delicate balances in order to protect different
groups of creators. Too much protection for one group thwarts the
creative innovation of others. Achieving the right balance is particu-
larly important when it comes to software because software’s interac-
tive nature makes the risks of overprotecting existing software
particularly great.

Oracle v. Google presents a useful lens to see how this balance is
struck. As Peter Menell has documented in detail,1 the case concerns
the extent and limits of interoperability between platforms. In particu-
lar, the ultimate outcome of the case will help decide whether the fu-
ture of phone platforms is open or closed. That in turn has significant
implications for innovations written for those platforms.

The Ninth Circuit, like others, has emphasized the importance of
interoperability in computer software copyright cases. It has repeated-
ly held that parties are free to copy the elements of a computer inter-
face necessary to write new and different programs that work with the
plaintiff’s existing program.2 The Federal Circuit will nominally apply
Ninth Circuit law in Oracle v. Google. How it does so will affect the

* Joseph Gratz is a partner at Durie Tangri LLP. Mark A. Lemley is a Professor at Stan-
ford Law School and a partner at Durie Tangri LLP.

We wish to thank Rose Hagan and Pam Samuelson for comments on an earlier draft. This
article is based on an amicus brief we filed in Oracle v. Google on behalf of Engine Advo-
cacy, the App Developers Alliance, and Github, but we have not been paid for this work and
our opinions here are entirely our own.

1. Peter S. Menell, Rise of the API Copyright Dead?: An Updated Epitaph for Copyright
Protection of Network and Functional Features of Computer Software, 31 HARV. J.L. &
TECH. (SPECIAL ISSUE) 305 (2018). For other detailed discussion of the case, see Pamela
Samuelson, Functionality and Expression in Computer Programs: Refining the Test for
Software Copyright Infringement, 31 BERKELEY TECH. L.J. 1215 (2016).

2. See infra notes 13–28 and accompanying text.

604 Harvard Journal of Law & Technology [Vol. 31

future of software innovation not just on the Android platform but in
“walled gardens” throughout the Internet.3

Software companies, and startups in particular, rely on interoper-
ability to build new and innovative products. Without it, developers
would be at the mercy of proprietary platforms written in specific,
rapidly obsolete computer languages and without the ability to create
new and innovative products that are broadly accessible to consum-
ers.4 The result of such a balkanized regime would be significantly
less creativity — the very opposite of what copyright law is designed
to achieve. The freedom to interoperate is particularly important in
software copyright because copyright in software is more likely than
other copyrights to confer control over a market.

II. COPYRIGHT LAW ENCOURAGES INTEROPERABILITY

Debates over interoperability have a long history in software cop-
yright law. The basic contours of that law were established a quarter
century ago. At that time, both Oracle and its predecessor Sun lauded
the benefits of interoperability. In a brief filed by the American
Committee for Interoperable Systems, a trade association that claimed
both Sun and Oracle as members in the 1990s, both companies argued
that copyrights over application program interfaces (APIs) should not
be used to prevent the creation of interoperable programs. They wrote:

If the developer of one part of the environment can
use copyright law to prevent other developers from
writing programs that conform to the system of rules
governing interaction with the environment — inter-
face specifications, in computer parlance — the first
developer could gain a patent-like monopoly over
the system without ever subjecting it to the rigorous
scrutiny of a patent examination.5

Things have changed, as one of the authors worried they might.6
Oracle’s effort to prevent interoperability in Oracle v. Google is par-

3. See, e.g., Dan Hunter, Walled Gardens, 62 WASH. & LEE L. REV. 607 (2004); Salil K.
Mehra, Paradise is a Walled Garden? Trust, Antitrust, and User Dynamism, 18 GEO.
MASON L. REV. 889 (2012); Greg Lastowka, Walled Gardens and the Stationer’s Company
2.0, (2013), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2204465 [https://perma.cc/
GC6A-423K].

4. See, e.g., Mark A. Lemley & David McGowan, Legal Implications of Network Eco-
nomic Effects, 86 CAL. L. REV. 479 (1998) (discussing problems with lock-in in computer
design).

5. Brief for ACIS and CCIA as Amici Curiae Supporting Respondent at *4–5, Lotus Dev.
Corp. v. Borland Int’l, Inc., 516 U.S. 233 (1996), (1995 WL 728487).

6. Mark A. Lemley & David McGowan, Could Java Change Everything? The Competi-
tive Propriety of a Proprietary Standard, 43 ANTITRUST BULL. 715 (1998).

Special Issue] Platforms and Interoperability 605

ticularly ironic because Java was itself developed as a way of creating
interoperability across platforms. But because Java was not released
as open source software, Lemley & McGowan worried in 1998 about
the possibility that Sun would try to close the Java standard to others
to reap the benefits of widespread adoption.7 And indeed that is what
happened after Oracle bought Sun.

Whether Oracle can close the standard is another matter — a le-
gal one. To some extent those issues are a function of the history of
Java, which might create contract or estoppel rights to continued ac-
cess to Java APIs on behalf of existing users or perhaps even the pub-
lic. A failure to honor those rights might even run afoul of the anti-
antitrust laws, though courts have properly made proof of such an
antitrust violation difficult. Those issues are discussed elsewhere, and
we shall not focus on them here.8

Rather, our focus is on the role of interoperability in copyright
law. If Oracle has no power under copyright to restrict the writing of
interoperable programs, either applications programs or platforms, its
desire to close off Java to competition will not matter much. Compa-
nies that want to write interoperable programs will be able to reverse
engineer the Java code or copy publicly exposed APIs in order to do
so.

Software copyright law has long favored interoperability. In many
cases it has done so by denying protection altogether to elements of
computer programs that exist only for purposes of interoperability,
like APIs.9 The Federal Circuit’s prior decision in Oracle v. Google

7. Id.
8. Id.; Mehra, supra note 3.
9. See, e.g., DSC Commc’ns v. DGI Tech., 81 F.3d 597, 601 (5th Cir. 1996); Bateman v.

Mnemonics, Inc., 79 F.3d 1532, 1539 n.18 (11th Cir. 1996); Lotus Dev. Corp. v. Borland
Int’l, Inc., 49 F.3d 807, 821 (1st Cir. 1995) (Boudin, J., concurring), aff’d, 116 S. Ct. 804
(1996); Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1527–28 (9th Cir. 1992); Atari
Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 843–44 (Fed. Cir. 1992); Vault Corp.
v. Quaid Software Ltd., 847 F.2d 255, 270 (5th Cir. 1988); Mitel Inc. v. Iqtel Inc., 896 F.
Supp. 1050 (D. Colo. 1995); see also JONATHAN BAND & MASANOBU KATOH, INTERFACES
ON TRIAL: INTELLECTUAL PROPERTY AND INTEROPERABILITY IN THE GLOBAL SOFTWARE
INDUSTRY (1995); Julie E. Cohen, Reverse Engineering and the Rise of Electronic Vigilan-
tism: Intellectual Property Implications of “Lock-Out” Programs, 68 S. CAL. L. REV. 1091
(1995); Lawrence D. Graham & Richard O. Zerbe Jr., Economically Efficient Treatment of
Computer Software: Reverse Engineering, Protection, and Disclosure, 22 RUTGERS
COMPUT. & TECH. L.J. 61 (1996); Dennis S. Karjala, Copyright Protection of Computer
Documents, Reverse Engineering, and Professor Miller, 19 U. DAYTON L. REV. 975, 1016–
18 (1994); David A. Rice, Sega and Beyond: A Beacon for Fair Use Analysis . . . At Least
as Far as It Goes, 19 U. DAYTON L. REV. 1131, 1168 (1994); cf. Mark A. Lemley, Conver-
gence in the Law of Software Copyright?, 10 HIGH TECH. L.J. 1 (1995) (noting that courts
are reaching results that permit interoperability, albeit through various means). For a discus-
sion of the various circumstances in which courts have upheld interoperability defenses, and
a suggested refinement of the Altai test, see Pamela Samuelson, Functionality and Expres-
sion in Computer Programs: Refining the Tests for Software Copyright Infringement, 31
BERKELEY TECH. L.J. 1215, 1297 (2017).

606 Harvard Journal of Law & Technology [Vol. 31

foreclosed that approach here.10 It has (justly) been criticized for
that.11

But even if the Java APIs are copyrightable, that does not mean
that their use is copyright infringement. As described below, the Ninth
Circuit has repeatedly interpreted the Copyright Act’s fair use doc-
trine to protect the right of third parties to copy APIs when necessary
to make their products work with products made by the copyright
owner or others. That is true even when the use of the API requires
copying the computer code itself, not just the higher-level functional
aspects of the API. And it is true even if the defendant copies the API
in order to compete directly with the plaintiff by producing a compat-
ible system.12

In Sega Enterprises Ltd. v. Accolade, Inc.,13 for example, Acco-
lade wanted to make video games compatible with Sega’s game con-
sole over Sega’s objection. To make its games run on Sega’s platform,
Accolade copied the entirety of Sega’s computer code in order to “re-
verse engineer” the code and extract only the APIs — the portions
necessary to ensure compatibility. The Ninth Circuit held that was a
fair use even though it involved copying of the entirety of the code,
because making that copy was necessary to get access to the interface
components — which the Ninth Circuit found to be “unprotectable.”14
The Court emphasized that “because Accolade has a legitimate inter-
est in gaining such access (in order to determine how to make its car-
tridges compatible with the Genesis console),” its copying of the code
to replicate the interface components was a fair use.15

The fact that Accolade sought to write its own original programs,
not to copy Sega’s programs, loomed large in the Ninth Circuit’s
analysis:

Accolade copied Sega’s software solely in order to
discover the functional requirements for compatibil-
ity with the Genesis console — aspects of Sega’s
programs that are not protected by copyright. With
respect to the video game programs contained in Ac-
colade’s game cartridges, there is no evidence in the
record that Accolade sought to avoid performing its
own creative work. Indeed, most of the games that

10. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339 (Fed. Cir. 2014).
11. See Menell, supra note 1; Samuelson, supra note 9.
12. In a companion paper, Pamela Samuelson and Clark Asay point out other flaws in

Oracle’s fair use analysis, including the utilitarian nature of APIs and a misunderstanding of
the role of “good faith” in fair use. See Pamela Samuelson & Clark D. Asay, Saving Soft-
ware’s Fair Use Future, 31 HARV. J.L. & TECH. (SPECIAL ISSUE) 535 (2018).

13. 977 F.2d 1510 (9th Cir. 1992), as amended (Jan. 6. 1993).
14. Id.
15. Id. at 1520.

Special Issue] Platforms and Interoperability 607

Accolade released for use with the Genesis console
were originally developed for other hardware sys-
tems . . . [A]lthough Accolade’s ultimate purpose
was the release of Genesis-compatible games for
sale, its direct purpose in copying Sega’s code, and
thus its direct use of the copyrighted material, was
simply to study the functional requirements for Gen-
esis compatibility so that it could modify existing
games and make them usable with the Genesis con-
sole . . . On these facts, we conclude that Accolade
copied Sega’s code for a legitimate, essentially non-
exploitative purpose . . .16

Nor was the court troubled that Accolade engaged in verbatim
copying of some program interfaces in order to achieve that legitimate
compatibility purpose:

[C]omputer programs are, in essence, utilitarian arti-
cles — articles that accomplish tasks. As such, they
contain many logical, structural, and visual display
elements that are dictated by the function to be per-
formed, by considerations of efficiency, or by exter-
nal factors such as compatibility requirements and
industry demands . . . When specific instructions,
even though previously copyrighted, are the only and
essential means of accomplishing a given task, their
later use by another will not amount to infringe-
ment.17

In Sony Computer Entertainment, Inc. v. Connectix Corp.,18 the
Ninth Circuit went further, holding that it was fair use to create an
emulator of the Sony game console — copying the code not just to
reverse engineer it but to test how programs worked with it — be-
cause the purpose was to produce a new product that worked with the
old system:

We find that Connectix’s Virtual Game Station is
modestly transformative. The product creates a new
platform, the personal computer, on which consum-
ers can play games designed for the Sony
PlayStation. This innovation affords opportunities
for game play in new environments, specifically an-

16. Id. at 1522–23 (citations omitted).
17. Id. at 1524 (internal quotation marks omitted) (citations omitted).
18. 203 F.3d 596 (9th Cir. 2000).

608 Harvard Journal of Law & Technology [Vol. 31

ywhere a Sony PlayStation console and television
are not available, but a computer with a CD-ROM
drive is. More important, the Virtual Game Station
itself is a wholly new product, notwithstanding the
similarity of uses and functions between the Sony
PlayStation and the Virtual Game Station.19

For the same reason, the fact that Sony might lose sales to the
Connectix system did not militate against fair use on the fourth factor.
“[B]ecause the Virtual Game Station is transformative, and does not
merely supplant the PlayStation console, the Virtual Game Station is a
legitimate competitor in the market for platforms on which Sony and
Sony-licensed games can be played[,]” so the loss of market share
was not attributable to copyright infringement, but to legitimate com-
petition.20

Judged against this Ninth Circuit precedent, Google has a strong
claim to fair use. Google did not simply copy Java. Instead, it took
only what was necessary to make Java API calls usable by programs
running on the Android phone system. That was an innovation. Java
was designed for desktop computers and was unsuited for use on
phones.21 Neither Sun nor Oracle succeeded in creating a smartphone
operating system using Java (or Java API calls).22 Google created the
first mainstream open-source mobile platform, Android. The Android
platform was “revolutionary” and “completely different from any oth-
er approach.”23 That new platform is overwhelmingly Google’s work,
not Sun’s or Oracle’s. Android includes 15 million lines of code, only
a tiny fraction of which are shared in common with Java.24 Nor did
Android even copy all of Java’s APIs. Rather, it used declarations
from only 37 of the 166 Java API packages, while Google wrote its

19. Id. at 606.
20. Id. at 607.
21. Record App’x. 51938:6–19, Oracle Am., Inc. v. Google Inc., (Fed. Cir. 2017) (No.

17–1118) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-
03561 WHA), docketed Oct. 28, 2016).

22. Record App’x. 50559–50560 at 560:17–561:4, Oracle Am., Inc. v. Google Inc., (Fed.
Cir. 2017) (No. 17-1118) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27,
2016) (No. C 10-03561 WHA), docketed Oct. 28, 2016); Record App’x. 51896:12–17,
Oracle Am., Inc. v. Google Inc., (Fed. Cir. 2017) (No. 17-1118) (pending appeal from 2016
WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA), docketed Oct. 28, 2016).

23. Record App’x. 50346–50347 at 347:14–348:7, Oracle Am., Inc. v. Google Inc., (Fed.
Cir. 2017) (No. 17-1118) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27,
2016) (No. C 10-03561 WHA), docketed Oct. 28, 2016); Record App’x. 50347–50348 at
348:21–349:1, Oracle Am., Inc. v. Google Inc., (Fed. Cir. 2017) (No. 17-1118) (pending
appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA), docket-
ed Oct. 28, 2016).

24. Record App’x. 51247:4–7, Oracle Am., Inc. v. Google Inc., (Fed. Cir. 2017) (No. 17-
1118) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561
WHA), docketed Oct. 28, 2016).

Special Issue] Platforms and Interoperability 609

own code to implement those functions.25 Those 37 APIs are, by Ora-
cle’s own admission, “not separable” from the Java programming lan-
guage and are “fundamental” to implementing Java.26 So Oracle’s
argument that implementing those APIs is not fair use as a matter of
law is tantamount to arguing that interoperability is not fair use as a
matter of law.27

Sega and Sony hold that a company is free to copy the entirety of
a computer program in order to build a compatible product, even
where that compatible product copies API code directly in the final
product and even where that final product competes directly with the
plaintiff. Google’s use of selected Java APIs, which did not involve
copying of the code in the final product and did not involve a compet-
ing product at all, seems by comparison easy to justify as fair use un-
der the Ninth Circuit’s case law promoting interoperability.28

III. INTEROPERABILITY PROMOTES INNOVATION

The legality of copying APIs and other interface components is
well-established, and has been for a quarter-century. This is true not
only in the Ninth Circuit but in all other circuits that have considered
the issue.29 In addition, Congress endorsed interoperability when it
enacted the Digital Millennium Copyright Act. While that Act made it
illegal to circumvent a technical protection measure that controlled
access to a copyrighted work, Congress was careful not to prohibit
circumvention “for the sole purpose of identifying and analyzing
those elements of the program that are necessary to achieve interoper-
ability of an independently created computer program with other pro-

25. Record App’x. 51098–51099 at 1097:19–1098:11, Oracle Am., Inc. v. Google Inc.,

(Fed. Cir. 2017) (No. 17-1118) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept.
27, 2016) (No. C 10-03561 WHA), docketed Oct. 28, 2016).

26. Record App’x. 51014, Oracle Am., Inc. v. Google Inc., (Fed. Cir. 2017) (No. 17-
1118) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561
WHA), docketed Oct. 28, 2016).

27. Oracle argued at trial that this was not a matter of “interoperability,” since in the end
Java programs could not be run unmodified on Android. We are unpersuaded by this dis-
tinction. The justification for interoperability is as strong where the use merely facilitates
the porting of programs from one platform to another, even if humans are involved in com-
pleting that process.

28. See Clark D. Asay, Transformative Use in Software, 70 STAN. L. REV. ONLINE 9
(2017) (arguing that accepting Oracle’s argument on appeal against the jury’s finding of fair
use would mean that fair use rarely if ever applies in the software context).

29. See, e.g., Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 710–15 (2d Cir.
1992); Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 542 (6th Cir.
2004), reh’g en banc denied (2005); Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807,
815–19 (1st Cir. 1995), aff’d, 516 U.S. 233 (1996); see also id. at 821 (Boudin, J., concur-
ring); Assessment Techs. of WI, LLC v. WIREdata, Inc., 350 F.3d 640, 644–45 (7th Cir.
2003); Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1374–76 (10th Cir. 1997); Pamela Samuel-
son & Suzanne Scotchmer, The Law and Economics of Reverse Engineering, 111 YALE L.J.
1575, 1621–26 (2002).

610 Harvard Journal of Law & Technology [Vol. 31

grams . . .”30 Thus, a reversal of the trial court’s fair use finding in
Oracle v. Google would conflict not just with the great weight of judi-
cial decisions, but also with policy choices made by Congress.

We think such a change would be unwise. Computer program-
mers and software companies rely on that settled law.31 Computers
and the Internet work because different programs and devices can
communicate with each other. Interoperability makes that possible.32
Interoperability is the reason you can read a web site regardless of
what Internet browser you use.33 Interoperability is the reason you can
read documents on a PC even though someone wrote them on a
Mac.34 Interoperability is the reason messages can pass from phone to
computer to tablet and back again.35

Indeed, the law’s solicitousness to copying for the purpose of in-
teroperability is the reason we have a vibrant and competitive person-
al computer industry in the first place. As has been recounted in detail
by others,36 IBM controlled the market for PC-compatible computers
in the early 1980s through its control of the IBM PC BIOS — the set
of software that provides an API for software, including the operating
system, to communicate with the computer’s processor. Software
written for the IBM PC was written to communicate using APIs pro-
vided by the IBM PC BIOS. In order to run that software, competing

30. 17 U.S.C. § 1201(f)(1) (1998).
31. See, e.g., Brief of Computer Scientists as Amici Curiae Supporting Defendant-

Appellee at 1–3, Oracle Am., Inc. v. Google Inc., No. 17-1118 (Fed. Cir. 2017) (pending
appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA), docket-
ed Oct. 28, 2016), https://www.eff.org/files/2017/05/31/2017.05.30_computer-scientists-
fair-use-amicus-brief_oracle_v_google.pdf [https://perma.cc/HFC3-UJF2] (brief of seventy-
six widely recognized computer scientists arguing that the “software industry has long relied
on and benefitted from the open nature of application programming interfaces”).

32. Id. at 10–14.
33. See Cross-Browser Compatibility Tutorial: Use JS for Cross-Browser Compatibility,

YOUTUBE (Sept. 30, 2015), https://www.youtube.com/watch?v=FGAV4UMvedk (last
visited Jan. 26, 2018); Richard Cornford, Browser Detection (and What to Do Instead),
JIBBERING, http://jibbering.com/faq/notes/detect-browser/ [https://perma.cc/N53D-VCEH];
What is JavaScript?, MOZILLA, https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
First_steps/What_is_JavaScript [https://perma.cc/A2YS-CH7A].

34. Gina Trapani, The Complete Guide to Mac/Windows Interoperability, LIFEHACKER
(Oct. 19, 2007), https://lifehacker.com/311618/the-complete-guide-to-macwindows-
interoperability [https://perma.cc/43MM-G7DP]; see also Erik Eckel, Mac vs. Windows
Incompatibility Achieves Irrelevance, TECHREPUBLIC (Feb. 16, 2015), http://www.
techrepublic.com/article/mac-vs-windows-incompatibility-achieves-irrelevance/ (last visited
Jan. 27, 2018).

35. See Cross-Platform Interoperability, JWSECURE.COM, http://www.jwsecure.com/
services/cross-platform-interoperability/ [https://perma.cc/U5GM-QMXU]; What is Cross-
Platform Software?, BOBOLOGY, https://www.bobology.com/public/What-is-CrossPlatform
-Software.cfm [https://perma.cc/DSM6-3BAC]; see also Daniel Nations, How to Develop
for iOS, Windows and Mac at the Same Time, https://www.lifewire.com/develop-for-ios-
android-windows-mac-1994294 [https://perma.cc/KQ7W-ESG9].

36. See, e.g., Russell Moy, A Case Against Software Patents, 17 SANTA CLARA COMPUT.
& HIGH TECH. L.J. 67, 71 (2000); CHARLES FERGUSON & CHARLES MORRIS, COMPUTER
WARS 52–53 (1993).

Special Issue] Platforms and Interoperability 611

PC makers needed to provide their own BIOS that could use those
APIs. In 1984, a company called Phoenix Technologies reimplement-
ed the IBM PC BIOS API in its own original software code through a
“clean room” reimplementation, copying only the elements necessary
for compatibility.37 As with Java, those elements included a hierarchy
of commands — for example, all calls beginning with “0x10” related
to video services, and within that category the call “0x10 0x9H”
would write a particular letter to the screen.38 IBM did not take legal
action against Phoenix, and the availability of Phoenix BIOS led to a
proliferation of IBM PC-compatible “clone” computers from Com-
paq, Dell, and others.39

Some of this is due to software copyright holders voluntarily
opening standards, either from the beginning or due to pressure from
third parties. Many times, companies consciously allow others to
make compatible programs.40 For example, the JavaScript standard —
which, despite the name, bears no relationship to Java — was pub-
lished as an open standard.41 In some instances, standards that remain
closed are reverse-engineered and published by others, so that com-
patible programs or products can be marketed.42 Such third-party pub-
lication sometimes leads the copyright holder to open an otherwise
closed standard.43 In this way, the fact that copyright law permits re-
verse engineering for purposes of interoperability takes away a copy-
right owner veto and thereby allows a wider range of experimentation.

The law’s openness to use of APIs has led, over time, to some
unusual turnabouts. For example, in 1993, open-source developer An-
dre Julliard released WINE, a program that allows Windows applica-
tions to run on computers that use the Linux operating system. It does

37. James Langdell, Phoenix Says Its BIOS May Foil IBM’s Lawsuits, PC MAGAZINE 56

(July 10, 1984), https://books.google.com/books?id=Bwng8NJ5fesC&lpg=PA6&pg=
PA56#v=onepage&q&f=false (last visited Jan. 26, 2018).

38. INT’L BUS. MACHS. CORP., IBM PERSONAL SYSTEM/2 AND PERSONAL COMPUTER
BIOS INTERFACE TECHNICAL REFERENCE 2–17 (1987),
http://www.nj7p.org/Computers/IBM%20PC/work/BIOS_Interface_Technical_Reference.p
df [https://perma.cc/V7NZ-L3FN].

39. Send in the Clones, COMPUT. HISTORY MUSEUM, http://www.computerhistory.
org/revolution/personal-computers/17/302 [https://perma.cc/468T-RGUB].

40. HTML, CSS, and ECMAScript are examples.
41. ECMAScript® 2017 Language Specification (ECMA-262, 8th ed., June 2017),

ECMA INT’L, https://www.ecma-international.org/ecma-262/8.0/index.html
[https://perma.cc/P3JR-PB29].

42. Apple Accessory Protocol, NUXX, https://nuxx.net/wiki/Apple_Accessory_Protocol
[https://perma.cc/UNA7-75UT] (disclosing reverse-engineered protocol for communicating
with an iPod).

43. See, e.g., Office File Formats, MICROSOFT, https://msdn.microsoft.com/en-us/library/
office/cc313118(v=office.12).aspx [https://perma.cc/UGC7-PNLY] (disclosing Microsoft
Office file formats, which were previously proprietary); Using the HomeKit Accessory
Protocol Specification (Non-Commercial Version), APPLE, https://developer.apple.com/
support/homekit-accessory-protocol/ [https://perma.cc/WP4S-ERF7] (disclosing Apple
HomeKit Accessory Protocol, which was previously proprietary).

612 Harvard Journal of Law & Technology [Vol. 31

so by translating, in real time, calls to Windows APIs into the corre-
sponding calls in the POSIX APIs that Linux uses. To do so, it must
use the same hierarchy of function names, just as Android does with
respect to Java. Unlike Oracle, however, Microsoft has not sought to
halt the distribution or use of WINE, perhaps recognizing that reim-
plementing APIs with the same names does not violate any of its
rights.

And interoperability is a two-way street. Just as Linux users
found it useful to be able to run some Windows programs they were
familiar with, Windows users — particularly developers — found it
useful to be able to run some Linux programs they were familiar with.
In 2016, Microsoft released the Windows Subsystem for Linux, which
provides, in essence, the inverse of WINE: it allows Linux programs
to run on Windows, translating API calls in real time to allow the pro-
grams to run unmodified. Microsoft engaged in a “clean room” reim-
plementation of the Linux kernel APIs to ensure that only the API
structure, and not any of the implementing code, was copied.44

Interoperability is also critical to the development of the new In-
ternet of Things (“IoT”) that connects a wide array of devices beyond
computers.45 IoT by definition depends on autonomous communica-
tion amongst a wide range of devices.46 That cannot happen without
interoperable standards in the IoT market.47 Fragmentation of the
market due to competing, proprietary standards will severely curtail
the value of IoT as a whole.48 Considering	VCs invested more than $1

44. Windows Subsystem for Linux Overview, MICROSOFT (Apr. 22, 2016),

https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/
[https://perma.cc/4645-ZFE8] (“The drivers do not contain code from the Linux kernel but
are instead a clean room implementation of Linux-compatible kernel interfaces.”).

45. See, e.g., Lu Tan, Future Internet: The Internet of Things, 5 INST. ELEC. & ELECS.
ENG’R 376, 379 (2010) (“Only if we can solve the interoperability problem we can have a
real Internet of Things.”); Developing the Interoperable Internet of Things, OPEN
CONNECTIVITY FOUND. (June 27, 2017), https://openconnectivity.org/blog/developing-
interoperable-internet-things [https://perma.cc/UFU5-H5XG]; Gary Eastwood, IoT’s In-
teroperability Challenge, NETWORKWORLD (July 5, 2017, 6:03 AM), https://
www.networkworld.com/article/3205207/internet-of-things/iots-interoperability-
challenge.html [https://perma.cc/U6YA-4HQQ]; Giancarlo Fortino et al., Interoperability in
the Internet of Things, COMPUTER.ORG (Dec. 2016), https://www.computer.org/web/
computingnow/archive/interoperability-in-the-internet-of-things-december-2016-
introduction [https://perma.cc/S9UH-GJNA]; Interoperability: The Challenge Facing the
Internet of Things, PROPHET, https://www.prophet.com/thinking/2014/02/interoperability-
the-challenge-facing-the-internet-of-things/ [https://perma.cc/GVG3-LBNN]; James
Manyika et al., Unlocking the Potential of the Internet of Things, MCKINSEY & CO. (June
2015), http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-
internet-of-things-the-value-of-digitizing-the-physical-world [https://perma.cc/4YW5-
3F2N]; Phillip Tracy, IoT Interoperability: Where it Stands and What Comes Next,
RCRWIRELESS NEWS (Oct. 31, 2016), https://www.rcrwireless.com/20161031/internet-of-
things/iot-interoperability-tag31-tag99 [https://perma.cc/44JV-GBF8].

46. See Tan, supra note 45.
47. Id.
48. Id.

Special Issue] Platforms and Interoperability 613

billion in IoT startups in 2016,49 interoperability in the IoT sector has
substantial economic consequences. The importance of interoperabil-
ity in the software and Internet environments has been so clearly
demonstrated, and so widely accepted, that most IoT programmers are
writing only to open standards in the first place.50 But even where
parties contract for interoperability, for instance by using open source
software, legal interoperability plays a role. It allows downstream us-
ers to avoid an “anticommons” of overlapping and potentially con-
flicting contractual commitments.51

Interoperability is particularly important to startups. Companies
that develop apps for mobile phones are often small. They may not
have the ability to write several different versions of a program from
scratch, one for each hardware platform or incompatible programming
language — much less to separately negotiate agreements with each
such platform provider in the economy. By allowing an app developer
to reach the widest possible market, legal protection for interoperabil-
ity increases the number and availability of creative new works pro-
duced each year. It also ensures that no one company, no matter how
dominant its platform, gets to decide what web pages you can access,
what files you can share, or what programs you can download.

Without the security to investigate and use APIs, software devel-
opers would be at the mercy of platform and programming giants who
could decide whether, when, and how anyone could write or use a
computer program that ran on their system. Startups will not invest in
new products — for mobile phones or video games or the Internet of
Things — without confidence that their products will work on the
dominant platforms. That is why the risk of overprotecting copyright
is so much greater in software than in other areas. Giving too much
protection to a song may incrementally discourage the creation of
somewhat similar songs. Giving copyright owners control over in-
teroperability risks shutting down the software development ecosys-
tem altogether.

IV. CONCLUSION

The Java slogan was “Write Once, Run Anywhere.” Copyright
law allows software developers to do just that: write a single program

49. Mikey Tom, IoT Breakdown: VCs Betting Billions on the Connected World,
PITCHBOOK (Dec. 7, 2016), https://pitchbook.com/news/articles/iot-breakdown-vcs-betting-
billions-on-the-connected-world [https://perma.cc/772B-HEPU].

50. Brian Ray, Open Source Software and Hardware for the Internet of Things, IOT FOR
ALL (Jul. 8, 2017), https://medium.com/iotforall/open-source-software-and-hardware-for-
the-internet-of-things-eca2aa728fa4 [https://perma.cc/9ZTD-TABR].

51. Clark D. Asay, Software’s Copyright Anticommons, 66 EMORY L.J. 265 (2017); see
also Clark D. Asay, Copyright’s Technological Interdependencies, 18 STAN. TECH. L. REV.
189 (2015).

614 Harvard Journal of Law & Technology [Vol. 31

that works on multiple platforms. That in turn encourages more crea-
tive works. As the Ninth Circuit explained in Sega:

Accolade’s identification of the functional require-
ments for Genesis compatibility has led to an in-
crease in the number of independently designed
video game programs offered for use with the Gene-
sis console. It is precisely this growth in creative ex-
pression, based on the dissemination of other crea-
creative works and the unprotected ideas contained
in those works, that the Copyright Act was intended
to promote.52

Three decades ago, Peter Menell explained the risks of overpro-
tecting software once it becomes a standard.53 As he notes in his arti-
cle in this issue, Oracle v. Google raises that old concern anew.54 To
use copyright, a law designed to promote creativity, to stifle it instead
would be perverse.

52. Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1523 (9th Cir. 1992).
53. Peter S. Menell, An Analysis of the Scope of Copyright Protection for Application

Programs, 41 STAN. L. REV. 1045, 1050 (1989).
54. Menell, supra note 1.

