
Harvard Journal of Law & Technology

Volume 31, Special Issue Spring 2018

THE REPORT OF API COPYRIGHT’S DEATH IS GREATLY

EXAGGERATED

Annette Hurst*

TABLE OF CONTENTS

I. INTRODUCTION .. 491

II. BACKGROUND AND TERMINOLOGY ... 493

III. SUN’S LICENSING SCHEME AND VIEWS OF GOOGLE’S

INFRINGEMENT .. 496

IV. THE JAVA APIS ARE HIGHLY EXPRESSIVE IN A MANNER

LONG PROTECTED ... 502

I. INTRODUCTION

A “computer program” is a set of statements or in-

structions to be used directly or indirectly in a com-

puter in order to bring about a certain result.1

Let’s properly frame the terms of the debate. The debate is not

whether there should be protection of software functionality under

copyright law. Nobody is advocating that software functionality be

included as literal or nonliteral elements within the scope of copyright

law. Google admitted that it could have written its own APIs to per-

* The author is a partner at Orrick, Herrington & Sutcliffe who has practiced copyright

law in the United States for more than twenty-five years, and has participated in many high

profile copyright cases including Lewis Galoob Toys, Inc. v. Nintendo of Am., Inc., 964

F.2d 965 (9th Cir. 1992); Nintendo of Am., Inc. v. Lewis Galoob Toys, Inc., 16 F.3d 1032
(9th Cir. 1994); Mattel, Inc. v. Walking Mountain Prods., 353 F.3d 792 (9th Cir. 2003);

Mattel, Inc. v. MGA Entm’t, Inc., 616 F.3d 904 (9th Cir. 2010); Mattel, Inc. v. MGA

Entm’t, Inc., 782 F. Supp. 2d 911 (C.D. Cal. 2011); Kirtsaeng v. John Wiley & Sons, Inc.,
568 U.S. 519 (2013); Fox Broadcasting Co., Inc. v. DISH Network LLC, 747 F.3d 1060

(9th Cir. 2014); and Oracle America, Inc. v. Google Inc., 750 F.3d 1339 (Fed. Cir. 2014), as

counsel for Oracle. She represents both plaintiffs and defendants in copyright infringement
cases. The views expressed herein are her own and should not be attributed to Oracle, Or-

rick or any past or present clients. The author is grateful for the assistance of her colleagues

Andrew Silverman, Nathan Shaffer, Matt Bush and Cheryl Watson for their assistance with
this article.

1. 17 U.S.C. § 101.

492 Harvard Journal of Law & Technology [Vol. 31

form exactly the same functions as the Java APIs.2 To the extent pro-

tected as intellectual property, functions are addressed in patent or

trade secret law.

Instead, the debate is between, on the one hand, the categorical

exclusion of expressive software elements from copyright protection

because those expressive elements can also perform functions, and on

the other hand, a fact-specific approach protecting original expressive

aspects of software by separating idea from expression. The latter is

what copyright law has always done — separate what is protected

from what is not. 17 U.S.C. § 102 is worded to require such an ap-

proach — copyright protection subsists in expression under § 102(a)

but the scope of its protection does not extend to methods under

§ 102(b). To say that the Federal Circuit’s decision in Oracle v.

Google was an unusual or even controversial extension of copyright

principles exhibits a misguided understanding of the law and the facts,

and ignores the statute and relevant legislative history.3 Congress re-

solved the controversy over whether to include software expression

within the ambit of copyright protection when it provided copyright

protection for computer programs.

This comment will address two points in Professor Menell’s arti-

cle, both of which suggest there is no copyright to enforce in the rele-

vant aspects of the Java APIs. The first is Professor Menell’s

suggestion that Sun was perfectly happy to have others copy the de-

claring code of the Java APIs without restriction, and that Oracle’s

enforcement of copyright in the Java APIs is a departure from Sun’s

and the community’s views. The evidence showed the opposite. Sun

obtained a copyright registration for the Java platform that included

the Java APIs, separately licensed the declaring code of the Java APIs

in its Specification License, enforced its copyright in the APIs by in-

sisting that licenses be taken when they were used, and specifically

lamented both internally and externally that Google’s conduct with

respect to Android was copyright infringement. Important members of

the developer community likewise viewed Android’s use of the Java

APIs as copyright infringement.4 There is no basis on which to con-

clude that Sun had somehow long ago ceded away the copyright ques-

tion for the Java APIs or that Sun’s actions were inconsistent with the

outcome in the Federal Circuit’s opinion.

The second point to be discussed below is Professor Menell’s

suggestion that software elements like the Java APIs’ declaring code

were categorically excluded from any copyright protection until Ora-

2. Peter S. Menell, Rise of the API Copyright Dead?: An Updated Epitaph for Copyright

Protection of Network and Functional Features of Computer Software, 31 HARV. J.L. &

TECH. (SPECIAL ISSUE) 305, 411 (2018).

3. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339 (Fed. Cir. 2014).

4. See infra Section III.

Special Issue] API Copyright Lives On 493

cle v. Google because of a legal consensus that they are a “machine.”5

Legal history shows otherwise. The National Commission on New

Technological Uses of Copyrighted Works (“CONTU”) recommend-

ed, and Congress adopted, copyright protection for the expressive el-

ements of computer programs with full understanding that software is

a machine.6 The text of the statute says so.7 CONTU’s majority report

expressly rejected the view that machines were categorically excluded

from protection, and recommended defining computer programs to

clearly acknowledge that software is a machine. Courts ever since

have applied the same rules to software copyright as to other forms of

literary works.8 If software elements are expressive and not merged,

then they are protectable. The Java API declaring code is no different.

It is highly expressive, and Google abandoned any effort to prove that

the expression merged into function. The Federal Circuit correctly

decided the copyrightability question, and did so against a preceden-

tial backdrop that rendered this holding unremarkable.

In short, the Federal Circuit’s opinion regarding copyrightability

is no resurrection; rather, the report of the death of a copyright in the

Java APIs is greatly exaggerated.

II. BACKGROUND AND TERMINOLOGY

The term API is used loosely to mean many different things, both

in the Java context and in the larger context.9 To make an assessment

of the case, it is important not only to confirm a shared understanding

of the relevant facts but also to clear away the fog of vague acronyms.

First released in 1996, a distinguishing feature of the Java platform is

the use of a virtual machine.10 The virtual machine enables software

5. Menell, supra note 2, at 452.

6. CONTU stated that, “It was clearly the intent of Congress to include computer pro-

grams within the scope of copyrightable subject matter in the Act of 1976.” National Com-

mission on New Technological Uses of Copyrighted Works, Final Report Chapter 3 at 16
(1978) [hereinafter CONTU REPORT]; see also id. at 21 (“Nor has copyright been denied to

works simply because of their utilitarian aspects. . . . That the words of a program are used

ultimately in the implementation of a process should in no way affect their copyrightabil-
ity.”). Chapter 3 of the CONTU REPORT, concerning copyright protection for software, is

available at http://digital-law-online.info/CONTU/PDF/Chapter3.pdf [https://perma.cc/

D5RS-C7SA].

7. 17 U.S.C. § 101 (“A computer program is a set of statements or instructions to be used

directly or indirectly in a computer in order to bring about a certain result.”).

8. CONTU REPORT, supra note 6, at 16; see also, e.g., Apple Computer, Inc. v. Franklin

Computer Corp., 714 F.2d 1240, 1249 (3d Cir. 1983); Atari Games Corp. v. Nintendo of
Am. Inc., 975 F.2d 832, 838 (Fed. Cir. 1992).

9. Trial Tr. at 480:16–20 (May 11, 2016); 1217:22–1218:1 (May 16, 2016), Oracle Am.,

Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

10. Tim Lindholm, Frank Yellin, Gilad Bracha, & Alex Buckley, The Java Virtual Ma-

chine Specification, ORACLE 1, 2 (Feb. 13, 2015), https://docs.oracle.com/javase/specs/

jvms/se8/jvms8.pdf [https://perma.cc/3UQ5-D29M].

494 Harvard Journal of Law & Technology [Vol. 31

programmers to write programs able to run on different types of com-

puter hardware without having to rewrite them for each different

type.11 A programmer could now write a program once and have the

program work on any device, regardless of operating system.12 “Write

once, run anywhere,” became the Java credo.13

Oracle v. Google is not about the Java programming language. It

is not about the virtual machine.14 It is not about a type of basic elec-

tronics communication protocols, sometimes also called interfaces,

which enable computer devices to communicate with one another.

Instead, the case is about computer programs that Sun and Oracle de-

velopers wrote using the Java programming language, which they

called the Java Application Programming Interface, or “Java API.”

Sun and Oracle wrote a vast array of computer programs and or-

ganized them into “packages” of source code.15 The packages also

contained further organizational subunits including, among other

things, classes, interfaces and methods.16 Each package consists of

numerous modules of tried-and-true pre-packaged programs compris-

ing a vast menu of functions.17 Sun/Oracle’s packages were a godsend

to programmers who wrote apps for all sorts of devices. Instead of re-

inventing the wheel, all programmers had to do was write a few lines

of code that called on those tried-and-true programs. The set of Java

packages (and their elements) is referred to as the Java API, while one

or more Java packages is referred to as a Java API or Java APIs, re-

spectively.18

The basic concept is simple: every package consists of two relat-

ed types of source code — declaring code and implementing code.19

The declaring code is the line or lines of source code that introduce,

name, and specify the package, class, or method.20 It describes for an

app programmer how to invoke or “call” a particular routine from the

prewritten packages.21 The declaring code embodies both literal and

11. Id.

12. Id.

13. How Will Java Technology Change My Life?, ORACLE, https://docs.oracle.com/

javase/tutorial/getStarted/intro/changemylife.html [https://perma.cc/F5RU-8BBN].

14. Earlier in the case, patent claims were asserted that did concern the virtual machine,

but those were not raised on appeal. This discussion is limited to the copyright issues.

15. The Java Tutorials, ORACLE, https://docs.oracle.com/javase/tutorial/java/concepts/

index.html [https://perma.cc/B6RD-ETPS].

16. Id.

17. Id.

18. Java Platform, Standard Edition & Java Development Kit Version 9 API Specifica-

tion, ORACLE, https://docs.oracle.com/javase/9/docs/api/overview-summary.html [https://
perma.cc/DR87-7MQE].

19. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1349 (Fed. Cir. 2014).

20. Trial Tr. at 955:25–956:1 (May 13, 2012), Oracle Am., Inc. v. Google Inc., 872 F.

Supp. 2d 974, 980-82 (N.D. Cal. 2012) (No. C 10-03561 WHA), rev’d and remanded, 750
F.3d 1339 (Fed. Cir. 2014).

21. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1349–50 (Fed. Cir. 2014).

Special Issue] API Copyright Lives On 495

nonliteral elements — it is both a compilable statement of code and it

also comprises and defines the APIs’ structure.22 Implementing code

is the source code that tells the computer how to carry out the declar-

ing code.23

Writing any one of these packages is a creative and iterative pro-

cess. It can take years. Much of the creativity lies in figuring out how

to design a package and its elements — particularly all the declaring

code — in a way that later programmers will find intuitive and memo-

rable.24 The process usually begins as an abstract high-level exercise.

Developers identify a need in the Java community for new or different

functions. Then, they organize a high-level summary of a possible

structure for the package. For example, they wrestle with which func-

tions to include in the package, which to put in other packages, and

which to omit entirely, as well as how the various elements within the

package relate to or interact with each other. They send sketches

around to get comments from their colleagues, and may revise their

design based on the feedback. The developers work with a clean slate,

so ex ante, their options are infinite. Sun/Oracle invested hundreds of

millions of dollars into this design process.25

In putting together Android, Google made verbatim copies of

more than 11,000 lines of code comprising more than 7,000 class,

interface and method declarations from 37 different packages of the

Java Standard Edition.26 Google acknowledged these were the most

important packages for a mobile platform, and that it needed the Java

API declarations to bring Android to market successfully and in time

to compete in the burgeoning smartphone market.27 When the struc-

ture of the relevant packages and classes is mapped, what Google took

looks like this:

22. Id.

23. Id. at 1350.

24. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 998 (N.D. Cal. 2012), rev’d

and remanded, 750 F.3d 1339 (Fed. Cir. 2014).

25. Trial Tr. at 609:18–610:5 (May 11, 2016); 1352:11–13 (May 17, 2016), Oracle Am.,

Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

26. Menell, supra note 2, at *409.

27. Trial Tr. at 1121:5–13 (May 13, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA); Brief for Google Inc. at 2, 15,

Oracle Am., Inc. v. Google Inc., (Fed. Cir. May 22, 2017) (No. 17-1118), 2017 WL

2305681, at *2 (Google copied what was “key for mobile phones”); Trial Ex. 3211 at 61–62
(May 11, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL 5393938, (N.D. Cal. Sept. 27,

2016) (No. C 10-03561 WHA) (“[I]f we are slow to develop products and technologies that

are more compatible with non-PC communications devices we will fail to capture signifi-
cant share of an increasingly important portion of the market for online services.”); Trial Tr.

at 633:2 (May 11, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal.

Sept. 27, 2016) (No. C 10-03561 WHA) (using Java was an “accelerant[]”); Trial Ex. 13,
Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-

03561 WHA); (“[A] shift to a primarily Java API” would “reduce our development time”).

496 Harvard Journal of Law & Technology [Vol. 31

Figure 1: Pictorial representation of the structure of relevant packages

and classes of the Java APIs

In short, Google copied both literal and nonliteral elements of the

Java APIs when it copied 11,000 lines of declaring code and the struc-

ture and organization of 37 packages.

III. SUN’S LICENSING SCHEME AND VIEWS OF GOOGLE’S

INFRINGEMENT

Professor Menell’s article suggests, seemingly based on an earlier

case involving Sun and Microsoft, that Sun did not believe it pos-

sessed a copyright in its Java APIs and that Oracle’s enforcement was

a departure from Sun’s approach.28 The publicly disclosed infor-

mation in Oracle v. Google strongly indicates that Sun did not in fact

hold this view or license in accordance with it. Indeed, a defense rely-

ing on this notion that Sun had already waived a copyright that Oracle

later tried to enforce was expressly rejected after the first trial.29

Sun registered a copyright for the Java platform that included the

Java APIs. As Professor Menell elsewhere acknowledges, Sun had

(and Oracle now has) a multi-pronged licensing scheme for various

28. Menell, supra note 2, at 352–54, 375–78, 461.

29. Findings of Fact and Conclusions of Law on Equitable Defenses (May 31, 2012), Or-

acle Am., Inc. v. Google Inc., 872 F. Supp 2d 974 (N.D. Cal. 2012) (No. 10-CV-3561

WHA) (ECF No. 1203).

Special Issue] API Copyright Lives On 497

elements of the Java platform, including the API specification.30 To

accommodate all comers, Sun/Oracle offers three different licenses.

One, the General Public License (“GPL”) is free of charge, but subject

to a strict and legally binding obligation31: licensees may use the

packages (both declaring code and implementing code), but must

“contribute back” the new work.32 It is called an “open source” li-

cense, not because it is open for all to use unconditionally, but be-

cause the licensee must make his innovations publicly available. Two,

the Specification License, unlike the GPL, does not permit the licen-

see to use the full Java source code.33 Rather, the licensee can use on-

ly the Specification, which recites the declaring code.34 So, a

Specification licensee may write its own independent implementation

of the Java APIs using the familiar declaring code and organization of

the Sun/Oracle packages but must write its own implementing code.35

Three, the Commercial License is for businesses that want to use and

customize the full Java code in their commercial products and keep

their code secret.36 Oracle offers a Commercial License in return for

royalties. Both the Specification and Commercial Licenses require

that licensees’ programs pass a series of tests (the TCK license) that

ensure compatibility with the Java platform.37 This compatibility re-

quirement enforces adherence to Java’s critical “write once, run any-

where” principle.38

30. Oracle did not seek to enforce any copyright that it may have had in the Java pro-

gramming language. Menell, supra note 2, at 352–54, 357–359, 369; Trial Tr. at 1442–43

(May 17, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27,
2016) (No. C 10-03561 WHA); Michael P. Doerr, Note, Java: An Innovation in Software

Development and a Dilemma in Copyright Law, 7 J. INTELL. PROP. L. 127 (1999). During

the second trial, Oracle stipulated that Google’s use of those API declarations that were part
of the Java language should be considered fair use. Order re 62 Classes and Interfaces (May

6, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016)

(No. C 10-03561 WHA) (ECF No. 1839); Trial Tr. at 458 (May 11, 2016), Oracle Am., Inc.
v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

31. See Jacobsen v. Katzer, 535 F.3d 1373 (Fed. Cir. 2008).

32. Martin Lamonica, Sun Picks GPL license for Java Code, CNET (Feb. 14, 2007),

https://www.cnet.com/news/sun-picks-gpl-license-for-java-code/ (last visited Jan. 27, 2018,
3:02PM).

33. Java Specification License, ORACLE, http://www.oracle.com/technetwork/java/

javase/overview/javase8speclicense-2158700.html [https://perma.cc/LN3M-VFC6].

34. Id.

35. Id. The Specification license includes other terms designed to ensure both independ-

ent implementation and compatibility, chief among the latter is the requirement that a licen-

see fully implement and not “superset” or “subset” the API, as well as pass the Technology

Compatibility Kit (“TCK”) confirming compliance with the Specification. Id.

36. Oracle Java SE and Oracle Java Embedded Products, ORACLE,

http://www.oracle.com/technetwork/java/javase/terms/products/index.html

[https://perma.cc/P7ZA-P87Q].

37. TCK Project Planning and Development Guide, ORACLE 2, https://docs.oracle.com/

javame/test-tools/jctt/tck_project_planning_guide.pdf [https://perma.cc/7P6S-WTDT].

38. Id.

498 Harvard Journal of Law & Technology [Vol. 31

Google thus had multiple license options for using the Java APIs

in Android. It negotiated for a Commercial License, but ultimately

refused all of Sun’s proposals.39 Then Google simply took a substan-

tial part of the Java API declaring code without a license. In doing so

Google evaded not only commercial royalty obligations but also the

significant licensing restrictions on Oracle’s licenses.

By avoiding the compatibility requirements, Google created a

version of the Java APIs that was not interoperable with all prior ex-

isting versions — thus destroying the “write once, run anywhere”

principle that had formed the foundation of the Java platform. And by

refusing the GPL, Google also permitted its vendors, the cellphone

manufacturers, to avoid the copyleft publication requirements. Google

was deeply concerned that the viral nature of GPL would scare away

the device manufacturers and thwart its ability to launch a new plat-

form. Google also knew that Sun was working on or licensing its own

versions of Java for smartphones, and the head of Android clearly

viewed Sun as a competitor during this period.40 Google thus benefit-

ed from evading both economic and non-economic license restrictions

when it copied the Java APIs without a license.

Sun likewise viewed Google’s conduct as a serious problem.

While much has been made of a blog post on November 5, 2007, by

then-Sun President Jonathan Schwartz “welcoming” Google to the

Java community, there is strong evidence that Sun had previously en-

forced its API licensing terms and that internally it viewed Google as

an infringer.41 Properly viewed, Schwartz’s “welcome” was an effort

to make lemonade out of lemons.

In the early 2000s Sun had learned that Danger, an early

smartphone developer (headed by the same Andy Rubin who later

founded Android), had used the Java APIs in developing its mobile

platform.42 Sun insisted that Danger take a license and pay royalties

even though it had only used the Java API declaring code and not the

implementing code.43 Danger was a highly successful early

smartphone platform based upon the Java API, selling millions of

copies in the T-Mobile Sidekick.44 It was Rubin’s experience of tak-

ing a license at Danger that in part led him to later confirm internally

39. Email from Andy Rubin to Bob Lee (Aug. 11, 2007), Trial Ex. 230, Oracle Am., Inc.

v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

40. Trial Tr. at 845:19–846:1; 914:24 (May 12, 2016), Oracle Am., Inc. v. Google Inc.,

2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

41. Menell, supra note 2, at 344.

42. Trial Tr. at 887:23–24 (May 12, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

43. Id. at 888:24–1; Trial Tr. at 1625:8–1626:9 (May 18, 2016), Oracle Am., Inc. v.

Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

44. Trial Tr. at 620:19–21 (May 11, 2016) Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

Special Issue] API Copyright Lives On 499

at Google in email that he understood the “java.lang apis are copy-

righted.”45

Likewise, Sun was not happy with what Google had done in An-

droid. As the experience with Danger amply demonstrates, Sun knew

that it had valuable and enforceable intellectual property rights, in-

cluding copyrights. That was not the issue. The problem, as the doc-

uments at the time confirm, was that Sun did not — and could not —

know or understand initially the scope of what Google was planning,

both in terms of what aspect of the Java platform it was actually using

and with respect to its ultimate intentions to comply with available

license terms. Before Android’s release and a couple of days after his

blog post, Schwartz wrote, “I have no clue what they’re up to — my

sense is they’re playing fast and loose with licensing terms, and

they’re going to start pissing people off.”46 A few days later on No-

vember 12, 2007, Schwartz wrote an email suggesting that Sun should

get “the press to ask Google if their platform will be in compliance

with the Java specification.”47 As the Specification License would

have permitted Google to use the Java APIs in Android by meeting

compatibility requirements, it was not yet clear that Google would be

unable to claim the benefit of that license because it had failed to

comply with the licensing terms. Sun’s PR strategy seemed to pay off,

as articles were published raising Sun’s concern including quotations

from Sun’s executives.48

Later, even after the initial release of the Android SDK, Sun still

was not sure of Google’s intentions. Sun executive Vineet Gupta

wrote an email to Schwartz indicating that Sun did not know “[i]f

Google is still using Java in its mobile platform.”49 Gupta explained

that he had “sent emails to Andy [Rubin] requesting a discussion

around what they are planning, and if they need Java licensing . . .

with no response.”50 Gupta also gave recommendations for different

strategies based on whether Google would, or would not, eventually

take a license. Specifically, he advised that, if Android used Java:

a) then they have to come for a license with us, and

will need to be compatible … b) [if] they will decide

to go the non-compliant non-licensed route — then

we will need to go deal with them or their handset

45. Trial Ex. 18, Oracle v. Google (No. C 10-03561 WHA).

46. Trial Ex. 2368, Oracle v. Google (No. C 10-03561 WHA).

47. Trial Ex. 1055, Oracle v. Google (No. C 10-03561 WHA).

48. Trial Ex. 1048, Oracle v. Google (No. C 10-03561 WHA) (Sun executive Rich

Green: “We’re reaching out to Google and assuming they’ll be reaching out to us to ensure

these platforms and APIs will be compatible so deployment on a wide variety of platforms
will be possible.”); see also Trial Ex. 9116, Oracle v. Google (No. C 10-03561 WHA).

49. Trial Ex. 565 at 2, Oracle v. Google (No. C 10-03561 WHA).

50. Id.

500 Harvard Journal of Law & Technology [Vol. 31

vendor for IP issues . . . or c) [if Google] leverage[s]

opensourced [sic] . . . [then] we will have to wait and

see if they are following all the GPL rules.51

Despite his “welcome” blog post, Schwartz complained bitterly

internally about Google, while Sun’s financial fortunes continued to

plummet. “The Google thing is really a pain. They are immune to

copyright laws, good citizenship, they don’t share.”52 “They also take

Java for Android, without attribution or contribution. This is why I

love scroogle.”53 Sun was experiencing the worst financial conditions

in its history, bleeding personnel, and in no position to take on a major

litigation battle against Google.

A year later, at the time of the Oracle acquisition, Sun continued

to view Google’s failure to take a license as a significant problem. In

Schwartz’s first e-mail to Oracle CEO Larry Ellison after the pur-

chase, he outlined an agenda for discussion that included “the battles

with Adobe Flash/Google Android.”54 In filings with the European

Union seeking approval of the merger, Sun specifically opined that

Android was “an unauthorized derivate work of Java SE,”55 express-

ing the view held by Sun’s legal department at the time.56 According-

ly, Sun’s former management, including former Sun CEO and co-

founder Scott McNealy, fully supported Oracle bringing suit against

Google.57 Indeed, Google stipulated that Schwartz would not testify

that Sun believed it had no legal claim.58

Nor was there consensus among the broader community of engi-

neers that what Google had done was appropriate because there was

no copyright on the Java APIs. As previously noted, Android head

Andy Rubin had written emails declaring that “the java.lang apis are

51. Id.; see also Trial Ex. 538, Oracle v. Google (No. C 10-03561 WHA) (Gupta email to

Android founder Andy Rubin) (“Several people at Sun are asking me about Google’s plan

in supporting Java on the announced Google Phone software stack. Would like to under-
stand anything you could share with us.”); Trial Ex. 5300, Oracle v. Google (No. C 10-

03561 WHA) (Gupta explaining that Google had not licensed Java IP and “anyone shipping

would be taking IP and other risks while dividing the Java ecosystem.”).

52. Trial Ex. 563, Oracle v. Google (No. C 10-03561 WHA).

53. Trial Ex. 1056, Oracle v. Google (No. C 10-03561 WHA).

54. Trial Ex. 2362, Oracle v. Google (No. C 10-03561 WHA).

55. Trial Ex. 5295 at ¶ 70, Oracle v. Google (No. C 10-03561 WHA).

56. Earlier drafts of the EU filing by Sun’s longtime chief in-house intellectual property

lawyer had characterized Google as a “deliberate infringe[r]” and “recidivist bank robber.”

Testimony of Edward Screven, Trial Tr. at 1329:16–30:16; 1331:10–25 (May 17, 2016),

Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-
03561 WHA).

57. See Amicus Brief of Scott McNealy and Brian Sutphin, Oracle Am., Inc. v. Google

Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. 3:10-cv-03461-WHA).

58. Joint Stipulation and [Proposed] Order re Testimony of Jonathan Schwartz, Oracle

Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561

WHA) (ECF No. 1725).

Special Issue] API Copyright Lives On 501

copyrighted” based on his prior experience at Danger.59 It was not

only Rubin who understood this from his industry experience, but

other key third-party engineers also understood that the Java APIs

were a copyright problem for Android.

The Apache Foundation was working towards an Apache-

licensed open source implementation of the Java APIs called Apache

Harmony.60 The work at Apache proceeded based on the understand-

ing that its Java SE API implementation would be compatible with the

Java API Specification, pass the TCK, and therefore comply with the

Specification License. Google used at least some of the Harmony pro-

ject for its implementing code. The very same Apache Foundation

developers who had created the Apache Harmony implementation

believed that Google was ripping Sun off and speculated that Oracle

would do something about it. “[W]e are, in fact, infringing on the

[Sun] copyright if we distribute something that has not passed the

TCK and *we know that.* This makes us *already* doing illegal

things (in fact, Android using Harmony code is illegal as well).”61

“What Is Oracle going to do about Android’s ripping off some of

(now) their IP and getting away with it?”62

Professor Menell apparently believes that Sun had a different

view at an earlier time, seemingly based on his experience offering

expert advice for Sun in the Microsoft case. In that case, Sun initially

sought and obtained a preliminary injunction on grounds that included

copyright infringement.63 Sun did so, as Professor Menell has himself

characterized it, for one of the same reasons Oracle sought to enforce

here — to preserve the “write once, run anywhere” principle.64 The

copyright claims in Sun v. Microsoft encompassed Java language

keyword extensions and use of the Java Native Interface, which is

seemingly fully consistent with Oracle’s position in Oracle v. Google.

Only after the Ninth Circuit ruled that certain contractual require-

ments in the Sun/Microsoft commercial license agreement were cove-

59. Trial Ex. 18, Oracle v. Google (No. C 10-03561 WHA).

60. The Apache open source license is a more permissive license without the copyleft re-

strictions of GPL used by Sun when it selected an open source license. See Apache License
2.0 and GPL Compatibility, THE APACHE SOFTWARE FOUNDATION, https://apache.org/

licenses/GPL-compatibility.html [https://perma.cc/L9UC-NQBN]; What is Copyleft?, FREE

SOFTWARE FOUNDATION, https://www.gnu.org/licenses/copyleft.en.html [https://perma.cc/
4PUS-VZTA]; Comparison of Free and Open-Source Software Licenses, WIKIPEDIA,

https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

[https://perma.cc/K56Q-5DGN].

61. Trial Ex. 5046, Oracle v. Google (No. C 10-03561 WHA).

62. Trial Ex. 9201, Oracle v. Google (No. C 10-03561 WHA).

63. See Sun Microsystems, Inc. v. Microsoft Corp., 21 F. Supp. 2d 1109 (N.D. Cal.

1998).

64. See Peter Menell, API Copyrightability Bleak House: Unraveling and Repairing the

Oracle v. Google Jurisdictional Mess, 31 BERK. TECH. L.J. 1515, 1536 n. 96 (2016) (“Sun

sued Microsoft over its efforts to undermine the WORA principle”).

502 Harvard Journal of Law & Technology [Vol. 31

nants rather than conditions did Sun drop its copyright claims and

focus on its unfair competition claims.65 That ruling clearly made it

harder for Sun to enforce its copyrights, since Microsoft’s apparent

breaches of the contract no longer voided the license agreement but

instead limited Sun to suing for a contract measure of damages. In any

event, whatever Sun decided in that particular case, it is clear by the

time of Oracle v. Google that Sun believed it had a copyright in the

Java APIs, had previously sought to enforce it, and was deeply dissat-

isfied with Google’s conduct.

Sun obtained a copyright registration and used a Specification Li-

cense focused on licensing the declaring code. Sun enforced the copy-

right in the declaring code, requiring Danger to take a license when it

had used Java declaring code in its popular smartphone platform.

Sun’s executives at all levels internally lamented Google’s conduct

and publicly called Google an infringer in filings to the EU. Important

developers in the community likewise viewed Google’s conduct with

alarm. Sun was in no financial position to wage a litigation war

against Google between late 2007 and early 2009, and was then pre-

occupied with completing an acquisition. When Oracle took over it

tried to negotiate a license, and, when that failed, Oracle sued. Noth-

ing about Oracle’s approach was in any way inconsistent with Sun’s

approach.

In short, whether we look to Sun’s or the community’s views, the

key players all understood there was a copyright on the Java APIs and

that Google’s copying without a license was an infringement. As

shown below, there was a similar consensus in the legal community.

IV. THE JAVA APIS ARE HIGHLY EXPRESSIVE IN A MANNER

LONG PROTECTED

Professor Menell next suggests that there was a legal consensus

that the Java APIs declaring code was unprotected.66 He further pro-

poses that a line can be drawn between the Java APIs declaring code

and implementing code, and that the former is unprotected and the

latter is not because there is a legal understanding that the API is a

“machine.”67 This approach has it exactly backwards. The declaring

code is the most expressive part of the APIs and the implementing

code is the most machine-like aspect of the APIs. In all events, there

is no basis for a legal distinction under the text of the statute and the

case law, as both types of code meet the definition for computer pro-

65. See Sun Microsystems, Inc. v. Microsoft Corp., 87 F. Supp. 2d 992, 993–94 (N.D.

Cal. 2000).

66. Menell, supra note 2, at 451.

67. Id. at 465.

Special Issue] API Copyright Lives On 503

grams and are not subject to any categorical exclusion under § 102(b).

Indeed, Google abandoned any defense demonstrating the merger of

idea and expression in the structure and organization of the Java

APIs,68 and the Federal Circuit’s decision as to copyrightability was

both inevitable and correct.

The Federal Circuit concluded that Google’s copying of both lit-

eral and nonliteral expressive elements constituted copyright in-

fringement.69 This was neither a surprising outcome nor should it be a

controversial one if two basic principles of copyright are accepted.

The first is that a copyright subsists in an “original” work,70 and a

work is “original” if “it possesses at least some minimal degree of

creativity.”71 The second is that copyright protection covers computer

programs under § 102(b) in exactly the same way as it does any other

work.72

By definition, a computer program is functional.73 That is what

computer programs do: they bring about results using the machine

logic of computers. A “machine,” the term much used here by Profes-

sor Menell, is “an apparatus constructed to perform a task or for some

other purposes.”74 Performing a task is no different than “bringing

about a result.”75 People use computers to perform tasks, and they

operate software to assist them in deploying the capabilities of those

computers. Every computer program is also a machine according to

the definition of computer programs supplied by Congress and the

ordinary parlance used by Professor Menell.76

Nor does the statutory definition provide a basis for distinguish-

ing one type of computer program from another. This is a broad defi-

nition. Code is code under the statute. If the code operates directly to

bring about a result, it is protected. If it operates indirectly to bring

about a result, it is protected. If it compiles and runs on the computer

as part of an executable, it is clearly part of bringing about the result.

All source code that compiles into a binary executable form is, by

definition, both a computer program and a machine. The fact that code

68. Brief for Google Inc. at 47–51, Oracle Am., Inc. v. Google Inc., No. 17-1118 (Fed.

Cir. 2017) (pending appeal from 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-

03561 WHA), docketed Oct. 28, 2016).

69. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1381 (Fed. Cir. 2014).

70. 17 U.S.C. § 102(a).

71. Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 345 (1991).

72. See, e.g., Hutchins v. Zoll Medical Corp., 492 F.3d 1377, 1385 (Fed. Cir. 2007);

Computer Assocs., Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992); Johnson Controls, Inc. v.
Phoenix Control Systems, Inc., 886 F.2d 1173, 1175–76 (9th Cir. 1989); Apple Computer,

Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1249 (3d Cir. 1983).

73. 17 U.S.C. § 101.

74. The Oxford English Dictionary 156 (2d ed. 1989).

75. 17 U.S.C. § 101.

76. Menell, supra note 2, at 342.

504 Harvard Journal of Law & Technology [Vol. 31

is a “machine” tells us nothing about its legal status under the Copy-

right Act.

Moreover, in the parlance of the Java APIs, it is the declaring

code that organizes the pre-programmed packages of functions so that

developers can understand those functions without ever having to look

at the implementing code.77 The declaring code teaches the nature of

the implementing code, including its relationship to other packages

and classes of code.78 The declaring code announces the structure and

organization of the API packages so that developers do not have to

learn the implementing code.79 This type of teaching is the essence of

an expressive purpose. It is the implementing code that performs the

operations specified.80 To the extent that either of these types of code

is closer to a “machine,” it is the implementing code, not the declaring

code.

The effort to define the APIs as a “machine” seems to arise out of

a desire to characterize them as a “method of operation,”81 and there-

fore categorically exclude them from the scope of copyright protec-

tion. Certainly, § 102(b) is a limit on the scope of copyright protection

in any particular work. But to read § 102(b) as a categorical exclusion

of all works that have a dual nature — both expressive and function-

al — would be to read the protection for expressive aspects of such

works out of the Copyright Act. This characterization fails to recog-

nize a common principle of intellectual property law that material can

have a dual nature — one aspect of which is protected and another

not.82

Professor Menell’s argument that the Harry Potter analogy fails

to hold because that work of entertaining fiction is not at all functional

is unpersuasive regarding the application of § 102(b).83 Carried to its

logical end, this approach to § 102(b) would categorically exclude all

expression if it were factual just as well as if it were functional, be-

cause one cannot own facts under copyright law. Charts, maps, text-

books, and substantial aspects of other types of non-fiction works

would lose copyright protection under this approach. These are all

77. Trial Tr. at 956:9–13 (May 13, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA); Trial Tr. at 1216:18–19 (May

16, 2016), Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016)
(No. C 10-03561 WHA).

78. Trial Tr. 956:9–13; 956:18–20 (May 13, 2016), Oracle Am., Inc. v. Google Inc., 2016

WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

79. Id. at 956:5–7.

80. Id. at 956:20–23.

81. 17 U.S.C. § 102(b).

82. Cf. Varsity Brands, Inc. v. Star Athletica, LLC, 136 S. Ct. 1823 (2016) (affording

protection for expressive aspects of utilitarian design); 17 U.S.C. § 113(b); Trademark

Manual of Examining Procedure § 1213.05(c) (affording protection for double entendre
marks where one meaning is not merely descriptive).

83. See Menell, supra note 2, at 387.

Special Issue] API Copyright Lives On 505

“functional” works because they convey information that is not pro-

tected by copyright. With this expansive and novel logic, copyright

law would not protect any computer software at all. This result is ex-

actly the opposite of what Congress intended when it expressly

brought computer programs within the scope of § 102(a). All comput-

er programs, by definition, serve as a method to operate a computer.

Operating a computer is their statutorily defined function.

This notion of software exceptionalism must be wrong. Congress

explicitly chose to protect computer programs under copyright law

nearly forty years ago,84 and they were properly regarded as protected

even before that. In 1964, the Copyright Office announced that it

would accept computer programs for registration,85 and Congress

clearly regarded computer programs as literary works at the time it

adopted the 1976 Act.86 CONTU similarly confirmed that understand-

ing in its 1978 Report,87 and any lingering doubt was removed by the

adoption of the 1980 amendments explicitly defining computer pro-

grams and defining certain limitations on the scope of protection in

§ 101 and § 117.88 Congress adopted verbatim the definition proposed

by CONTU: “A computer program is a set of statements or instruc-

tions to be used directly or indirectly in a computer in order to bring

about a certain result.”89 Congress adopted this CONTU definition

despite the dissent by Commissioner Hersey, who urged against copy-

right protection on the ground that computer programs are “machine-

control elements.”90 In other words, CONTU and Congress explicitly

rejected the notion that computer programs should not be subject to

copyright protection because they are usable as “machines.”

The fact that a computer program is also a machine thus tells us

nothing about its copyrightability. Being a “machine” is part of the

basic definition. There is no basis to conclude that Congress intended

to define computer programs as actionable statements or instructions

that are copyrightable subject matter under § 101, with exclusive

rights under § 106 limited by § 117, only to undercut those provisions

entirely in § 102(b). No credible approach to statutory interpretation

leads to such nullities. Indeed, the Supreme Court has consistently

84. Act of Dec. 12, 1980, Pub. L. No. 96-517, § 10, 94 Stat. 3028.

85. Copyright Office Circular 31D (Jan. 1965).

86. H.R. Rep. No. 94-1476, 94th Cong. 2d Sess. 54 (1976) (“The term ‘literary works’

does not connote any criterion of literary merit or qualitative value: it includes catalogs,

directories, and similar factual, reference, or instructional works and compilations of data. It

also includes computer data bases and computer programs to the extent that they incorpo-
rate authorship in the programmer’s expression of original ideas, as distinguished from the

ideas themselves.”) (emphasis added).

87. CONTU REPORT, supra note 6, at 16; see also Boorstyn, Copyright Law § 2.21

(1981).

88. Pub. L. No. 96-517, § 10, 94 Stat. 3028.

89. Compare 17 U.S.C. §101 with CONTU REPORT, supra note 6, at 12.

90. CONTU REPORT, supra note 6, at 27.

506 Harvard Journal of Law & Technology [Vol. 31

rejected an interpretation of copyright that denies all protection to

copyrighted works that include functional as well as expressive as-

pects.91

Since the earliest cases, courts have consistently treated computer

programs as subject to the usual set of rules for assessing the copy-

rightability of literary works under the Copyright Act.92 The broad

definition of literary work, including not only works expressed in

words but also in “numbers, or other verbal or numerical symbols or

indicia,”93 was a natural fit for software. Whether expressed in num-

bers (object code) or text (source code), software could be assessed

with reference to an established set of principles for the evaluation of

the scope of protection in literary works.

These rules developed, primarily in the Second Circuit, over dec-

ades of cases involving plays, films, books and other texts.94 In a sem-

inal case concerning the play Abie’s Irish Rose, Judge Learned Hand

confirmed the protection of nonliteral elements such as plot, while

identifying the difficulty of separating the protectable sufficiently ex-

pressive non-literal elements of a text from an unprotectable idea:

Upon any work, and especially upon a play, a great

number of patterns of increasing generality will fit

equally well, as more and more of the incident is left

out. The last may perhaps be no more than the most

general statement of what the play is about, and at

times might consist only of its title; but there is a

point in this series of abstractions where they are no

longer protected, since otherwise the playwright

could prevent the use of his ‘ideas,’ to which, apart

from their expression, his property is never extended.

Nobody has ever been able to fix that boundary,

and nobody ever can.95

Judge Hand had it exactly right: determining the boundary be-

tween idea and expression is highly context-sensitive. And, of course,

development of the record for application of doctrines such as scènes

à faire and merger is context-specific as well. To assess whether

something is a stock element or highly constrained when it is created,

91. Mazer v. Stein, 347 U.S. 201, 219 (1954); see also Star Athletica, LLC v. Varsity

Brands, 137 S. Ct. 1002 (2017).

92. Compare Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 696 (2d Cir. 1992)

with Nichols v. Universal Pictures Corp., 45 F.2d 119, 120 (2d Cir. 1930).

93. 17 U.S.C. § 101.

94. See Nichols, 45 F.2d 119.

95. Id. at 121 (emphasis added).

Special Issue] API Copyright Lives On 507

one must know its antecedents. In other words, there are important

factual predicates to these legal inquiries.

It was hardly surprising when the Second Circuit applied its

standard mode of textual analysis (abstraction-filtration-expression)96

to determine that the scope of copyright protection is “highly fact spe-

cific” in Computer Assocs. Int’l v. Altai, Inc.97 The case plainly did

not hold that entire categories of works could or should be excluded

from protection under the Copyright Act.

Likewise, Sega Enters. Ltd. v. Accolade, Inc.98 did not purport to

categorically resolve anything about § 102(b) or the scope of copy-

rightability in computer programs.99 After disassembling the code,

Accolade created a manual that contained “only functional descrip-

tions of the interface requirements and did not include any of Sega’s

96. Abstraction-filtration-expression is a standard mode of analysis used for assessing

copyrightability and infringement of text under the Copyright Act. The analysis involves

breaking down the underlying work into its constituent parts as reflected in the various ideas
expressed therein, examining each part to sift out unprotected material such as scenes a faire

or merged elements, and then comparing the remainder to the accused infringing work to

determine if original elements were copied. See Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340, 361 (1991); Comput. Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 714–15 (2d

Cir. 1992). In the case of computer programs, think of it as simply performing the standard

analysis but having to do so in another language. The workflow is the same, but the process
is more difficult because of an added complication of using a different language in assessing

the substance at each step of the analysis.

97. 982 F.2d at 714–15.

98. 977 F.2d 1510 (9th Cir. 1992).

99. Google subsequently argued that the Federal Circuit did not follow Ninth Circuit

precedent in Oracle v. Google, but the Ninth Circuit had decided at least by 1989 in John-

son Controls that nonliteral software elements are protected, and Sega did not modify that
holding. Subverting the adversarial process, Google went to the Ninth Circuit in Bikram

Yoga and filed a request, without notice to Oracle, asking the Court to disapprove of the

Federal Circuit’s decision in issuing its own. The court did not do so, and the decision in
Bikram Yoga is fully consistent with Oracle v. Google. See Bikram’s Yoga College of India,

L.P. v. Evolation Yoga LLC, 803 F.3d 1032 (9th Cir. 2015). In Bikram Yoga, the copyright-

ed book at issue described the yoga sequence as purely functional — a system or method
designed to “systematically work every part of the body, to give all internal organs, all the

veins, all the ligaments, and all the muscles everything they need to maintain optimum

health and maximum function.” Id. at 1038. There was no creative spark nor expressive
intent, as the Copyright Office has described, and thus a yoga sequence is not properly the

subject matter of copyright; it is not choreography because “choreographic authorship is

considered, for copyright purposes, to be the composition and arrangement of a related
series of dance movements and patterns organized into a coherent and expressive whole.”

Registration of Claims to Copyright, 77 Fed. Reg. 37,605 (June 22, 2012). Nowhere does

the court describe the yoga sequence as expressive in nature, contrary to Google’s admis-
sions in Oracle v. Google that the Java APIs are not only expressive but highly creative.

Thus, unlike the Java API, the yoga sequence as a healing art was singularly functional

rather than having a dual nature of both expression and function. The Ninth Circuit em-
ployed exactly the same approach to § 102(b) as the Federal Circuit did in Oracle v. Google

when it held that the scope of copyright in the Bikram Yoga book did not extend to the yoga

sequence itself: “section 102(b) is not a limitation on what kinds of expressive works may
be protected by copyright,” but “a limitation on how broadly copyright extends.” See

Bikram Yoga, 803 F.3d at 1038.

508 Harvard Journal of Law & Technology [Vol. 31

code.”100 By this description, the manual set forth the functions that

the interface was required to perform, that is, the steps necessary to

implement a method of unlocking the console so that it would play the

cartridge.101 The opinion tells us nothing more about the nature of the

expression at issue. All the parties apparently agreed that Accolade

did not replicate any of the code in its commercial product.102 This is

in stark contrast to Oracle v. Google, where the API declarations are

code that Google copied verbatim into Android. We have no idea

from the public record in Sega what the functional descriptions of the

interface requirements looked like or how they might compare either

to the complex structure and organization of the 37 packages or the

11,000 lines of code at issue in Oracle v. Google.

Treating Sega like a broad holding that excludes from the scope

of copyright protection anything that might be termed an “interface”

is a fool’s errand. One could just as easily declare that all Hollywood

“treatments” are excluded from protection as ideas while “outlines”

are included as expression. A treatment might be five pages long or a

three-sentence elevator pitch, and an outline might be one page or

twenty-five. The terms mean nothing without reference to the actual

substance. It is a strange approach to read a case’s terminology-bound

holding as completely independent of any understanding of what that

terminology actually meant in the case. It is this kind of categorical

approach that the Ninth Circuit expressly rejected in Sega, when it

was concerned that announcing all reverse engineering as unfair

would lead to overbroad protection for the functional aspects of soft-

ware.103 A declaration that all interface code is not protected by copy-

right because it is a method of operation would gut the statute in the

other direction.

Altai and Sega were both decided in 1992 and fueled a debate be-

tween those who argued what the law should be and those who cor-

rectly identified what the law was. While the former continued to

agitate for sui generis protection for software,104 the latter continued

to affirm what Congress had already done.105 Those who argue today

that Oracle v. Google is unusual read Altai and Sega as enacting a

categorical exclusion, which was the same exact argument favored by

the dissenters in CONTU and explicitly rejected by Congress in 1980.

100. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1515 (9th Cir. 1992) (emphasis

added).

101. Id. at 1524 n.7.

102. Id. at 1515.

103. Id. at 1525.

104. See Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of Com-

puter Programs, 94 COLUM. L. REV. 2308 (1994).

105. See Jane C. Ginsburg, Four Reasons and a Paradox: The Manifest Superiority of

Copyright over Sui Generis Protection of Computer Software, 94 COLUM. L. REV. 2559

(1994).

Special Issue] API Copyright Lives On 509

Indeed, after Altai and Sega, courts consistently rejected efforts at

categorical exclusions of software elements from copyrightability,

carefully evaluating the particular circumstances of each case.106 This

sensitive approach led to a wide variety of outcomes for different

types of software elements. And, if there are clear takeaways from an

equally divided Supreme Court in Lotus v. Borland (after a well-

respected district judge went one way and the First Circuit split up

and went another),107 they are the difficulties implicated in the issue

of the scope of software copyright, and the high degree of care with

which a practitioner must counsel clients regarding those difficulties.

As established in Altai and in numerous other decisions, the analysis

for determining the degree to which copyright protection extends to

computer programs applies exactly the same as it does for any other

literary work. The workflow is the same, even if the language is dif-

ferent.

Thus, for elements characterized as “command names” or “com-

mand hierarchies,” courts engage in context-specific, fact-bound anal-

yses, reaching different decisions on whether the software at issue

should be afforded protection based on the facts of that particular

case.108 For elements characterized as input or output formats or inter-

106. See infra, text accompanying notes 108–09.

107. 516 U.S. 233 (1996).

108. Compare Dun & Bradstreet Software Servs., Inc. v. Grace Consulting, Inc., 307

F.3d 197 (3d Cir. 2002) (holding that use of copy and call commands from competitor’s

software was copyright infringement); Softel, Inc. v. Dragon Med. & Sci. Commc’ns, Inc.,
118 F.3d 955, 966–67 (2d Cir. 1997) (holding that non-literal elements, including a hierar-

chy of menus, may be copyrightable and remanding for district court to apply filtration test);

Eng’g Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335, 1348 (5th Cir. 1994) (rec-
ognizing that menu commands/hierarchy may be entitled to copyright protection subject to

filtration analysis and reversing district court holding to the contrary); Gates Rubber Co. v.

Bando Chem. Indus., Ltd., 9 F.3d 823, 843–44 (10th Cir. 1993) (remanding for district court
to conduct filtration analysis on computer program menus to determine copyrightability);

Cisco Sys., Inc. v. Huawei Techs., Co., 266 F. Supp. 2d 551, 554 (E.D. Tex. 2003) (explain-

ing that under Fifth Circuit law, a command hierarchy (including names) may be copyright-
able as a non-literal element); Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 202, 211

(D. Mass. 1993) (holding that Lotus 1-2-3 “menu tree” is copyrightable), rev’d, 49 F.3d 807

(1st Cir. 1995); Consul Tec, Inc. v. Interface Sys., Inc., No. 90-CV-70757-DT, 1991 WL
427891, at *1 (E.D. Mich. Oct. 31, 1991) (enjoining software that copied “commands,

command phrases, and other aspects of the user interface” of competitor’s software); Lotus

Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 68 (D. Mass. 1990) (holding that
the menu/command structure of Lotus 1-2-3 is copyrightable); Digital Commc’ns Assocs.,

Inc. v. Softklone Distrib. Corp., 659 F. Supp. 449, 461 (N.D. Ga. 1987) (holding that ar-

rangement and presentation of command names on a status screen was copyrightable) with
Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1372 (10th Cir. 1997) (affirming non-

copyrightability of codes for call control hardware that were created arbitrarily with no

creative expression); MiTek Holdings, Inc. v. Arce Eng’g Co., 89 F.3d 1548, 1556–57 (11th
Cir. 1996) (holding that a menu structure that simulates the process by which roof plane

trusses were hand drafted and permitted no deviation was not copyrightable, but reserving

question as to whether any command structure could be copyrighted); Lotus Dev. Corp. v.
Borland Int’l, Inc., 49 F.3d 807, 815–16 (1st Cir. 1995); Real View, LLC v. 20-20 Techs.,

Inc., 683 F. Supp. 2d 147, 158–59 (D. Mass. 2010) (menu hierarchy of commands repre-

510 Harvard Journal of Law & Technology [Vol. 31

faces, results were mixed.109 Data structures achieved more uniform

protection.110 File formats also experienced mixed outcomes.111

Nor did academics hold a uniform view that the 1992 decisions in

Altai and Sega had effected a categorical exclusion of nonliteral soft-

ware elements from the scope of copyright under § 102(b).112 Articles

published in the years following Lotus v. Borland reiterated the com-

sented by graphical icons not copyrightable); Wireless TV Studios, Inc. v. Digital Dispatch

Sys., Inc., No. 07 CV 5103 (RJD) (RER), 2008 WL 2474626, at *2 (E.D.N.Y. June 19,
2008) (menu commands are uncopyrightable methods of operation); Jamison Bus. Sys., Inc.

v. Unique Software Support Corp., No. CV 02–4887(ETB), 2005 WL 1262095, at *12–13

(E.D.N.Y. May 26, 2005) (menu command hierarchies are uncopyrightable); ILOG, Inc. v.
Bell Logic, LLC, 181 F. Supp. 2d 3, 9–10 (D. Mass. 2002) (holding that “rules editors,”

commands through which software was operated, were not protectable as methods of opera-

tion); Mitel, Inc. v. Iqtel, Inc., 896 F. Supp. 1050, 1055 (D. Colo. 1995) (command codes
for computer call controller not protectable expression).

109. Compare Dun & Bradstreet Software Servs., Inc. v. Grace Consulting, Inc., 307

F.3d 197, 219 (3d Cir. 2002) (holding that use of copy and call commands from competi-
tor’s software was copyright infringement); Bateman v. Mnemonics, Inc., 79 F.3d 1532,

1547 (11th Cir. 1996) (rejecting argument that interface specifications are not copyrightable

as a matter of law); Eng’g Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335, 1346
(5th Cir. 1994) (holding that input formats may be eligible for copyright protection if they

contain sufficient creativity and originality); SAS Inst. Inc. v. World Programming Ltd., No.

5:10-CV-25-FL, 2012 WL 5844910, at *7 (E.D.N.C. Oct. 18, 2012) (denying motion to
dismiss copyright claims based on infringement of operations, syntax, and command struc-

ture of software); MedioStream, Inc. v. Microsoft Corp., 749 F. Supp. 2d 507, 520–21 (E.D.

Tex. 2010) (denying motion to dismiss copyright infringement claims based on unauthor-
ized use of API); Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1133

(N.D. Cal. 1986) (finding that structure of program, including input formats, is potentially

protectable) with Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1526 (9th Cir. 1992)
(in fair use factor two context “interface procedures” not entitled to broad scope of protec-

tion); Synercom Tech., Inc. v. Univ. Computing Co., 462 F. Supp. 1003, 1014 (N.D. Tex.

1978); Torah Soft Ltd. v. Drosnin, 136 F. Supp. 2d 276, 292 (S.D.N.Y. 2001) (output of
software in particular format not protectable expression).

110. See eScholar, LLC v. Otis Educ. Sys., Inc., No. 04 Civ. 4051 (SCR), 2005 WL

2977569, at *20–21 (S.D.N.Y. Nov. 3, 2005) (holding that data structure created by com-
puter program may be copyrightable); Positive Software Solutions, Inc. v. New Century

Mortgage Corp., 259 F. Supp. 2d 531, 535 (N.D. Tex. 2003) (granting injunction against use

of SQL data structures); O.P. Solutions, Inc. v. Intellectual Prop. Network, Ltd., No. 96 Civ.
7952(LAP), 1999 WL 47191, at *20 (S.D.N.Y. Feb. 2, 1999) (arrangement of data tables

protected); CMAX/Cleveland, Inc. v. UCR, Inc., 804 F. Supp. 337, 355 (M.D. Ga. 1992)

(data structures protected). See also Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797

F.2d 1222, 1242 (3d Cir. 1986) (file and data structures protected).

111. Compare SAS Inst. Inc. v. World Programming Ltd., No. 5:10-CV-25-FL, 2012 WL

5844910, at *6–7 (E.D.N.C. Oct. 18, 2012) (holding that complaint alleging ability of de-

fendant’s software to use file format developed by plaintiff stated claim for copyright in-
fringement); Harbor Software, Inc. v. Applied Sys., Inc., 925 F. Supp. 1042, 1049–50

(S.D.N.Y. 1996) (format of database files); Control Data Sys., Inc. v. Infoware, Inc., 903 F.

Supp. 1316, 1322–23 (D. Minn. 1995) (holding that file layouts are protectable expression);
CMAX/Cleveland, Inc. v. UCR, Inc., 804 F. Supp. 337, 355 (M.D. Ga. 1992) (holding that

file formats are expression, not idea) with Prof’l Mkt. Research, Inc. v. AC Nielsen Corp.,

No. 03–2314 (GAG), 2009 WL 1259956, at *2 (D. P.R. May 4, 2009) (data tables in soft-
ware uncopyrightable method of operations); Baystate Techs., Inc. v. Bentley Sys., Inc., 946

F. Supp. 1079, 1088–89 (D. Mass. 1996) (file structures not protectable expression).

112. See, e.g., Arthur R. Miller, Copyright Protection for Computer Programs, Data-

bases, and Computer-Generated Works: Is Anything New Since CONTU, 106 HARV. L.

REV. 977 (1993) (criticizing Sega).

Special Issue] API Copyright Lives On 511

plexity of the question and could hardly be understood as an academic

consensus regarding categorical exclusions from copyright. In his

seminal work the following year, Professor Miller criticized Sega for

allowing too much copying under the fair use doctrine,113 and he pre-

ferred Whelan’s broader scope of copyright protection to that of Al-

tai,114 but nonetheless confirmed the straightforward reading that Altai
still afforded protection for nonliteral elements.115 Neatly presaging

the record in Oracle v. Google, Miller reaffirmed his view that there

should be strong protection for interfaces, arguing that “user interface

design is extremely resource-intensive, and a well-composed user in-

terface is frequently the precise feature that renders a program suc-

cessful.”116 Other commentators continued to note the dual nature of

software as both expressive and functional as well as a strong desire

to protect the expressive aspects of programs.117 Still others argued

that Altai was more “restrictive” than Whelan, but criticized Whelan

because it had failed to follow the traditional patterns of abstraction

analysis announced in Nichols — thus affirming that under Altai, non-

literal elements remained protected as they always had.118

In November 1993, industry and academia came together for the

Symposium on Copyright Protection and Reverse Engineering of

Software at the University of Dayton School of Law.119 The articles

that resulted took a variety of positions, but none argued that § 102(b)

took away copyright protection for nonliteral elements or interfac-

es.120 Professor Karjala thought it remained an open question whether

interfaces were or should be protected.121 Then came the Columbia

symposium in 1994 with Professor Samuelson’s Manifesto arguing

for sui generis protection for software and Professor Ginsburg’s Par-

113. Id. at 1013–26.

114. Whelan Assocs., Inc. v. Jaslow Dental Lab, Inc., 797 F.2d 1222 (3d Cir. 1986); see

Miller, supra note 112, at 1001–11 (comparing Altai and Whelan).

115. Miller, supra note 112, at 1007–08 (noting Altai’s protection for “non-literal pro-

gram structure”).

116. Id. at 1033–34.

117. John M. Greim Jr., Note, Against a Sui Generis System of Intellectual Property for

Computer Software, 22 HOFSTRA L. REV. 145 (1993).

118. W. H. Baird Garrett, Note, Toward a Restrictive View of Copyright Protection for

Nonliteral Elements of Computer Programs: Recent Developments in the Federal Courts,
79 VA. L. REV. 2091 (1993).

119. Robert A. Kreiss, Introduction to Symposium: Copyright Protection and Reverse

Engineering of Software, 19 U. DAYTON L. REV. 837 (1994).

120. See, e.g., Anthony L. Clapes, Confessions of an Amicus Curiae: Technophobia,

Law, and Creativity in the Digital Arts, 19 U. DAYTON L. REV. 903, 974 (1994) (Assistant

General Counsel of IBM criticizing industry amicus briefs as creating industry “whiplash”

and preferring the “orderly accretion of precedent”); Dennis S. Karjala, Copyright Protec-
tion of Computer Documents, Reverse Engineering, and Professor Miller, 19 U. DAYTON L.

REV. 975, 990–91 (1994) (“The real question for user interfaces, therefore, is whether func-

tionality at the user level — including user lock-in and standardization — is or should be
copyright protected” arguing that the “two most recent authorities are in hopeless conflict”).

121. Karjala, supra note 120.

512 Harvard Journal of Law & Technology [Vol. 31

adox rejoinder arguing that traditional copyright principles were more

than up to the task to properly delineate the scope of protection in

software.122

In 1995, Professor Lemley weighed in with his view that the de-

bate had been resolved in favor of Altai and against Whelan as a

method of conducting the copyrightability analysis in software, but he

also confirmed that Whelan’s holding for protection of nonliteral ele-

ments in software was “uncontroversial.”123 Far from declaring any-

thing dead, Professor Lemley notes that it was the expansive view of

the scope of copyright for computer programs that had become “insti-

tutionalized.”124

The First Circuit’s decision in Lotus v. Borland came in 1995,125

and the dean of the copyright bar, Professor Nimmer (the elder) made

his pronouncement on the subject:126

To comply with the congressional decision to protect

computer programs as literary works, the answer

must be that in some circumstances and to some de-

gree the exclusion created for processes and methods

of operation must be interpreted to permit copyright

protection of code, structure, or commands even

though they are essential to duplicate the operation

of a particular program.

Patry, then at Cardozo (now in-house at Google), strongly criticized

the First Circuit’s opinion, calling it a “unique, grotesque understand-

ing of how Section 102(b) works.”127 His overall take? That the case

“involves nonmerged material copied in its entirety for purely com-

mercial purposes in an attempt to deprive the copyright owner of its

122. See Ginsburg, supra note 105.

123. Mark Lemley, Convergence in the Law of Software Copyright?, 10 HIGH TECH. L.J.

1, 9–10 (1995) (“During the same period, a number of district courts took an approach simi-
lar to Whelan, at least to the extent of rejecting Synercom and protecting software against

non-literal copyright infringement. On that issue, Whelan remains uncontroversial to this

day. Indeed, the Fifth Circuit has since reversed Synercom and affirmed the copyrightability
of non-literal elements of computer programs”).

124. Id. at n.142 (“That this expanded view of copyright law in the software context has

become institutionalized is amply demonstrated by the arguments of certain copyright

scholars, who decry the recent trend away from broad copyright protection on the grounds
that it will fail to reward programming efficiency”) (citations omitted).

125. 49 F.3d 807, 815–16 (1st Cir. 1995).

126. Raymond T. Nimmer, Sliding Scales and Abstracted Expression, 32 HOUS. L. REV.

317, 338 (1995).

127. William F. Patry, Copyright and Computer Programs: It’s All in the Definition, 14

CARDOZO ARTS & ENT. L. J. 1, 58–59 (1996).

Special Issue] API Copyright Lives On 513

market share.”128 That version of Patry would have been on Oracle’s

side in this case.

The Court divided in its review in Lotus in early 1996.129 Does it

need to be said that an equally divided Court cannot properly be

viewed as a product of widespread legal consensus for the exclusion

of nonliteral elements from the scope of software copyright? Appar-

ently so.130 Meanwhile, others began responding to Professor Samuel-

son’s Manifesto.

Professor Gorman noted the importance of the international con-

sensus for copyright protection of software in rejecting the proposed

sui generis approach:

The authors challenge the legal treatment of program

code as literary text. Instead, they view programs as

‘virtual machines,’ and as the medium of creation

(like steel or plastic) rather than the artifact; interfac-

es are said to be like gear teeth or pulleys in a physi-

cal machine. This view was squarely rejected in the

United States nearly twenty years ago by [CONTU],

and by Congress itself when in 1980 it expressly de-

fined a computer program and declared it be a spe-

cies of ‘literary work’ covered by the Copyright Act.

In the intervening years, essentially all nations have

come to treat programs in that manner, and recently,

124 nations subscribed to the [TRIPs] provisions of

[GATT], which also treat programs not as machine

parts but as literary works.131

Commentary published just after the Court divided in Lotus v. Bor-
land reiterated the complexity of the question and certainly did not

amount to a consensus regarding categorical exclusions of nonliteral

elements from copyright.132 In 1998 Professor Karjala again called it a

128. Id. at 63 n.273 (“For these reasons, Judge Keeton rightly rejected Borland’s fair use

defense”).

129. Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233, 233 (1996).

130. See Jonathan E. Retsky, Computer Software Protection in 1996: A Practitioner’s

Nightmare, 29 J. MARSHALL L. REV. 853 (1996).

131. Robert A. Gorman, Comments on a Manifesto Concerning the Legal Protection of

Computer Programs, 5 ALB. L.J. SCI. & TECH. 277 (1996).

132. See Howard C. Anawalt, Special Case Note Follow-Up: Lotus Development Corp.

v. Borland International, Inc., 116 S.Ct. 804 (1996), 12 SANTA CLARA COMPUTER & HIGH

TECH. L.J. 489, 498 (1996) (“[T]he decision falls far short of being ‘definitive’ regarding
the effect of §102(b) as a limitation on the scope of copyright”); Bradley W. Grout, Note,

Wobbling on the Shoulders of Giants: The Supreme Court’s Failure in Lotus v. Borland, 4

J. INTELL. PROP. L. 77 (1996); Christopher Kanagawa, Note, Lotus v. Borland: Confusion
Within the Computer Industry “Affirmed” By The Supreme Court, 32 TULSA L. J. 633

(1997); Marci A. Hamilton & Ted Sabety, Computer Science Concepts in Copyright Case:

514 Harvard Journal of Law & Technology [Vol. 31

matter of “heated debate,”133 and that same year the Seventh Circuit,

via Judge Easterbrook, issued its decision expressly protecting taxon-

omies.134 Meanwhile, additional circuit courts confirmed the principle

of Johnson Controls, Whelan, and Altai that the scope of copyright

protection extends to nonliteral elements of software.135

This brings us to the Java API declarations at issue in Oracle v.
Google and whether there was something unusual about this decision

when assessed pursuant to a case-specific idea/expression dichotomy

approach rather than a categorical exclusion for nonliteral elements

approach. The developers could have designed the APIs in a countless

number of ways but designed an organization they believed later pro-

grammers would find both coherent and easy to learn and remember.

They made thousands of design choices to create an intuitive and ex-

pressive structure that taught the use of the pre-programmed packages

of code. The Federal Circuit found that “designing the [APIs] was a

creative process,” “the declaring code could have been written and

organized in any number of ways,” and “the Sun/Oracle developers

had a vast range of options for the structure and organization.”136 This

is far beyond the requirements set out in Feist.137 Indeed, Google

hardly disagreed when its Java expert stated that API design “is an art,

not a science,” distinguished by “the complexity of figuring out how

best to express what it is that the programmer wants done.”138 There is

no doubt that the declaring code is “extremely expressive,” and that it

reflects creative choices shaped by aesthetic judgments.139

That the protection of particular software elements might be sub-

ject to a context-sensitive and at least partly factual analysis seems to

be a source of great frustration to academics such as Professors Men-

ell and Samuelson, who have consistently urged the adoption of bright

line rules against such protection. They argue that industry, and soft-

ware engineers in particular, must have a bright line rule. They would

The Path to a Coherent Law, 10 HARV. J.L. & TECH. 239 (1997); Lloyd L. Weinreb, Copy-

right for Functional Expression, 111 HARV. L. REV. 1149, 1251 (1998) (criticizing copy-

right law as inconsistent while opining that it has contributed to the extraordinary success of
copyright-based industries in the United States).

133. Dennis S. Karjala, Copyright Protection of Computer Program Structure, 64

BROOK. L. REV. 519 (1988).

134. American Dental Ass’n v. Delta Dental Plans, 126 F.3d 977 (7th Cir. 1997).

135. General Universal Systems, Inc. v. Lee, 379 F.3d 131 (5th Cir. 2004); BUC Int’l.

Corp. v. Int’l Yacht Council Ltd., 489 F.3d 1129 (11th Cir. 2007).

136. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1357, 1359 (Fed. Cir. 2014).

137. Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340 (1991).

138. Trial Tr. at 1004:21–24, 1008:9–14 (May 13, 2016), Oracle Am., Inc. v. Google

Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA); Trial Ex. 877,

Oracle v. Google (No. C 10-03561 WHA).

139. See supra note 138; Trial Tr. at 1454:24–1455:3; 1460:1–22 (May 17, 2016), Oracle

Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561

WHA).

Special Issue] API Copyright Lives On 515

seemingly limit the scope of copyright protection in software to little

more than an anti-counterfeiting rule, if that.

In no other industry subject to copyright legal norms has the lack

of a bright line rule in separating idea from expression, or fair use

from foul, thwarted progress in the manner apparently feared by those

advocating for a bright line rule. To the contrary, vast troves of con-

tent have been developed even though the legal world attempted to

separate idea from expression by a boundary that cannot always be

reliably fixed in advance. The number of screenplays, paintings,

sculptures, books, short stories, and motion pictures developed since

Nichols v. Universal Pictures Corp.140 is astronomical. The amount of

software created since 1980 is likewise enormous. 141 Such growth is

not because the industry has been operating pursuant to a bright rule

on the idea versus expression dichotomy that has now suddenly been

disrupted. If anything, the only clear legal consensus is that reflected

in the statute: computer programs are protected by copyright. And

industry at all levels, from individual app writers to Fortune 100 com-

panies, responded by investing.

Nor did the decision in Oracle v. Google seemingly inhibit the

development of APIs, as the number of published APIs at one of the

web’s leading repositories continued to grow at a remarkably rapid

pace after May of 2014.

140. Nichols v. Universal Pictures Corp., 45 F.2d 119, 120 (2d Cir. 1930).

141. See The U.S. Software Industry: An Engine for Economic Growth and Employment,

SOFTWARE AND INFORMATION INDUSTRY ASSOCIATION (2014), https://www.siia.net/
Admin/FileManagement.aspx/LinkClick.aspx?fileticket=ffCbUo5PyEM%3D

[https://perma.cc/SN2Y-EMQR].

516 Harvard Journal of Law & Technology [Vol. 31

Figure 2: Web APIs published on ProgrammableWeb.142

So, the report of API copyright’s death is greatly exaggerated,

and the report that software generally and APIs specifically will die if

they enjoy copyright protection is likewise exaggerated. While it is

certainly more interesting to broadly prescribe policy and to do so in

adjudicative-sounding legal rules, such is not supported by the sensi-

tive case-specific applications of the idea/expression dichotomy and

fair use doctrine. Instead of being a radical departure, Oracle v.
Google continues the prevailing approach announced more than

eighty years ago by Judge Hand in Nichols.

142. ProgrammableWeb Research Center, PROGRAMMABLEWEB, https://www.

programmableweb.com/api-research (last visited Jan. 27, 2018, 3:03PM).

