
Harvard Journal of Law & Technology

Volume 31, Special Issue Spring 2018

RISE OF THE API COPYRIGHT DEAD?:

AN UPDATED EPITAPH FOR COPYRIGHT PROTECTION OF

NETWORK AND FUNCTIONAL FEATURES OF COMPUTER

SOFTWARE

Peter S. Menell*

TABLE OF CONTENTS

I. INTRODUCTION .. 307

II. COPYRIGHT PROTECTION FOR COMPUTER SOFTWARE 1.0 313
A. A Personal Account .. 313
B. Setting the Stage ... 314

1. The Intellectual Property Backdrop: Legislation and

Legislative History .. 315
2. Network Economics .. 318
3. The Industrial Backdrop .. 319

C. The API Copyright War ... 321
1. Jurisprudence ... 322

i. The Early Years .. 323
ii. The Modern Software Copyright Era 326

2. Legislative Developments ... 341
D. The End of the First API Copyright War and the Logic

of the Intellectual Property System .. 342

III. COPYRIGHT PROTECTION FOR COMPUTER SOFTWARE 2.0:

THE ORACLE WAVE ... 343
A. The Technological and Industrial Context 345

1. The Java Story ... 346
i. The Corporate Environment: Sun Microsystems in

the 1980s and 1990s ... 346
ii. Development of Java.. 347
iii. The Setting Sun ... 355

2. Google, the Mobile Computing Revolution, and

Development of Android .. 357
3. Oracle’s Acquisition of Sun Microsystems 372

* Koret Professor of Law and Director of the Berkeley Center for Law & Technology,

University of California at Berkeley School of Law. I thank Jonathan Band, Dylan Hadfield-

Menell, Justin Hughes, Mark Lemley, David Nimmer, Tim Simcoe, and Christopher Yoo as
well as participants at various presentations (Boston University School of Law, Harvard

Law School, New York University School of Law, University of Pennsylvania School of

Law, U.C. Berkeley School of Law, U.C.L.A. School of Law) for comments on earlier
drafts. Alex Barata, Louise Decoppet, Amit Elazari, and Andrea Hall provided excellent

research assistance.

306 Harvard Journal of Law & Technology [Vol. 31

B. The Oracle v. Google Litigation ... 375

1. Oracle’s Complaint and Pretrial Case Management 375
2. 2012 Trial .. 378
3. Federal Circuit Appeal .. 386

i. Copyrightability .. 388
a. Declaring Code ... 388
b. SSO of the API Packages ... 389

ii. Fair Use ... 390
4. Interlocutory Certiorari Petition .. 390
5. 2016 Fair Use Trial ... 391

i. Opening Arguments .. 393
ii. Google’s Case in Chief .. 395
iii. Oracle’s Case in Chief ... 400
iv. Google’s Rebuttal ... 404
v. Closing Arguments ... 405
vi. Jury Verdict ... 410

6. The Road Ahead .. 410
C. The Current Murky State of API Copyright Protection 414

IV. THE LAW AND ECONOMICS OF API COPYRIGHT

PROTECTION .. 416
A. Legal Analysis .. 417

1. Overarching Principles .. 418
2. Critique of the Federal Circuit Copyrightability

Decision .. 421
i. Misinterpretation of the Copyright Act 422

a. Misreading Section 102 .. 422
b. Legislative Intent and Purpose 424

ii. Misreading Ninth Circuit Jurisprudence 427
a. Viability of the Lotus Decision in the Ninth Circuit 427
b. Disregarding the Sega/Sony Decisions 429
c. Resurrecting the Third Circuit’s Apple/Whelan

Decisions .. 431
iii. Conflation of Expressive and Technological

“Creativity” ... 433
iv. Overly Rigid Approach to Limiting Doctrines 438
v. Treating API Design as Variable Expression Rather

than Unique Function... 442
3. Proper Legal Frameworks for Analyzing Copyright

Protection for Computer Software 443
i. API Design .. 444
ii. Computer Code .. 446

a. Independent Creation .. 447
b. Abstraction-Filtration-Comparison 450

Special Issue] API Copyright 307

iii. Other Software Elements .. 451

B. Policy Analysis ... 452
1. Economic Analysis of Legal Protection for Computer

Software .. 452
i. The Public Goods Problem ... 452
ii. Network Externalities .. 456

2. The Evolution of Software Markets 460
3. The Optimality of Limited Copyright Protection for

Computer Software ... 464
4. Impediments to Achieving the Proper Copyright

Balance Posed by the Oracle v. Google Litigation 471

V. CONCLUSION .. 473

APPENDIX A: GLOSSARY .. 474

APPENDIX B: PRINCIPAL PARTICIPANTS ... 479

APPENDIX C: TIMELINE .. 482

APPENDIX D: THE 37 JAVA API PACKAGES IMPLEMENTED IN

ANDROID ... 486

APPENDIX E: 2016 FAIR USE TRIAL SUMMARY 489

I. INTRODUCTION

As the great Yogi Berra redundantly said, “It’s like déjà vu all

over again.”1 For IP scholars and practitioners of my generation, Ora-

cle Corporation’s lawsuit alleging that Google’s Android mobile plat-

form infringes copyright in the Java application program interface

(“API”) elements has been a stroll down memory lane.2 Or perhaps

less nostalgically for those in the software industry, a zombie horror

film set in Silicon Valley.3

1. See YOGI BERRA, THE YOGI BOOK: I DIDN’T SAY EVERYTHING I SAID 9 (1998) (ex-

plaining that the déjà vu quotation was inspired by Yankees’ sluggers Mickey Mantle and

Roger Maris’s repeated back-to-back home runs in the early 1960s).
2. As Judge Alsup noted in an early ruling in the Oracle litigation, “[t]he term API is

slippery.” See Order Partially Granting and Partially Denying Defendant’s Mot. for Sum-

mary Judgment on Copyright Claim at 4, Oracle Am., Inc. v. Google Inc., 810 F. Supp. 2d
1002, 1007 (N.D. Cal. 2011) (No. C 10-03561 WHA) (2011 WL 5576228). We will exam-

ine the varying and evolving meaning of API throughout this journey.

3. Cf. List of Zombie Films, WIKIPEDIA, https://en.wikipedia.org/wiki/List_of_
zombie_films [https://perma.cc/TD6M-B36U]. Commentary and news reporting of the

Oracle case spoke in dire terms. See, e.g., Steven J. Vaughan-Nichols, Oracle v. Google,

and the End of Programming as We Know It, COMPUTERWORLD (May 16, 2016),
http://www.computerworld.com/article/3070001/application-development/oracle-v-google-

and-the-end-of-programming-as-we-know-it.html [https://perma.cc/SY5L-WPZC]; Klint

Finley, The Oracle-Google Case Will Decide the Future of Software, WIRED (May 23,
2016), http://www.wired.com/2016/05/oracle-google-case-will-decide-future-software/

[https://perma.cc/6U69-YGJW] (opining that “nothing less is at stake [in the outcome of the

308 Harvard Journal of Law & Technology [Vol. 31

I cut my teeth analyzing the scope of copyright protection for

network and other functional features of computer software. My first

foray into intellectual property scholarship examined the interplay

among the utilitarian nature of computer programming, the distinctive

network economics of software markets, and the role of copyright

protection within the larger intellectual property system.4 Along with

other scholars and practitioners,5 I wrote about and filed amicus briefs

in battles over interoperability,6 reverse engineering,7 graphical user

interfaces,8 and menu command hierarchies.9 After more than a dec-

Oracle v. Google litigation] than the future of programming”); Joe Mullin, Second Oracle v.

Google Trial Could Lead to Huge Headaches for Developers, ARS TECHNICA (May 8,

2016), http://arstechnica.com/tech-policy/2016/05/round-2-of-oracle-v-google-is-an-
unpredictable-trial-over-api-fair-use/ [https://perma.cc/F8FQ-SAY9] (reporting that if those

who develop APIs “can use copyright law to control how programming is done, there will

be a sea change in industry practices. For many developers, especially of open source soft-
ware, this will be a change for the worse.”).

4. See generally Peter S. Menell, Tailoring Legal Protection for Computer Software, 39

STAN. L. REV. 1329 (1987) (analyzing legal protection for computer software based on my
third-year paper at Harvard Law School); Peter S. Menell, An Analysis of the Scope of Cop-

yright Protection for Application Programs, 41 STAN. L. REV. 1045 (1989); Peter S. Menell,

The Challenges of Reforming Intellectual Property Protection for Computer Software, 94
COLUM. L. REV. 2644 (1994); Dennis S. Karjala & Peter S. Menell, Applying Fundamental

Copyright Principles to Lotus Dev. Corp. v. Borland Int’l, Inc., 10 HIGH TECH. L.J. 177

(1995).
5. Professors Dennis Karjala, Jerome Reichman, and Pamela Samuelson, copyright trea-

tise authors Paul Goldstein and David Nimmer, practitioners Jonathan Band, Peter Choy,

David Hayes, Michael Jacobs, Gary Reback, and Richard Stern, economists Joseph Farrell
and Brian Kahin, and computer scientist Randal Davis were among the early fellow travel-

ers. The network economics research of Professors Joseph Farrell, Michael Katz, Garth
Saloner, and Carl Shapiro provided valuable insights.

As the first wave of copyright API litigation was building, Professor Karjala, Professor

Samuelson, and I convened a broad range of intellectual property scholars, practitioners,
software experts, and economists to examine the emerging issues and jurisprudential puz-

zles. That conference produced a consensus report among the legal academics that helped

clarify key software copyright issues and foreshadowed important legal developments. See
generally Donald S. Chisum, Rochelle Cooper Dreyfuss, Paul Goldstein, Robert A. Gor-

man, Dennis S. Karjala, Edmund W. Kitch, Peter S. Menell, Leo J. Raskind, Jerome H.

Reichman & Pamela Samuelson, LaST Frontier Conference on Copyright Protection of
Computer Software, 30 JURIMETRICS J. 15 (1989) [hereinafter LaST Frontier Software

Report]. In addition, I advised the U.S. Congress’s Office of Technology Assessment, which

produced several useful reports. See OFFICE OF TECH. ASSESSMENT, OTA-TCT-527,
FINDING A BALANCE: COMPUTER SOFTWARE, INTELLECTUAL PROPERTY, AND THE

CHALLENGE OF TECHNOLOGICAL CHANGE (1992), http://ota.fas.org/reports/9215.pdf

[https://perma.cc/FGT7-973D]; OFFICE OF TECH. ASSESSMENT, U.S. CONG., OTA-BP-CIT-
61, COMPUTER SOFTWARE AND INTELLECTUAL PROPERTY: BACKGROUND PAPER (1990),

http://ota.fas.org/reports/9009.pdf [https://perma.cc/E4DC-9YMB].

6. See Comput. Associates Int’l v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992); Apple Com-
put., Inc. v. Franklin Comput. Corp., 714 F.2d 1240 (3d Cir. 1983).

7. See Sega Enters. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992); see also Sony Com-

put. Entm’t, Inc. v. Connectix Corp., 203 F.2d 596 (2000); Bateman v. Mnemonics, Inc., 79
F.3d 1532, 1540 (11th Cir. 1996) (following Sega Enters. v. Accolade, Inc., 977 F.2d 1510,

1522 (9th Cir. 1992)).

8. See Apple Comput., Inc. v. Microsoft Corp., 799 F. Supp. 1006 (N.D. Cal. 1992), aff’d
in part, rev’d in part, 35 F.2d 1435 (9th Cir. 1994); see also Data East USA, Inc. v. Epyx,

Inc., 862 F.2d 204 (9th Cir. 1988).

Special Issue] API Copyright 309

ade of software copyright wars,10 the hostilities ceased following the

resolution of the epic battle between Lotus and Borland over the

spreadsheet menu command hierarchy.11 To mark closure of that era, I

wrote an “epitaph” for copyright protection of network features of

computer software.12

Although the Supreme Court deadlocked over the Lotus v. Bor-
land appeal,13 the computer industry achieved détente following sev-

eral lower-court cases rejecting copyright protection for APIs and

other high-level, functional features of computer software. Congress

reinforced these principles in crafting the anti-circumvention provi-

sions of the Digital Millennium Copyright Act of 1998 (“DMCA”).14

This is not to say that copyright law does not protect computer soft-

ware, but rather that the scope of protection is narrow and focused on

purely expressive or arbitrary — as opposed to functional — elements

of computer programs.

Veterans of the API copyright battles moved on to new software

IP battlefronts. Microsoft’s anti-competitive practices in the “browser

wars” emerged as a new battleground in the late 1990s.15 One flank

9. See Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 202 (D. Mass 1993), 831 F.

Supp. 223 (D. Mass. 1993), rev’d 49 F.3d 807 (1st Cir. 1995), aff’d by an equally divided
court, 516 U.S. 233 (1996).

10. See JONATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL: INTELLECTUAL

PROPERTY AND INTEROPERABILITY IN THE GLOBAL SOFTWARE INDUSTRY (1995); Nell
Margolis, Users Biggest Losers in Spreadsheet Wars, 29 COMPUTERWORLD 8 (July 16,

1990) (commenting on the district court ruling finding copyright infringement in Lotus v.
Borland). Sixteen years later, Band and Katoh published a retrospective exploring the en-

actment of the DMCA and implementation of its interoperability provisions and internation-

al developments. It also touches on patent and antitrust issues. See JONATHAN BAND &

MASANOBU KATOH, INTERFACES ON TRIAL 2.0 (2011). Band and Katoh wrote the book

before the Oracle v. Google case triggered the second wave of copyright API litigation.

11. See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st Cir. 1995), aff’d by an
equally divided court, 516 U.S. 233 (1996).

12. See Peter S. Menell, An Epitaph for Traditional Copyright Protection of Network

Features of Computer Software, 43 ANTITRUST BULL. 651 (1998).
13. Justice Stevens recused himself. See David Einstein, Borland Bests Lotus in 6-Year

Legal Battle, S.F. GATE (Jan. 17, 1996), http://www.sfgate.com/business/article/

Borland-Bests-Lotus-in-6-Year-Legal-Battle-2998221.php [https://perma.cc/BB5C-SL4S]
(reporting that Justice Stevens recused himself because of his ownership of IBM stock). In

view of his intellectual property jurisprudence, as reflected in his opinions Sony Corp. of

Am. v. Universal City Studios, Inc., 464 U.S. 417 (1984) and Parker v. Flook, 437 U.S. 584
(1978), he likely would have joined the four justices voting to affirm the First Circuit’s

decision.

14. See 17 U.S.C. § 1201(f) (2012) (interoperability exception for anti-circumvention
provisions); see also id. at § 1201(a) (exemption process). For an explanation of the Con-

gressional intent behind these provisions, see infra notes 165–68.

15. I consulted for a consortium of State Attorneys General for nearly a decade on that
battle and its aftermath. See STATE OF CA, DEP’T OF JUST., OFFICE OF THE ATT’Y GEN.,

Antitrust Highlights, https://oag.ca.gov/antitrust/highlights [https://perma.cc/6KBV-L997];

Stephen D. Houck & Kevin J. O’Connor, Comments on the States’ Role in the Microsoft
Case Re: Working Group on Enforcement Institutions (2007); New York v. Microsoft

Corp., 224 F. Supp. 2d 76 (D.D.C. 2002); see generally United States v. Microsoft Corp.,

310 Harvard Journal of Law & Technology [Vol. 31

touched on API copyright protection. Sun Microsystems sued Mi-

crosoft over breach of contract and copyright infringement relating to

Microsoft’s forking16 of Sun’s Java™ software platform. That litiga-

tion settled with Microsoft paying Sun $20 million, and Sun chose not

to assert its copyright infringement claims in court.17 The conduct at

issue also contributed to Sun’s later antitrust and patent infringement

lawsuit against Microsoft, which resulted in a $1.6 billion settle-

ment.18

By the late 1990s, the open source movement was gaining mo-

mentum, further reducing the use of proprietary strategies in the de-

velopment of APIs. Sun released the core Java language for use by

programmers, although it sought to ensure that the Java platform re-

mained interoperable across different systems. Following the burst of

the dot-com bubble in the 2000–2002 period, software patent asser-

tion added a new dimension to software litigation. Standard setting

organizations (“SSOs”) emerged as a principal bulwark in promoting

interoperable interface development.19

By the early 2000s, software copyright disputes, and particularly

those relating to APIs, were rare. Although interoperability skirmishes

occasionally flared,20 the copyright jurisprudence remained remarka-

bly stable. Silicon Valley moved on, or so many of the API copyright

veterans thought. Much of the API action shifted to the patent and

WIKIPEDIA, https://en.wikipedia.org/wiki/United_States_v._Microsoft_Corp. [https://

perma.cc/H7HS-K9B3].

16. Forking of software code refers to creating an independent branch of a computer pro-
gram. See Fork (Software Development), WIKIPEDIA, https://en.wikipedia.org/

wiki/Fork_(software_development) [https://perma.cc/KN73-ALQQ]. This split from the

original program typically “spawns competing projects that cannot later exchange code,
splitting the potential developer community.” Eric S. Raymond, Promiscuous Theory, Puri-

tan Practice, in HOMESTEADING THE NOOSPHERE (2002), http://www.catb.org/~esr/

writings/cathedral-bazaar/homesteading/ar01s03.html [https://perma.cc/RN3F-7R89].
17. I advised Sun Microsystems’ legal team about copyright’s limiting doctrines in 1999.

I was relieved to see the API copyright claims die a quiet death. See infra notes 245–56.

18. See Scarlet Pruitt & Paul Roberts, Microsoft to Pay $700 Million for Antitrust Issues,
$900 Million to Resolve Patent Dispute, INFOWORLD (Apr. 2, 2004),

http://www.infoworld.com/article/2667124/operating-systems/update--sun--microsoft-

settle-suit-in-billion-dollar-pact.html [https://perma.cc/2Y6D-ZAS5].
19. See Jorge L. Contreras, Patents, Technical Standards and Standard-Setting Organiza-

tions: A Survey of the Empirical, Legal and Economics Literature, in RESEARCH

HANDBOOK ON THE ECONOMICS OF INTELLECTUAL PROPERTY LAW VOL. 2 — ANALYTICAL

METHODS (Peter S. Menell & David Schwartz eds., forthcoming 2018); Mark A. Lemley,

Intellectual Property Rights and Standard-Setting Organizations, 90 CALIF. L. REV. 1889

(2002).
20. See, e.g., Patrick Mannion, Ruling for Green Hills Clears Way for Copying of APIs,

EE TIMES (Aug. 21, 2007), http://www.eetimes.com/document.asp?doc_id=1166905

[https://perma.cc/ZW7L-TGFH] (reporting that the arbitration panel held that copyright
laws do not extend to the functionality of APIs in a dispute involving real time operating

systems). I served as an expert witness for Green Hills in the case.

Special Issue] API Copyright 311

standard setting realms.21 Internet piracy emerged as the major copy-

right battleground, and a new war — between Hollywood and Silicon

Valley — took center stage.22

Then a startling new API copyright case made headlines in Au-

gust 2010.23 In January of that year, Oracle Corporation acquired Sun

Microsystems for $5.6 billion.24 In August, Oracle sued Google for

patent and copyright infringement over the Android platform, one of

the two leading mobile computing platforms (Apple’s iOS was the

other).25 Google built Android using the Java programming language

and declarations — headers that name and describe functions — from

37 of the 166 “packages” of the Java™ Platform, Standard Edition

API Specification.26 Oracle would ultimately seek over $9 billion in

damages and an injunction blocking Google’s use of Android.27

The API copyright resurgence is not limited to Oracle v. Google.

In 2014, Cisco Systems, a leading manufacturer of networking

equipment, sued Arista Networks for patent and copyright infringe-

ment.28 The copyright claims focused on Cisco’s command line inter-

face (“CLI”) for configuring, monitoring, and maintaining Cisco

21. See Jorge L. Contreras, A Brief History of FRAND, 80 ANTITRUST L.J. 39 (2015); Pe-

ter S. Menell & Michael J. Meurer, Notice Failure and Notice Externalities, 5 J. LEGAL

ANALYSIS 1 (2013); Peter S. Menell, Forty Years of Wondering in the Wilderness and no
Closer to the Promised Land: Bilski’s Superficial Textualism and the Missed Opportunity to

Return Patent Law to its Technology Mooring, 63 STAN. L. REV. 1289 (2011).

22. See Peter S. Menell, Envisioning Copyright Law’s Digital Future, 46 N.Y.L. SCH. L.
REV. 63 (2002).

23. See Don Clark & Cari Tuna, Oracle Suit Challenges Google — Silicon Valley Giants
Tangle Over Patents, Copyrights Involving Open Programs Android and Java, WALL ST. J.

B1 (Aug. 13, 2010) (noting that the lawsuit was a “surprise move” and “set off shock waves

in the Silicon Valley software community”); see also Cari Tuna & Don Clark, Oracle’s
Java Suit Gives a Jolt, WALL. ST. J. B1 (Aug. 14, 2010) (reporting that “[l]awyers and soft-

ware developers were scrambling Friday to analyze whether other Java-based products

might run afoul of Oracle’s intellectual property — and if legal risks may extend to a broad-
er array of what the industry calls open-source software”).

24. See Sun Acquisition by Oracle, WIKIPEDIA, https://en.wikipedia.org/

wiki/Sun_acquisition_by_Oracle [https://perma.cc/B57Z-WLZW]. The parties agreed to the
acquisition in April 2009. Id. Due to regulatory approvals, the transfer did not occur until

January 2010. Id. The sale price was $7.4 billion, resulting in a net price of $5.6 billion after

accounting for Sun’s cash and debt. Id.
25. See Eric Bangeman, Oracle Sues Google Over Use of Java in Android, ARS

TECHNICA (Aug. 12, 2010), https://arstechnica.com/tech-policy/2010/08/oracle-sues-google-

over-use-of-java-in-android-sdk/ [https://perma.cc/W4LN-D34L].
26. These packages are compilations of functions. See infra notes 239–40, 249, 322 and

accompanying text.

27. See Joe Mullin, Oracle Will Seek a Staggering $9.3 Billion in 2nd Trial Against
Google, ARS TECHNICA (Mar. 29, 2016), http://arstechnica.com/tech-policy/2016/03/oracle-

will-seek-a-staggering-9-3-billion-in-2nd-trial-against-google/ [https://perma.cc/ZB8E-

WK7Y]; Daniel Siegal, Oracle, Google File Heated Trial Briefs In $8B IP Showdown,
LAW360 (Apr. 21, 2016), https://www.law360.com/articles/787442/oracle-google-file-

heated-trial-briefs-in-8b-ip-showdown [https://perma.cc/BX2C-VMVF].

28. See Quentin Hardy, In Suit, Cisco Accuses Arista of Copying Work, N.Y. TIMES (Dec.
5, 2014), http://bits.blogs.nytimes.com/2014/12/05/in-suit-cisco-accuses-arista-of-copying-

work/ [https://perma.cc/K79H-C2JK].

312 Harvard Journal of Law & Technology [Vol. 31

devices.29 Arista, formed by a Cisco founder and employing many

former Cisco engineers, designs and sells competing network switch-

es. Arista allegedly copied more than five hundred of Cisco’s CLI

commands in developing its EOS network operating system.30

With these headlines, I was beginning to feel a bit like the aging

Michael Corleone, as portrayed by Al Pacino, in The Godfather: Part
III: “Just when I thought I was out . . . they pull me back in.” 31 As this

Article explains, the new wave of API litigation is not entirely “déjà

vu all over again.” Oracle v. Google involves a more complex inter-

face specification than those involved in the first wave of cases. And

unlike defendants in those cases, Google did not seek to achieve com-

plete end-user interoperability. Rather, Google developed a new oper-

ating system that selected from and augmented the Java API packages

to optimize a powerful new mobile platform for smartphones. Google

also used a more permissive licensing model than Sun and Oracle

used for the Java platform.

Although achieving complete end-user interoperability is a func-

tional objective that can serve to limit copyright protection, it is not

the sole limiting rationale for excluding functional features and func-

tion labels from copyright protection. The principles explicated in my

first Epitaph apply with equal force to this newer API copyright wave.

Fundamental copyright doctrines circumscribe protection for APIs.

This Article updates and expands upon the earlier Epitaph to ad-

dress the second API copyright wave. As background, Part II reviews

the first wave of API copyright legislation and litigation. Part III ex-

amines the Oracle v. Google litigation. Part IV critically analyzes the

Oracle v. Google litigation and explains that copyright law’s funda-

mental exclusion of protection for functional features dictates that the

labeling conventions and packaging of functions within interface

specifications generally fall outside of the scope of copyright protec-

tion even though the implementing code garners protection. This in-

terpretation of copyright law serves the larger goals of intellectual

property law and competition policy.

The technological, legal, and factual complexity of this drama re-

quires familiarity with various technical terms and storylines. Appen-

29. Id.
30. See Second Amended Complaint for Copyright and Patent Infringement, Cisco Sys.

Inc v. Arista Networks, Inc., No. 14-cv-05344-BLF, 2016 WL 632000 (N.D. Cal. Feb. 17,

2016); Jeffrey Burt, Cisco Sues Networking Rival Arista in Patent Dispute, EWEEK (Dec. 5,
2014), http://www.eweek.com/networking/cisco-sues-neworking-rival-arista-in-patent-

dispute.html [https://perma.cc/P68R-PYJ3] (quoting Mark Chandler, Cisco’s Senior Vice

President and General Counsel, pointing to the copying of more than 500 multi-word com-
mand-line expressions in Arista’s EOS operating system).

31. See The Godfather: Part III (1990) — Quotes, IMDB,

http://www.imdb.com/title/tt0099674/quotes [https://perma.cc/4NN8-4W7N]; Just when I
thought I was out . . . they pull me back in, YOUTUBE, https://www.youtube.com/

watch?v=UPw-3e_pzqU (last visited Jan. 27, 2018).

Special Issue] API Copyright 313

dix A provides a glossary of key terms. Appendix B identifies the key

corporate and individual participants. Appendix C provides a compre-

hensive timeline. Appendix D summarizes the 37 APIs at issue. Ap-

pendix E traces the fair use trial.

II. COPYRIGHT PROTECTION FOR COMPUTER SOFTWARE 1.0

The first wave of computer software litigation frames the modern

API battlefront. Section A begins with a personal account, which

highlights the emergence of the API copyright issue and puts the first

wave of API copyright jurisprudence in proper perspective. Section B

sets the stage for the decade-long API copyright wars, surveying the

copyright law background, the economics of interoperability, and the

industrial backdrop. Section C traces the API copyright protection

battlefront in the courts, Congress, and the Copyright Office. It exam-

ines the major software cases. The final Section summarizes the reso-

lution of the API copyright wars and how this era reinforced the

underlying logic of the intellectual property system.

A. A Personal Account

I encountered the economic effects of legal protection for com-

puter software in a serendipitous way while pursuing graduate degrees

in economics and law in the early 1980s. While completing my Ph.D.

dissertation, I faced a familiar formatting challenge: incorporating

integral signs and other mathematical symbols into dissertation chap-

ters. Mainframe computer technology offered symbolic notation tools,

but that required periodic trips to Stanford’s Forsythe Hall to retrieve

printouts on the central laser printer. Traveling across campus only to

find a large printout with the words “SYNTAX ERROR” was frustrat-

ing. There had to be a better way.

I was excited to learn that XyQuest had introduced a computer

program, XyWrite, which coded symbolic notation for the newly in-

troduced IBM desktop personal computer (“PC”). It offered the capa-

bility of printing drafts at the touch of a button on a convenient dot

matrix printer attached to the desktop computer. Unfortunately, the

cost of the system was well beyond my means. IBM was charging

three thousand dollars for the PC.

As a microcomputer hobbyist, I was aware that IBM did not

manufacture many of the PC’s components. Tandem, for instance,

made the disk drives, while Amdec made the monitor. Advertisements

in the back of computer magazines revealed that I could assemble

much of the IBM PC for a fraction of its retail price. After IBM began

selling the stripped-down PC chassis and main boards to university

students at a steep discount, I assembled a fully functional IBM PC at

314 Harvard Journal of Law & Technology [Vol. 31

about half the retail price. To a graduate student studying microeco-

nomic theory, industrial organization, and antitrust policy, this price

differential posed a puzzle.

Reverting to my rudimentary legal training, I traced the source of

IBM’s extraordinary market power to trade secret and copyright pro-

tection over the Basic Input/Output System (“BIOS”) firmware inter-

face — not a particularly innovative piece of the overall computer

architecture, but a critical component for interoperability. Combining

law and economics, I came to see that expansive copyright protection

for computer software could undermine both rapid innovation and

realization of positive network effects, and conflicted with the logic of

the intellectual property system.32

Copyright’s foundational idea-expression doctrine and independ-

ent creation defense provided key pieces to solving the puzzle and

ultimately proved IBM’s undoing.33 Within a few years, Phoenix and

Compaq reverse engineered the IBM PC BIOS and developed much

less expensive interoperable “clones” that displaced IBM’s domi-

nance.34 Microsoft, which controlled the leading microcomputer oper-

ating systems (DOS and later Windows) and mastered the economics

of interoperability, would become the dominant computer company

over the next two decades.

B. Setting the Stage

In order to appreciate the API copyright controversy, it is im-

portant to understand the intellectual property landscape that existed

when the software marketplace took flight in the early 1980s, the eco-

nomics of interoperability, and the software industry.

32. See Menell, Tailoring Legal Protection for Computer Software, supra note 4.
33. After the emergence of home computers designed and built by start-ups for compu-

ting hobbyists in the late 1970s, IBM skyrocketed to dominance with the launch of its PC

line of microcomputers for home and business use. See Andrew Pollack, Big I.B.M. Has
Done It Again, N.Y. TIMES, Mar. 27, 1983, http://www.nytimes.com/1983/03/27/

business/big-ibm-has-done-it-again.html (last visited Jan. 27, 2018) (reporting that by 1983,

“[v]irtually every software company [was] giving first priority to writing programs for the
I.B.M. machine”); Personal Computers: and the Winner is IBM, BUS. WK., Oct. 3, 1983, at

76; IBM’s Personal Computer Spawns an Industry, BUS. WK., Aug. 15, 1983, at 88.

34. See Sam Whitmore, PC-Compatible ROM BIOS Emerges from Phoenix, PC WK.,
May 8, 1984, at 5; Leslie Helm, IBM’s ‘Clone Killers’ Don’t Scare Phoenix Technologies,

BUS. WK., Dec. 21, 1987, at 113; see generally Steven Burke, Court Support for ‘Clean

Room’ Cloning May Legalize Intel ‘386 Chip’ Work-Alikes, PC WK., Feb. 27, 1989, at 63;
Russell Moy, A Case Against Software Patents, 17 SANTA CLARA COMPUTER & HIGH

TECH. L.J. 67, 70–73 (2000) (chronicling reverse engineering of the IBM BIOS).

Special Issue] API Copyright 315

1. The Intellectual Property Backdrop: Legislation and Legislative

History

Computer software, by its very nature as written work intended to

serve utilitarian purposes, defies easy categorization within the intel-

lectual property system.

As the computer software marketplace emerged in the early

1970s, policymakers faced a dilemma. Computer software could be

expensive to develop and was easily pirated, creating a severe appro-

priability problem for the nascent, yet critical, software industry.35

Patent law, which had long served as the primary form of protection

for technological advances in machines and processes, was thought to

be too costly, time-consuming, stringent, and uncertain a means for

protecting software products against piracy.36 Copyright law had long

provided an effective means of protecting literary works from piracy,

but its doctrines excluding ideas and functional elements from protec-

tion37 raised serious questions about its appropriateness for protecting

inherently utilitarian works. Copyright’s low threshold for protec-

tion,38 complex scope,39 broad array of rights,40 and long duration41

created a risk of overbroad protection for computer software products.

The software protection controversy also emerged at an inoppor-

tune time. Congress had been working for nearly two decades to

35. See Bill Gates, An Open Letter to Hobbyists, LETTERS OF NOTE (Feb. 3, 1976),

http://www.lettersofnote.com/2009/10/most-of-you-steal-your-software.html [https://

perma.cc/H7E6-H8NK] (an angry letter written by a young Bill Gates complaining about
widespread piracy of Microsoft’s first software product — Altair BASIC, written by Bill

Gates, Paul Allen, and Monte Davidoff: “As the majority of hobbyists must be aware, most

of you steal your software. Hardware must be paid for, but software is something to share.
Who cares if people who worked on it get paid? Is this fair?”).

36. See Menell, Tailoring Legal Protection for Computer Software, supra note 4, at

1347–51.
37. See Baker v. Selden, 101 U.S. 99, 102 (1879) (differentiating the scope of copyright

and patent:

To give to the author of the book an exclusive property in the art de-
scribed therein, when no examination of its novelty has ever been of-

ficially made, would be a surprise and a fraud upon the public. That is

the province of letters-patent, not of copyright. The claim to an inven-
tion or discovery of an art or manufacture must be subjected to the

examination of the Patent Office before an exclusive right therein can

be obtained; and it can only be secured by a patent from the govern-
ment.

).

38. See Feist Publ’ns, Inc. v. Rural Tel. Service Co., Inc., 499 U.S. 340 (1991).
39. See PETER S. MENELL, MARK A. LEMLEY & ROBERT P. MERGES, INTELLECTUAL

PROPERTY IN THE NEW TECHNOLOGICAL AGE: 2017, VOL II: COPYRIGHTS, TRADEMARKS &

STATE IP PROTECTIONS, ch. IV(E) (2017).
40. See id.; 17 U.S.C. § 106(2) (2012) (codifying the right to prepare derivative works).

41. At the time, copyright protection lasted for 56 years from publication, whereas patent

protection lasted for 17 years from grant. Congress planned to expand copyright duration
significantly (to life of the author plus 50 years or 75 years in the case of entity authors) at

the time that the software protection issue arose.

316 Harvard Journal of Law & Technology [Vol. 31

overhaul the Copyright Act of 1909 and was nearing closure in the

mid-1970s.42 Faced with the challenge of fitting computer software

and other new information technologies under the existing umbrella of

intellectual property protection, Congress established the National

Commission on New Technological Uses of Copyrighted Works

(“CONTU”) to study the implications of the new technologies and

recommend revisions to federal intellectual property law.43 As a stop-

gap, Congress included computer software within the scope of “liter-

ary works” in the Copyright Act of 1976 (“1976 Act”).44 Other

provisions of the 1976 Act, however, maintained traditional exclu-

sions for ideas and functional features.45

After conducting extensive hearings and receiving expert reports,

a majority of CONTU’s blue-ribbon panel of copyright authorities and

interest group representatives concluded that the intellectual work

embodied in computer software should be protected under copyright

law, notwithstanding the fundamental principle that copyright cannot

protect “any idea, procedure, process, system, method of operation,

concept, principle, or discovery”46 and the Supreme Court’s founda-

tional decision on the idea-expression dichotomy in Baker v. Selden.47

42. See Peter S. Menell, In Search of Copyright’s Lost Ark: Interpreting the Right to Dis-

tribute in the Internet Age, 59 J. COPYRIGHT SOC’Y U.S.A. 1 (2011).

43. Act of Dec. 31, 1974, Pub. L. No. 93-573, § 201, 88 Stat. 1873 (1974).

44. The Act includes “literary works” within the class of “works of authorship.” See 17
U.S.C. § 102(a)(1) (2012). The House Report explains that “[t]he term ‘literary works’ does

not connote any criterion of literary merit or qualitative value: it includes catalogs, directo-
ries, and similar factual, reference, or instructional works and compilations of data. It also

includes computer data bases, and computer programs to the extent that they incorporate

authorship in the programmer’s expression of original ideas, as distinguished from the ideas
themselves.” H.R. REP. NO. 94-1476, at 53–54 (1976) (emphasis added).

45. See 17 U.S.C. § 102(b) (2012) (“In no case does copyright protection for an original

work of authorship extend to any idea, procedure, process, system, method of operation,
concept, principle, or discovery, regardless of the form in which it is described, explained,

illustrated, or embodied in such work.”); id. at § 101 (

Pictorial, graphic, and sculptural works’ include two-dimensional and
three-dimensional works . . . Such works shall include works of artis-

tic craftsmanship insofar as their form but not their mechanical or

utilitarian aspects are concerned; the design of a useful article, as de-
fined in this section, shall be considered a pictorial, graphic, or sculp-

tural work only if, and only to the extent that, such design

incorporates pictorial, graphic, or sculptural features that can be iden-
tified separately from, and are capable of existing independently of,

the utilitarian aspects of the article

); id. (“A ‘useful article’ is an article having an intrinsic utilitarian function that is not mere-
ly to portray the appearance of the article or to convey information. An article that is nor-

mally a part of a useful article is considered a ‘useful article.’”).

46. 17 U.S.C. § 102(b) (2012).
47. Baker v. Selden, 101 U.S. 99 (1879). See NAT’L COMM’N ON NEW TECH. USES OF

COPYRIGHTED WORKS, FINAL REPORT 1 (1979) [hereinafter CONTU REPORT]; but see id.

at 27–37 (Commissioner Hersey, dissenting) (arguing that “forcible wrenching” would be
required to protect computer programs under the copyright law); id. at 37–38 (Commission-

er Karpatkin, dissenting) (same); cf. id. at 26–27 (Commissioner Melville Nimmer, concur-

Special Issue] API Copyright 317

CONTU recommended two modest changes to the 1976 Act: (1) add-

ing a definition for computer programs — “A ‘computer program’ is a

set of statements or instructions to be used directly or indirectly in a

computer in order to bring about a certain result”; and (2) expressly

immunizing “the rightful possessor of a copy of a computer program”

from infringement liability for running and making a backup copy of

the program.48 Congress implemented CONTU’s recommendation in

its 1980 amendments to federal copyright law with a confusing word-

ing change.49

The CONTU Final Report explained that while “one is always

free to make a machine perform any conceivable process (in the ab-

sence of a patent), . . . one is not free to take another’s program,” sub-

ject to copyright’s limiting doctrines, originality and the idea-

expression dichotomy.50 The Report further explained that:

The ‘idea-expression identity’ exception provides

that copyrighted language may be copied without in-

fringing when there is but a limited number of ways

to express a given idea. This rule is the logical exten-

sion of the fundamental principle that copyright can-

not protect ideas. In the computer context this means

that when specific instructions, even though previ-

ously copyrighted, are the only and essential means

of accomplishing a given task, their later use by an-

other will not amount to an infringement.51

Thus, while recognizing important limitations on copyright pro-

tection for computer software, including the § 102(b) limitations,

Congress intended that software programmers would garner protec-

tion for their program design and coding choices to the extent that the

expression was separable from the underlying ideas. In this way, the

general programming ideas and unoriginal programming choices re-

main free for others to use while the creative effort in particularized

ring) (warning that CONTU recommendations might take copyright law “beyond the break-

ing point,” converting it into a general misappropriation law).
48. See CONTU REPORT at 12.

49. Act of Dec. 12, 1980, Pub. L. No. 96-517, 94 Stat. 3007, 3028 (1980) (codified at 17

U.S.C. §§ 101, 117 (2012)). For reasons that were not explained in the legislative history of
the 1980 amendments, Congress narrowed CONTU’s category of “rightful possessor” to

“rightful owner.” See 2 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT

§ 8.08(B)(1)(c)(ii) (2017).
50. See CONTU REPORT at 20. Courts have treated the CONTU REPORT as legislative

history to the 1980 amendments to the 1976 Act. See Vault Corp. v. Quaid Software Ltd.,

847 F.2d 255, 260–61 (5th Cir. 1988); Apple Comput., Inc. v. Franklin Comput. Corp., 714
F.2d 1240, 1252 (3d Cir. 1983).

51. CONTU REPORT at 20 (footnote omitted).

318 Harvard Journal of Law & Technology [Vol. 31

programming choices and compilations, especially in complex pro-

grams, gains protection against copyists.

2. Network Economics

The computer and software industries ushered in a revolutionary

economic era. Whereas major conventional markets — from automo-

biles to conventional appliances, raw materials, food, and consumer

products — have thrived on competition among many suppliers, com-

puter hardware and software markets tended toward one or a few

dominant players for a distinctive reason: consumers, programmers,

and system users care about network effects. They want to communi-

cate among devices and among software products running on their

devices. They care about interoperability — among hardware devices,

between software and hardware devices, and across software. They

value the investment that they have made in learning software inter-

faces. Once consumer or programmer bandwagons take hold, markets

tip decisively toward an emerging dominant platform.

Robert Metcalfe, a co-inventor of Ethernet,52 captured this dy-

namic in simple mathematical and economic terms: “the value of a

telecommunications network is proportional to the square of the num-

ber of connected users of the system.”53 Like human languages, com-

mon (and interoperable) computer languages and interfaces are

incredibly important. Such network effects have come to dominate

computer hardware, software, and Internet markets.

Network effects generated new strategies among computer hard-

ware and software companies. The ability to control interfaces

through intellectual property protection, technological protections

(such as digital rights management), and contracts became a major

part of these industries. Having innovative, competitively-priced

products continued to be important, but establishing and building a

successful software-based platform became the key to success.54

Companies could use API strategies to lock in consumers and lock out

competitors.

As my anecdote about the IBM PC illustrates,55 hardware compa-

nies with a large installed base of users could attract software devel-

opers to write for their platform, thereby generating a virtuous

feedback loop — what economists call increasing returns. As more

52. See Ethernet, WIKIPEDIA, https://en.wikipedia.org/wiki/Ethernet [https://perma.cc/

W94V-58YX].
53. See Metcalfe’s law, WIKIPEDIA, https://en.wikipedia.org/wiki/Metcalfe%27s_law

[https://perma.cc/EMQ4-8DJU].

54. See CARL SHAPIRO & HAL R. VARIAN, INFORMATION RULES: A STRATEGIC GUIDE

TO THE NETWORK ECONOMY 103–226 (1999) [hereinafter INFORMATION RULES].

55. See supra text accompanying notes 32–33.

Special Issue] API Copyright 319

software became available for the IBM PC, the functionality of the

base computer expanded, which spurred greater demand for the IBM

PC. This growth motivated programmers to write even more programs

for that platform. It was only after Phoenix and Compaq successfully

reverse-engineered and produced clean room56 versions of the IBM

BIOS that IBM’s hold on the microcomputer marketplace loosened,

resulting in robust competition and a dramatic drop in microcomputer

prices. Other computer companies used API strategies to control ac-

cess to their video game platforms, cell phone networks, replacement

parts (such as ink cartridges for printers), and graphical user interfac-

es.57

The contours of intellectual property rules governing interopera-

bility strategies — copyright, patent, trade secret, and anti-

circumvention laws, as well as the preemption of contractual re-

strictions — became a major battleground.

3. The Industrial Backdrop

Companies and programmers divided on the proper role of intel-

lectual property protection in controlling APIs. Many established

hardware and software entities, such as IBM, Digital Equipment Cor-

poration, Apple Computer Corporation, and Lotus Development Cor-

poration, in conjunction with leading industry trade organizations,

such as the Computer and Business Equipment Manufacturers Asso-

ciation (“CBEMA”) and the Software Publishers Association, advo-

cated strong copyright protection for computer interfaces.58

On the other side, the free and open source software movement,

formed through grassroots organizing among programmers and aca-

demic researchers who valued collaborative research and sharing of

software, opposed intellectual property protection for computer soft-

ware.59 These researchers believed proprietary limitations on access to

and use of software would undermine freedom and innovation.

Open source software originated in the early 1970s in the culture

of collaborative research on computer software that existed in many

software research environments.60 To perpetuate that model in the

56. A clean room process insulates programmers from copyright protected code in pro-

ducing code that accomplishes the same functions as a target program based solely on the

functional specifications. Such a process ensures a program is independently written and

hence not copied except with regard to unprotectable elements. See generally P. Anthony
Sammi, Christopher A. Lisy, & Andrew Gish, Good Clean Fun: Using Clean Room Proce-

dures in Intellectual Property Litigation, 25 INTELL. PROP. & TECH. L.J. 3 (2013); supra

text accompanying note 34.
57. See generally INFORMATION RULES, supra note 54.

58. See generally BAND & KATOH, supra note 10, at xvii, 120–22.

59. See STEVEN WEBER, THE SUCCESS OF OPEN SOURCE (2004).
60. See id.; ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR: MUSINGS ON LINUX

AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY (1999).

320 Harvard Journal of Law & Technology [Vol. 31

face of increasingly proprietary software, Richard Stallman, a former

researcher in MIT’s Artificial Intelligence Laboratory, established the

Free Software Foundation (“FSF”) to promote users’ rights to use,

study, copy, modify, and redistribute computer programs.61 Such

rights diverge from copyright law’s traditional bundle of exclusive

rights. For that reason, FSF developed the GNU (“GNU’s Not Unix!”)

General Public License (“GPL”), an unconventional licensing agree-

ment. Also referred to as “copyleft,” it is designed to prevent pro-

grammers from building proprietary limitations into “free” software.62

The GPL guarantees end users the freedoms to run, study, share

(copy), and modify the software as long as the users permit the use of

any derivative works on the same terms.63 In this way, GPL software

“infects” derivative works and spreads, like a virus, through the eco-

system — liberating computer software from proprietary rights.

Stallman set forth a task list for the development of a viable

UNIX-compatible open source operating system.64 Many program-

mers throughout the world contributed to this effort on a voluntary

basis, and by the late 1980s, they had assembled most of the compo-

nents. The project gained substantial momentum in 1991 when Linus

Torvalds developed a UNIX-compatible kernel65 dubbed “Linux.”

Torvalds structured the evolution of his component on the GNU GPL

open source model. The integration of the GNU and Linux compo-

nents resulted in a UNIX-compatible open source program, referred to

as GNU/Linux, that has since become widely used throughout the

computing world.66 In the process, it spawned a large community of

computer programmers and service organizations committed to open

source development. The growth and success of Linux brought the

open source movement into the mainstream computer software indus-

try.

61. See Richard Stallman, WIKIPEDIA, https://en.wikipedia.org/wiki/Richard_Stallman

[https://perma.cc/CS7R-VKWS].

62. See GNU General Public License, WIKIPEDIA, https://en.wikipedia.org/
wiki/GNU_General_Public_License [https://perma.cc/P6YD-ZDWR].

63. See Brian W. Carver, Share and Share Alike: Understanding and Enforcing Open

Source and Free Software Licenses, 20 BERKELEY TECH. L.J. 443 (2005).
64. See GNU Project, WIKIPEDIA, https://en.wikipedia.org/wiki/GNU_Project.

[https://perma.cc/79XW-LVJF]. The UNIX operating system, initially developed by re-

searchers at MIT, AT&T, and General Electric in the late 1960s and early 1970s, became a
foundation for modern computer operating system design. See History of Unix, WIKIPEDIA,

https://en.wikipedia.org/wiki/History_of_Unix [https://perma.cc/9FYB-GCD2]; Marshall

Kirk McKusick, Twenty Years of Berkeley Unix: From AT&T Owned to Freely Redistribut-
able, in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION 31, 36–39 (Chris

DiBona et al. eds., 1999).

65. The kernel is a computer program that constitutes the central core of a computer’s
operating system. See Kernel (operating system), WIKIPEDIA, https://en.wikipedia.org/

wiki/Kernel_(operating_system) [https://perma.cc/KEF6-NCFB].

66. For example, the Linux kernel is an integral component of the Android operating sys-
tem. See Android (operating system), WIKIPEDIA, https://en.wikipedia.org/wiki/

Android_(operating_system) [https://perma.cc/E6P6-DD2S].

Special Issue] API Copyright 321

The Computer Systems Research Group (“CSRG”) of the Univer-

sity of California, Berkeley spearheaded a parallel effort and ultimate-

ly produced another UNIX operating system derivative. Bill Joy, one

of the founders of Sun Microsystems, played a key role in the devel-

opment of Berkeley UNIX.67 In contrast to the GPL, the Berkeley

Software Distribution (“BSD”) project offered its software on a less

restrictive basis.68 The distinction between GPL and more permissive

open software licenses plays a central role in the second wave of API

copyright litigation.69

Recognizing the importance of interoperability to consumers,

competition, and cumulative innovation, a new generation of technol-

ogy companies formed the American Committee for Interoperable

Systems (“ACIS”) in the early 1990s to advocate for less protectionist

intellectual property policies for computer software.70 Sun Microsys-

tems and Oracle were among ACIS’s founding members.71 Peter M.C.

Choy, Sun’s Deputy General Counsel, served as ACIS’s Chairman. In

a letter to President-Elect William Clinton’s transition team, Choy

advocated a scope of copyright protection for computer software

“which balances incentives for developers with the public interest in

competitiveness, open systems, and incremental innovation. Sun be-

lieves, as its fellow members of ACIS believe, the over-protection of

technology under intellectual property law may lead . . . to ‘monopo-

listic stagnation’ in the industry.”72 Sun and Oracle play a central role

in the second wave of API litigation. As explored in Part III, Oracle

took a far more protective approach to copyright protection of APIs

after its acquisition of Sun.73

C. The API Copyright War

These conditions produced a multi-front war over copyright pro-

tection for computer software containing features that generate or rely

67. See Berkeley Software Distribution, https://en.wikipedia.org/wiki/Berkeley_

Software_Distribution; [https://perma.cc/LD5K-EFYK]; Bill Joy, WIKIPEDIA,

https://en.wikipedia.org/wiki/Bill_Joy. [https://perma.cc/3UN3-S6FW].
68. See Permissive Software Licence, WIKIPEDIA, https://en.wikipedia.org/wiki/

Permissive_software_licence [https://perma.cc/UZ3K-WYY5].

69. See infra notes 283, 291, 317 and accompanying text.
70. See id.; ACIS, Statement of Principles contained in Attachment to Letter from Peter

M.C. Choy to Professor Barry E. Carter (Nov. 5, 1992), https://www.ccianet.org/wp-

content/uploads/2014/10/ACIS-Letter-to-Clinton-Admin-1992.pdf [https://perma.cc/4ATT-
MYGU] (“ACIS was created . . . to support policies and principles of intellectual property

law providing for a careful balance between the goals of strong protection and rewards for

innovation, and the goals of interoperability, fair competition and open systems.”).
71. See Attachment to Letter from Peter M.C. Choy to Professor Barry E. Carter (Nov. 5,

1992), https://www.ccianet.org/wp-content/uploads/2014/10/ACIS-Letter-to-Clinton-

Admin-1992.pdf [https://perma.cc/5N3K-DSRB].
72. See id.

73. See infra text accompanying notes 370–73.

322 Harvard Journal of Law & Technology [Vol. 31

on network effects.74 The war played out across various markets —

from microcomputer operating systems to job scheduling software for

mainframe computers, mobile phone networks, user interfaces, video

game devices, printer cartridges, garage door openers, and all manner

of application programs (business systems, design programs, video

games, and spreadsheets). As the discussion below demonstrates,

nearly every major software copyright litigation involved interopera-

bility elements. Controlling the access features of software platforms

produced the large-scale profits that could justify the costs of federal

copyright litigation.

The courts faced daunting challenges in applying a complex new

statute to a rapidly developing, technologically complex industry.

Perhaps not surprisingly, they initially struggled to find the right bal-

ance. The Third Circuit’s software copyright decisions in the mid to

late 1980s put software copyright protection on a perilous path that

threatened software innovation and competition. As I wrote in 1998,

“[o]ver the course of the [next] decade, the federal courts [] reasserted

fundamental limitations on the scope of copyright, effectively exclud-

ing network features from the domain of copyright protection.”75 I

attributed the dramatic turnaround to copyright’s adaptability to tech-

nological change, scholars’ education of the courts about software

technology, network economics, and the interplay of copyright and

patent protection, and the federal judiciary’s ability “to correct false

starts and further the purposes . . . of copyright law within the broader

framework of our intellectual property system.”76

Unfortunately, it seems as if we are now at risk of repeating the

mistakes of the 1980s. To understand the confusion that has emerged

in the contemporary wave of API copyright litigation, it will be useful

to trace the historical development of software copyright jurispru-

dence, as well as subsequent developments in copyright legislation.

1. Jurisprudence

The aphorism “bad facts make bad law”77 captures the early de-

velopment of software copyright jurisprudence. Such cases produced

an inauspicious start to software copyright jurisprudence. But by the

early 1990s, courts came to better appreciate both the technical as-

74. See generally Menell, supra note 12.

75. Id. at 652.

76. Id. at 653–54.
77. See, e.g., Haig v. Agee, 453 U.S. 280, 319 (1981) (Brennan, J., dissenting) (“bad facts

make bad law”); see also N. Sec. Co. v. United States, 193 U.S. 197, 400 (1904) (Holmes,

J., dissenting) (“Great cases, like hard cases, make bad law.”); cf. Frederick Schauer, Do
Cases Make Bad Law?, 73 U. CHI. L. REV. 883, 884 (2006) (arguing that the act of deciding

cases itself under the common law makes bad law).

Special Issue] API Copyright 323

pects of computer programming and how such works fit within copy-

right law.

i. The Early Years

The first major cases to address copyright protection for interop-

erable features of computer software pitted Apple Computer Corpora-

tion, then a young, break-out microcomputer company, against

cavalier, unscrupulous competitors offering discount “interoperable”

Apple clones.78 The clone makers quickly entered the market by simp-

ly copying, bit by bit, Apple’s operating system and application pro-

grams. In one case, the competitor had the audacity to call their

competing computer system “Pineapple.”79 Not only did these com-

panies not write the computer programs, they also did not even know

what was in the source code. That enabled Apple to prove factual

copying by pointing out a suspicious similarity between Franklin

Computer’s code and Apple’s original code: the names of Apple pro-

grammers in a comment field.80

The defendants in these cases argued that copyright protection did

not extend to non-human readable (object code81) formats of computer

software and that the idea-expression doctrine barred copyright pro-

tection for operating systems. They further argued that copyright pro-

tection should not stand in the way of their selling computers that can

run programs written for the Apple II.

Given the hard work that Apple put into developing the Apple II

computer system and the bundled operating system and application

programs, the courts had little trouble validating Apple’s complaint

that verbatim copying of millions of bits of code constituted copyright

infringement. The 1976 Act, in conjunction with the CONTU Report,

78. See Apple Comput., Inc. v. Franklin Comput. Corp., 545 F. Supp. 812 (E.D. Pa.

1982), rev’d, 714 F.2d 1240 (3d Cir. 1983); Apple Comput.., Inc. v. Formula Int’l, Inc., 562
F. Supp. 775 (C.D. Cal. 1983), aff’d, 725 F.2d 521 (9th Cir. 1984).

79. Apple Comput., Inc. v. Formula Int’l, Inc., 562 F. Supp. at 777, 785 (C.D. Cal. 1983),

aff’d, 725 F.2d at 526.
80. Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d at 1245.

81. Computers manipulate data according to a set of instructions called a computer pro-

gram. At their most basic level, computer programs represent information and instruct com-
puter devices through binary information (“0” (usually connoting “off”) and “1” (usually

connoting “on”)). Strings of binary information can represent alphanumerical symbols,

words, and images. Computer programs are typically written in high level, human-readable
languages such as Fortran, C, and Java. Such “source code” programs are compiled using

particular lexical, syntactic, and semantic rules into computer-readable “object code” for

execution on a particular computer operating system. Programs written in high level, hu-
man-readable computer languages (“source code”) are compiled into computer-readable

“object code.”

324 Harvard Journal of Law & Technology [Vol. 31

clearly extended copyright protection in this circumstance.82 In that

sense, the cases were easy.

Yet, due to the “bad facts” of blatant and cavalier piracy,83 the

Third Circuit went overboard in some of its dicta. In addressing the

defendant’s interoperability argument, the court opined that “total

compatibility with independently developed application programs . . .

is a commercial and competitive objective which does not enter into

the somewhat metaphysical issue of whether particular ideas and ex-

pressions have merged.”84 However, since two entirely different pro-

grams can achieve the same “certain result[s]”85 — for example,

generate the same set of protocols needed for interoperability — the

court was not justified in making such an expansive statement about

the scope of copyright protection for computer program elements.

CONTU was clear that “[o]ne is always free to make the machine do

the same thing as it would if it had the copyrighted work placed in it,

but only by one’s own creative effort rather than by piracy.”86 Given

the verbatim copying of millions of bits of object code, there was no

need to address the interoperability issue. The defendant failed to ex-

plain which elements of the program were protectable and which were

not.

The next major software copyright appellate decision also arose

in the Third Circuit. The bad facts in this case involved a messy con-

sulting arrangement. In Whelan Associates, Inc. v. Jaslow Dental La-

boratory, Inc.,87 the owner of a dental laboratory hired a custom

software firm to develop a computer program that would organize the

bookkeeping and administrative tasks of its business. Whelan, the

principal programmer, interviewed employees about the operation of

the laboratory and then developed a program to run on the laborato-

ry’s IBM Series One computer. Under the terms of their agreement,

Whelan retained the copyright in the program and agreed to use its

best efforts to improve the program while Jaslow Laboratory agreed

to use its best efforts to market the program. Rand Jaslow, an officer

and shareholder of the laboratory, then created a version of the pro-

82. See Note, Copyright Protection of Computer Object Code, 96 HARV. L. REV. 1723,

1743–44 (1983). The emulation of particular aspects of a computer program, such as input

formats, however, raised more complex API issues. See, e.g., Synercom Tech., Inc. v. Univ.
Computing Co., 462 F. Supp. 1003, 1011–12 (N.D. Tex. 1978).

83. After reporting that “Apple estimated the ‘works in suit’ took 46 man-months to pro-

duce at a cost of over $740,000, not including the time or cost of creating or acquiring earli-
er versions of the programs or the expense of marketing the programs,” the Third Circuit

noted that Franklin’s vice-president of engineering “admitted copying each of the works in

suit from the Apple programs” because “it was not feasible for Franklin to write its own
operating system programs.” Apple, 714 F.2d at 1245.

84. See id. at 1253.

85. See CONTU REPORT, at 12, 20.
86. See id. at 21.

87. 797 F.2d 1222 (3d Cir. 1986).

Special Issue] API Copyright 325

gram that would run on other computer systems. Whelan sued for

copyright infringement.

At trial, the evidence showed that the Jaslow program did not lit-

erally copy Whelan’s code, but there were overall structural similari-

ties between the two programs. As a means of distinguishing

protectable expression from unprotectable idea, the court reasoned:

[T]he purpose or function of a utilitarian work

would be the work’s idea, and everything that is not

necessary to that purpose or function would be part
of the expression of the idea. Where there are many

means of achieving the desired purpose, then the par-

ticular means chosen is not necessary to the purpose;

hence, there is expression, not idea.88

In applying this rule, the court defined the idea as “the efficient

management of a dental laboratory,” for which countless ways of ex-

pressing the idea would be possible.89 Drawing the idea-expression

dichotomy at such a high level of abstraction implies an expansive

scope of copyright protection if all implementations of the idea consti-

tute protectable expression. Furthermore, the court’s conflation of

merger analysis and the idea-expression dichotomy implicitly allows

copyright protection of procedures, processes, systems, and methods

of operation that are expressly excluded under § 102(b).90

Although the case did not directly address copyright protection

for interoperable features of computer code, the court’s mode of anal-

ysis expanded the scope of copyright protection for all aspects of

computer programs. If everything below the general purpose of the

program was protectable under copyright law, then it would follow

that particular protocols were protectable because there would be oth-

er ways of serving the same general purpose of the program. Such a

result would effectively bar competitors from developing interopera-

ble programs and computer systems.

The next appellate decision to address the scope of protection for

computer software also involved “bad facts”: the “rogue employee”

88. Id. at 1236 (emphasis in original; citations omitted).

89. Id.

90. Lawyers representing plaintiffs in the early major cases embraced the Whelan deci-
sion. They analogized computer software to literary and dramatic works. See Anthony L.

Clapes, Patrick Lynch & Mark R. Steinberg, Silicon Epics and Binary Bards: Determining

the Proper Scope of Copyright Protection for Computer Programs, 34 U.C.L.A. L. REV.
1493 (1987) (counsel for IBM and Lotus); Arthur Miller, Copyright Protection for Comput-

er Programs, Databases, and Computer-Generated Works: Is Anything New Since

CONTU?, 106 HARV. L. REV. 977 (1993) (counsel for Lotus); Jack Brown, ‘Analytical
Dissection’ of Copyrighted Computer Software-Complicating the Simple and Confounding

the Complex, 25 ARIZ. ST. L.J. 801 (1993) (counsel for Apple Computer Corp.)

326 Harvard Journal of Law & Technology [Vol. 31

scenario.91 Johnson Controls had developed automated process con-

trol systems for wastewater treatment plants. Several of its former

employees who were intimately familiar with this software formed

Phoenix Control Systems, a competing company offering similar

software products and services. After Johnson Controls sued for copy-

right infringement, misappropriation of trade secrets, unfair competi-

tion, trade libel, and interference with contractual relations, the district

court granted a preliminary injunction prohibiting Phoenix Control

Systems from copying, distributing, preparing derivatives of, publish-

ing, or representing that they had the ability to use Johnson Controls’

computer software.

Based on a detailed special master report identifying various simi-

larities between the parties’ programs, the district court concluded that

there was ample basis for finding substantial similarity with Johnson

Controls’s protected expression.92 In affirming the grant of the prelim-

inary injunction, the Ninth Circuit explained that “[w]hether the non-

literal components of a program, including the structure, sequence and

organization and user interface, are protected depends on whether, on

the particular facts of each case, the component in question qualifies

as an expression of an idea, or an idea itself.”93 The court’s terse anal-

ysis notes the sophistication of Johnson Controls’ program and com-

ments that the creativity in the structure of the program “will no doubt

be revisited at trial.”94 The decision does not refer to interoperability

or APIs. It concludes merely that “[n]onliteral components of com-

puter software may be protected by copyright where they constitute

expression, rather than ideas.”95 The decision neither cites the Whelan

case, which was decided more than two years prior to the Ninth Cir-

cuit argument, nor adopts its expansive analytic framework.

ii. The Modern Software Copyright Era

The Whelan idea/expression test was roundly criticized by com-

mentators,96 and other courts began developing alternative approaches

to the scope of copyright protection that better comported with the

fundamental principles of copyright protection. A few months after

91. See Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173 (9th Cir.

1989).

92. Id. at 1175–76.
93. Id. at 1175.

94. Id. at 1176.

95. Id. at 1177.
96. See, e.g., LaST Frontier Software Report, supra note 5, at 20–21; Menell, An Analysis

of the Scope of Copyright Protection for Application Programs, supra note 4, at 1074; John

Englund, Idea, Process, or Protected Expression?: Determining the Scope of Copyright
Protection of the Structure of Computer Programs, 88 MICH. L. REV. 866, 881 (1990); 4

MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT § 13.03(F)(1) (2017).

Special Issue] API Copyright 327

the Whelan decision, the Fifth Circuit confronted a similar claim of

copyright infringement based upon structural similarities between two

programs designed to provide cotton growers with accounting ser-

vices, information regarding cotton prices and availability, and a

means for conducting cotton transactions electronically.97 In declining

to follow the Whelan approach, the court found that the similarities in

the programs were dictated largely by standard practices in the cotton

market — what the court called “externalities” — such as the “cotton

recap sheet” for summarizing basic transactional information. These

externalities constituted unprotectable ideas.98

In 1992, the Second Circuit adapted Judge Learned Hand’s semi-

nal abstraction-filtration-comparison99 test to computer software anal-

ysis.100 Like many of the early software copyright cases, Computer

Associates v. Altai again involved the rogue employee scenario. But

unlike the Third Circuit in Franklin and Whelan, the Second Circuit

focused on the foundational principles undergirding the intellectual

property system and avoided loose and expansive dicta.

Computer Associates (“CA”), a leading mainframe software pro-

vider, had developed SCHEDULER, a job scheduling program101 that

worked with IBM mainframe computers. Part of the success of this

program was that it had a sub-component, called ADAPTER, which

interoperated with any of the three IBM mainframes (DOS/VSE,

MVS, and VM/CMS). As a result, the user did not need to customize

her programs for each of the IBM mainframes. ADAPTER ensured

that programs written for SCHEDULER would run on any of the three

IBM mainframes.

Altai was developing its own job scheduling software for the IBM

mainframes, called OSCAR. It hired Claude Arney, a former CA pro-

grammer. Unbeknownst to Altai’s management, Arney copied thirty

percent of OSCAR’s code from CA’s ADAPTER program into Al-

tai’s ZEKE program.102 When Altai management learned of the copy-

ing, the company initiated a clean room103 rewrite of the program.

Altai accepted responsibility for copyright infringement based on

Arney’s misdeeds and was ordered to pay $364,444 in damages.104

97. Plains Cotton Coop. Assoc. v. Goodpasture Comput. Serv., Inc., 807 F.2d 1256 (5th

Cir. 1987).
98. Id. at 1262. The court found persuasive the decision in Synercom Tech., Inc. v. Univ.

Computing Co., 462 F. Supp. 1003, 1013 (N.D. Tex. 1978), which analogized the “input

formats” of a computer program (the organization and configuration of information to be
inputted into a computer) to the “figure-H” pattern of an automobile stick shift.

99. See Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930).

100. See Comput. Assocs. Int’l v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).
101. See Job Scheduler, WIKIPEDIA, https://en.wikipedia.org/wiki/Job_scheduler

[https://perma.cc/T8MG-EG6G].

102. Altai, 982 F.2d at 699.
103. See supra note 56 (defining clean room).

104. Altai, 982 F.2d at 696.

328 Harvard Journal of Law & Technology [Vol. 31

Altai did not challenge this ruling, but sought to market the re-

vised clean room version of OSCAR. CA claimed that this version

was also infringing due to structural similarities at various levels, such

as flow charts, inter-modular relationships, parameter lists, and mac-

ros. The district court criticized Whelan’s “simplistic test” for deter-

mining similarity between computer programs.105 It rejected the

notion that there is but one idea per program and that as long as there

were alternative ways of expressing that one idea, copyright law pro-

tected any particular version. Focusing on the various levels of the

computer programs at issue, the court determined that the similarities

between the programs were dictated by external factors — such as the

interface specifications of the IBM operating system and the demands

of functionality — and hence no protected code was infringed.106

On appeal, the Second Circuit fleshed out a detailed analytical

framework for determining copyright infringement of computer code:

In ascertaining substantial similarity . . . a court

would first break down the allegedly infringed pro-

gram into its constituent structural parts. Then, by

examining each of these parts for such things as in-

corporated ideas, expression that is necessarily inci-

dental to those ideas, and elements that are taken

from the public domain, a court would then be able

to sift out all non-protectable material. Left with a

kernel, or perhaps kernels, of creative expression af-

ter following this process of elimination, the court’s

last step would be to compare this material with the

structure of an allegedly infringing program.107

The court’s abstraction-filtration-comparison test recognized that

an idea could exist at multiple levels of a computer program and not

solely at the most abstract level. Furthermore, it set the ultimate com-

parison not between the programs as a whole, but between the pro-

tectable elements of the plaintiff’s program and the allegedly

infringing program. Of most importance with regard to fostering in-

teroperability, the court held that copyright protection did not extend

to those program elements where the programmer’s “freedom to

choose” is:

[C]ircumscribed by extrinsic considerations such as

(1) the mechanical specifications of the computer on

which a particular program is intended to run; (2)

105. Comput.. Assocs. Int’l v. Altai, Inc., 775 F. Supp. 544, 558 (E.D.N.Y. 1991).
106. Id. at 558–62.

107. Altai, 982 F.2d at 706.

Special Issue] API Copyright 329

compatibility requirements of other programs with

which a program is designed to operate in conjunc-

tion; (3) computer manufacturers’ design standards;

(4) demands of the industry being serviced; and (5)

widely accepted programming practices within the

computer industry.108

Directly rejecting the dictum in Apple v. Franklin,109 the Second

Circuit recognized that external factors such as interface specifica-

tions, de facto industry standards, and accepted programming practic-

es are not protectable under copyright law. The formulation of the

Second Circuit test judges these external factors at the time of the al-

legedly infringing activities (that is, ex post), not at the time that the

first program is written.110

Commentators warmly embraced the Altai decision,111 and the

abstraction-filtration-comparison approach has been universally

adopted by the courts.112

The Altai case addressed programmers’ freedom to write code to

interoperate with APIs established by a third party: in that case, by

IBM. IBM had not challenged either CA’s or Altai’s use of its inter-

face specifications. It welcomed other companies developing software

108. Id. at 709–10. The court observed that “[w]hile, hypothetically, there might be a

myriad [sic] ways in which a programmer may effectuate certain functions within a pro-
gram — i.e., express the idea embodies in a given subroutine — efficiency concerns may so

narrow the practical range of choice as to make only one or two forms of expression worka-
ble operations.” Id. at 708.

109. See Apple Comput. v. Franklin Comput. Corp., 714 F.2d 1240, 1244. (3d Cir. 1983).

110. The court emphasized that the first to write a program for a particular application
should not be able to “‘lock up’ basic programming techniques as implemented in programs

to perform particular tasks.” 982 F.2d at 712 (quoting Menell, An Analysis of the Scope of

Copyright Protection for Application Programs, supra note 4, at 1087).
111. See David Bender, Computer Associates v. Altai: Rationality Prevails, 9(8) THE

COMPUTER LAWYER 1 (Aug. 1992); Menell, The Challenges of Reforming Intellectual

Property Protection for Computer Software, supra note 4, at 2652; Mark A. Lemley, Con-
vergence in the Law of Software Copyright?, 10 HIGH TECH. L.J. 1 (1995).

112. See Menell, supra note 22, at 84–85; Lemley, supra note 111 (collecting cases). In

Gates Rubber v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836–43 (10th Cir. 1993), the Tenth
Circuit expressly expanded the range of external factors to be used in filtering out unpro-

tectable elements to include hardware standards and mechanical specifications, software

standards and compatibility requirements, industry programming practices, and practices
and demands of the industry being serviced. The court also noted that processes used in

designing a computer system, or components therein (e.g., modules, algorithms), must also

be filtered out as unprotectable under § 102(b). While not ruling that interface specifications
are uncopyrightable as a matter of law, the Eleventh Circuit’s decision in Bateman v. Mne-

monics, Inc., 79 F.3d 1532, 1547 (11th Cir. 1996), held that “external considerations such as

compatibility may negate a finding of infringement.” The court commented that “[i]t is
particularly important to exclude methods of operation and processes from the scope of

copyright in computer programs because much of the content of computer programs is

patentable. Were we to permit an author to claim copyright protection for those elements of
the work that should be the province of patent law, we would be undermining the competi-

tive principles that are fundamental to the patent system.” Id. at 1542 n.21.

330 Harvard Journal of Law & Technology [Vol. 31

for its mainframes. Thus, the case did not specifically address whether

an API developer could assert a copyright infringement claim based

on unauthorized use of its own interface specifications. That issue

would emerge in a series of cases involving video games and spread-

sheets.

The “bad facts” pattern continued in Atari Games Corp. v. Nin-
tendo of America,113 an early video game interoperability case. Nin-

tendo embedded software security code in a patented computer chip

on its entertainment console and authorized game cartridges. Nintendo

kept the lock-out code secure by distributing it only on computer

chips. Thus, the code was embedded in microprocessor chip layers

that could not be readily decrypted. Atari Games sought to decrypt

that code so that it could sell video games for the Nintendo game con-

sole without having to license the proprietary chip. After failing to

hack the chip, Atari Games gained access to Nintendo’s source code

from the Copyright Office based on a misleading assertion that it was

facing actual or prospective litigation.114 With the source code in hand

and in violation of Copyright Office regulations,115 Atari Games deci-

phered the lock-out code and developed an interoperable program.

After finding that Atari Games copied “more [computer code] than

was needed to make a game work on the [Nintendo] console,” the

district court granted a preliminary injunction enjoining Atari Games

from manufacturing or distributing Nintendo’s computer program.116

Atari Games appealed the decision to the Federal Circuit.117 Ap-

plying Ninth Circuit law, the Federal Circuit affirmed the grant of the

preliminary injunction. The court further explained that:

Nintendo seeks to protect the creative element of its

program beyond the literal expression used to effect

the unlocking process. The district court defined the

unprotectable . . . idea or process as the generation of

a data stream to unlock a console. This court discerns

no clear error in the district court’s conclusion. The

113. 18 U.S.P.Q.2d 1935 (N.D. Cal. 1991), aff’d, 975 F.2d 832 (Fed. Cir. 1992).

114. See Atari, 975 F.2d at 841.

115. Requesters agree “not to copy . . . the material to be inspected.” See U.S.
COPYRIGHT OFFICE, COMPENDIUM OF COPYRIGHT OFFICE PRACTICES II § 1902.01,

http://www.copyright.gov/history/comp/compendium-two-1988.pdf [https://perma.cc/7P3T-

CXGL]; see also 37 U.S.C. § 201.2(d)(2) (as amended through July 1, 1986) (permitting
“reproduction only if: (1) the copyright owner grants permission, (2) a court orders repro-

duction, or (3) . . . (ii) The Copyright Office receives a written request from an attorney on

behalf of either the plaintiff or defendant in connection with litigation, actual or prospective,
involving the copyrighted work”).

116. Atari, 18 U.S.P.Q.2d at 1940.

117. The patent infringement claims in the case vested exclusive appellate jurisdiction
with the Federal Circuit. See Atari Games Corp. v. Nintendo of Am., Inc., 897 F.2d 1572,

1575 (Fed. Cir. 1990).

Special Issue] API Copyright 331

unique arrangement of computer program expression

which generates that data stream does not merge

with the process so long as alternate expressions are

available. Formula Int’l, 725 F.2d at 525. In this

case, Nintendo has produced expert testimony show-

ing a multitude of different ways to generate a data

stream which unlocks the [Nintendo] console.118

The Federal Circuit implies that Atari Games could have avoided

copyright infringement had it gained access to the lock-out code legit-

imately and independently written the implementing code: “[w]hen

the nature of a work requires intermediate copying to understand the

ideas and processes in a copyrighted work, that nature supports a fair

use for intermediate copying. Thus, reverse engineering object code to

discern the unprotectable ideas in a computer program is a fair

use.”119 The clear implication is that the particular lock-out code is an

unprotectable idea, because there is no other expression that achieves

the same function. Nonetheless, the court rejected Atari Games’ fair

use defense because Atari Games procured Nintendo’s source code

unlawfully.120 The court further chastised Atari Games for replicating

more computer code from the unlock chip in its game cartridges than

was necessary to accomplish the unlock function.121

118. Atari, 975 F.2d at 840.
119. The Federal Circuit emphasized the principle that the fair use doctrine generally

“permits an individual in rightful possession of a copy of a work to undertake necessary
efforts to understand the work’s ideas, processes, and methods of operation.” Id. at 842. The

court noted that “[a]n author cannot acquire patent-like protection by putting an idea, pro-

cess, or method of operation in an unintelligible format and asserting copyright infringement
against those who try to understand that idea, process, or method of operation.” Id. Apply-

ing these principles, the court reasoned that “[w]hen the nature of a work requires interme-

diate copying to understand the ideas and processes in a copyrighted work, that nature
supports a fair use for intermediate copying. Thus, reverse engineering object code to dis-

cern the unprotectable ideas in a computer program is a fair use.” Id. at 843.

120. Id. at 841–44 (“To invoke the fair use exception, an individual must possess an au-
thorized copy of a literary work.” (emphasis added)).

121. Id. at 843–45 (“Any reproduction of protectable expression must be strictly neces-

sary to ascertain the bounds of protected information within the work.”). The court notes
that:

Nintendo modified its . . . chip program in 1987. This modification

deleted some instructions from the original [] program. Nonetheless
the [Atari Games] program contains instructions equivalent to those

deleted from the original [Nintendo] program. These unnecessary in-

structions strongly suggest that the [Atari Games] program is substan-
tially similar to the [Nintendo] program. See, e.g., M. Kramer Mfg.

Co. v. Andrews, 783 F.2d 421, 446 (4th Cir. 1986) (“Courts have con-

sistently viewed ‘common errors’ as strongest evidence of copy-
ing.”)

Id. at 845. This passage indicates that the Federal Circuit conflated factual copying (which

focuses on probative similarity) with legal copying (which focuses on substantial similarity
of protected expression). See Johnson v. Gordon, 409 F.3d 12 (1st Cir. 2005); NIMMER ON

COPYRIGHT, supra note 96, at § 13.03(A) (explicating the distinction between probative and

332 Harvard Journal of Law & Technology [Vol. 31

The Ninth Circuit’s decision later that year in Sega Enterprises

Ltd. v. Accolade122 expressly recognized the legitimacy of deciphering

and copying particular lock-out codes for purposes of developing in-

teroperable products. Like Nintendo, Sega developed a successful

video game platform called Genesis for which it licensed access to

video game developers. Accolade, a video game manufacturer, want-

ed to distribute versions of its game on the Genesis platform. It did

not, however, want to limit distribution exclusively to Genesis, as

Sega required. Rather than license access to Sega’s code, Accolade

reverse engineered the access code through a painstaking effort that

entailed making hundreds of intermediate copies of Sega’s computer

code. Accolade then incorporated only those code elements that were

necessary to achieve interoperability with the Genesis platform into

Accolade game cartridges.123 Ultimately, the amount copied was only

about 25 bytes, placed into games containing between 500,000 and

1,500,000 bytes.124

Sega sued Accolade for copyright and trademark infringement.125

In view of the relatively small amount of Sega code in the Accolade

game cartridges, Sega focused its copyright claim on the making of

intermediate copies of its full computer program during the reverse

engineering process. The district court rejected Accolade’s argument

that such intermediate copies constituted fair use and granted a pre-

liminary injunction.126

The Ninth Circuit reversed the district court decision, holding that

“disassembly of object code in order to gain an understanding of the

ideas and functional concepts embodied in the code is a fair use that is

privileged by section 107 of the Act.”127 The court determined that the

policies underlying the Copyright Act authorize disassembly of copy-

righted object code and the making of intermediate copies to identify

elements of code that are not protected by copyright law.128 In reach-

ing this conclusion, the Ninth Circuit ruled that the “functional re-

quirements for compatibility with the Genesis [video game console

substantial similarity). In any case, without seeing how much code was copied into the Atari

Games’ video games, it is not possible to assess the Federal Circuit’s assertion that Atari
Games’ copying of Nintendo code constituted substantial similarity of protected expression.

122. 977 F.2d 1510 (9th Cir. 1993).

123. Id. at 1516.
124. See id.

125. The basis for the trademark claim was that the initialization code prompted a visual

display for approximately three seconds that read “PRODUCED BY OR UNDER
LICENSE FROM SEGA ENTERPRISES LTD.” Id. at 1515–16.

126. See Sega Enters. v. Accolade, Inc., 785 F. Supp. 1392, 1397–1400 (N.D. Cal. 1992),

rev’d, 977 F.2d 1510 (9th Cir. 1993).
127. Sega, 977 F.2d at 1517.

128. See id.

Special Issue] API Copyright 333

are] aspects of Sega’s programs that are not protected by copyright.

17 U.S.C. § 102(b).”129

In discussing the nature of the copyrighted work, the second fair

use factor, the Ninth Circuit addressed the application of the idea-

expression dichotomy to computer code. The court rejected the

Whelan approach as “simplistic and overbroad” and endorsed the Al-
tai approach as the appropriate framework.130 “Under a test that

breaks down a computer program into its component subroutines and

sub-subroutines and then identifies the idea or core functional element

of each, such as the test recently adopted by the Second Circuit in

[Altai], many aspects of the program are not protected by copy-

right.”131 In explaining why disassembly and reproduction of object

code constitutes fair use, the court held that the “functional specifica-

tions” of a computer program are unprotectable.132 In Sega, such spec-

ifications operated the lock-out functionality. Thus, the court held that

the particular code or process for interoperating with a copyrighted

computer program was not protected by copyright law.133

The Ninth Circuit based its analysis on the architecture of the in-

tellectual property system:

If disassembly of copyrighted object code is per se

an unfair use, the owner of the copyright gains a de

facto monopoly over the functional aspects of his

work — aspects that were expressly denied copy-

right protection by Congress. 17 U.S.C. § 102(b). In

order to enjoy a lawful monopoly over the idea or

functional principle underlying a work, the creator of

the work must satisfy the more stringent standards

imposed by the patent laws. Bonito Boats, Inc. v.

Thunder Craft Boats, Inc., 489 U.S. 141, 159–64

(1989). Sega does not hold a patent on the Genesis

console.134

The Ninth Circuit reaffirmed and expanded the Sega analysis in

Sony Computer Entertainment, Inc. v. Connectix Corp.,135 further ce-

129. Id. at 1522.

130. See id. at 1524–25.

131. See id. at 1525.
132. See id. at 1526.

133. The court notes that its fair use analysis “does not, of course, insulate Accolade from

a claim of copyright infringement with respect to its finished products. Sega has reserved
the right to raise such a claim, and it may do so on remand.” See id. at 1528. The fact that

Accolade copied only 25 bytes of code needed for interoperability explains why the issue

was never pursued.
134. See id.

135. 203 F.3d 596 (9th Cir. 2000).

334 Harvard Journal of Law & Technology [Vol. 31

menting the foundational premise that copying code and processes

necessary for interoperability does not constitute copyright infringe-

ment.

The Northern District of California and the Ninth Circuit applied

the Altai framework to the graphical user interface features of a com-

puter program in Apple Computer, Inc. v. Microsoft Corp.136 Apple

alleged that Microsoft’s Windows operating system infringed Apple’s

copyrights in the desktop graphical user interface for its Macintosh

computer system. The copyright issue was muddied by the existence

of a licensing agreement authorizing the defendants to use aspects of

Apple’s graphical user interface. The court determined, however, that

the licensing agreement was not a complete defense to the copyright

claims and therefore undertook an analysis of the scope of copyright

protection for a large range of audiovisual elements of computer

screen displays.137

In framing the analysis, the district court expressly recognized the

relevance of network externalities and the cumulative nature of inno-

vation to the scope of copyright protection:

Copyright’s purpose is to overcome the public goods

externality resulting from the non-excludability of

copier/free riders who do not pay the costs of crea-

tion. Peter S. Menell, An Analysis of the Scope of
Copyright Protection for Application Programs, 41

STAN. L. REV. 1045, 1059 (1989). But overly inclu-

sive copyright protection can produce its own nega-

tive effects by inhibiting the adoption of compatible

standards (and reducing so-called ‘network externali-

ties’). Such standards in a graphical user interface

would enlarge the market for computers by making it

easier to learn how to use them. Id. at 1067–70.

Striking the balance between these considerations,

especially in a new and rapidly changing medium

such as computer screen displays, represents a most

ambitious enterprise. Cf. Lotus Dev. Corp. v. Paper-

back Software Int’l, 740 F. Supp. 37 (D. Mass.

1990).

While the Macintosh interface may be the fruit

of considerable effort by its designers, its success is

the result of a host of factors, including the decision

136. 799 F. Supp. 1006 (N.D. Cal. 1992), aff’d in part, rev’d in part, 35 F.3d 1435 (9th

Cir. 1994).

137. See Apple Comput., Inc. v. Microsoft Corp., 709 F. Supp. 925, 930 (N.D. Cal.
1989); Apple Comput., Inc. v. Microsoft Corp., 717 F. Supp. 1428 (N.D. Cal. 1989); Apple

Comput., Inc. v. Microsoft Corp., 759 F. Supp. 1444 (N.D. Cal. 1991).

Special Issue] API Copyright 335

to use the Motorola 68000 microprocessor, the tacti-

cal decision to require uniform application interfac-

es, and the Macintosh’s notable advertising. And

even were Apple to isolate that part of its interface's

success owing to its design efforts, lengthy and con-

certed effort alone ‘does not always result in inher-

ently protectible [sic] expression.’ [quoting

Computer Associates v. Altai, 982 F.2d at 711.]

By virtue of having been the first commercially

successful programmer to put these generalized fea-

tures together, Apple had several years of market

dominance in graphical user interfaces until Mi-

crosoft introduced Windows 3.0, the first DOS-based

windowing program to begin to rival the graphical

capability of the Macintosh To accept Apple’s

‘desktop metaphor’/‘look and feel’ arguments would

allow it to sweep within its proprietary embrace not

only Windows and NewWave but, at its option, also

other desktop graphical user interfaces which employ

the standardized features of such interfaces, and to

do this without subjecting Apple’s claims of copy-

right to the scrutiny which courts have historically

employed. Apple’s copyrights would hold for pro-

grams in existence now or in the future — for dec-

ades. One need not profess to know for sure where

should lie the line between expression and idea, be-

tween protection and competition to sense with con-

fidence that this would afford too much protection

and yield too little competition.

The importance of such competition, and thus

improvements or extensions of past expressions,

should not be minimized. The Ninth Circuit has long

shown concern about the uneasy balance which cop-

yright seeks to strike:

What is basically at stake is the extent

of the copyright owner’s monopoly —

from how large an area of activity did

Congress intend to allow the copy-

right owner to exclude others?138

138. Apple, 799 F. Supp. at 1025–26 (quoting Herbert Rosenthal Jewelry Corp. v. Kalpa-

kian, 446 F.2d 738, 742 (9th Cir. 1971)).

336 Harvard Journal of Law & Technology [Vol. 31

The court found that all of the alleged similarities between Ap-

ple’s works and Windows not authorized by the licensing agreement

were either not protectable or subject to at least one of the limiting

doctrines.139 As a result, the court applied the “virtual identity” stand-

ard in comparing the works as a whole140 and determined that no in-

fringement had occurred.141 On appeal, the Ninth Circuit affirmed the

district court’s dissection of the work in question to determine which

elements were protectable, its filtering out of unprotectable elements,

and its application of the “virtual identity” standard in this context.142

The copyrightability of command systems for computer software

arose most directly in litigation surrounding spreadsheet technology.

Building upon the success of the VisiCalc program developed for the

Apple II computer, Lotus Corporation marketed an enhanced and

faster operating spreadsheet program incorporating many of Visi-

Calc’s features and commands into its 1-2-3 program for the IBM PC

platform. Lotus 1-2-3 quickly became the market leader for spread-

sheets running on IBM and IBM-compatible machines, and

knowledge of the program became a valuable employment skill in the

accounting and management fields. As illustrated in Figure 1, the 1-2-

3 command hierarchy was particularly attractive because it provided a

logical structuring of more than two hundred commands. It also ena-

bled users to automate particular accounting and business planning

functions with customized programs called macros. Businesses and

users increasingly became “locked in” to the 1-2-3 command structure

as their human capital investments in learning the system and library

of macros grew.143 By the late 1980s, software developers seeking to

enter the spreadsheet market could not ignore the large premiums that

many consumers placed on being able to use their investments in the

1-2-3 system in a new spreadsheet environment, even when a new

spreadsheet product offered significant technological improvements

over the Lotus spreadsheet.144

139. See id. at 1025–42.

140. The Ninth Circuit developed the heightened “virtual identity” standard for evaluat-

ing thinly protected works such as compilations of simple, narrowly protected elements,
such as the visual layout of a day planner (comprising a calendar and ruled lines), see Har-

per House, Inc. v. Thomas Nelson, Inc., 889 F.2d 197 (9th Cir. 1989), and the audiovisual

elements for a karate videogame, Data East USA, Inc. v. Epyx, Inc., 862 F.2d 204 (9th Cir.
1988).

141. See 799 F. Supp. at 1042–47.

142. Apple Comput., Inc. v. Microsoft Corp., 35 F.3d 1435 (9th Cir. 1994).
143. See Neil Gandal, Hedonic Price Indexes for Spreadsheets and an Empirical Test for

Network Externalities, 25 RAND J. ECON. 160 (1994).

144. See Mike Hogan, Product Outlook: Fresh from the Spreadsheet Oven, PC WORLD,
Feb. 1988, at 100–02; Lawrence J. Magid, ‘Surpass’ Spreadsheet Program Lives Up to

Name, Beats Lotus 1-2-3, WASH. POST, Apr. 25, 1988, at 26.

Special Issue] API Copyright 337

Figure 1. Lotus 1-2-3 Menu Command Hierarchy.

In the mid-1980s, Paperback Software International introduced a

spreadsheet program called VP-Planner that largely emulated the op-

eration of the Lotus 1-2-3 product.145 Paperback was careful to ensure

that the program code did not copy the 1-2-3 source or object code.

Nonetheless, Lotus sued Paperback for copyright infringement, alleg-

ing that VP-Planner inappropriately copied the 1-2-3 menu structure,

which included the choice of command terms, the structure and order

of those terms, their presentation on the screen, and the long prompts.

Relying on the Third Circuit’s Whelan framework and hence focusing

simply upon whether such elements could be expressed in a variety of

ways, Judge Keeton of the District of Massachusetts found for Lotus.

Facing bankruptcy, Paperback agreed not to appeal the judgment as

part of a settlement.146

After three years of intensive development efforts, Borland Inter-

national, developer of several successful software products including

Turbo Pascal and Sidekick, introduced Quattro Pro, its entry into the

spreadsheet market. Unlike Paperback’s VP-Planner spreadsheet,

which offered little beyond the 1-2-3 product, Quattro Pro made sub-

stantial design and operational improvements and earned accolades in

the computer product review magazines.147 Also unlike VP-Planner,

Quattro Pro offered a new interface for its users, which many pur-

chasers of spreadsheets preferred over the 1-2-3 interface. Nonethe-

145. See Tracy R. Licklider, Ten Years of Rows and Columns, BYTE, Dec. 1989, at 324.

146. See Andrew Ould, Legal Dispute Kept Paperback from Lotus Appeal, PC WEEK,

Jan. 21, 1991, at 138.
147. See Spreadsheet, Borland International Inc.’s Quattro Pro for Windows and Quat-

tro Pro 4.0 for DOS, PC-COMPUTING, Dec. 1992, at 140 (“No doubt about it: Quattro Pro

for DOS is the best DOS spreadsheet there is. Period.”); Borland’s Quattro Pro Tops 2.5
Million Units Shipped, BUS. WIRE, Jul. 1, 1992 (“Since its introduction in October 1989,

Quattro Pro has won an unprecedented 42 industry awards and honors worldwide from users

and product reviewers.”); Software Review, Quattro Pro 4.0; Borland International Inc.’s
Spreadsheet Software, COMPUTER SHOPPER, Jun. 1992, at 536 (“Quattro Pro 4.0 simply

shames other DOS-based spreadsheets, especially Lotus 1-2-3 r2.”).

338 Harvard Journal of Law & Technology [Vol. 31

less, because of the large number of users who were already familiar

with the 1-2-3 command structure and who had made substantial in-

vestments in developing macros to run on the 1-2-3 platform, Borland

considered it essential to offer an operational mode based on the 1-2-3

command structure as well as macro compatibility. Unlike VP-

Planner, Borland’s visual representation of the 1-2-3 command mode

substantially differed from the 1-2-3 screen displays.

To clarify the legal status of its product, Borland brought a de-

claratory judgment action in California. Through astute jurisdictional

maneuvering, Lotus consolidated the Borland case with the Paperback

case before Judge Keeton. After protracted litigation,148 Judge Keeton

found for Lotus. Following the Whelan framework, he held that a

menu command structure was protectable if there were many such

structures theoretically available. He also found that Borland was not

permitted to achieve macro compatibility with the 1-2-3 product, dis-

tinguishing the treatment of external constraints noted in the Altai
decision because such constraints had to exist when the first program

was created. Thus, Judge Keeton effectively ruled that constraints

governing the design of computer systems must be analyzed ex ante

(based on technical considerations at the time the first program is

written) and not ex post (after the market has operated to establish a

de facto standard).

By the time Borland’s appeal reached the First Circuit, the Sec-

ond Circuit’s Altai decision had received a favorable reception in pro-

fessional and academic journals149 and its approach had been adopted

by several courts.150 The Ninth Circuit and the Federal Circuit had

issued the Sega and Atari Games decisions, further emphasizing the

legitimacy of developing interoperable systems. In addition, the Su-

preme Court’s decision in Feist Publications, Inc. v. Rural Telephone
Service Co.,151 denying copyright protection for alphabetically orga-

nized telephone directories for lack of originality, repudiated the

“sweat of the brow” doctrine152 and reaffirmed the “long recognized”

148. See Lotus Dev. Corp. v. Borland Int’l, Inc., 788 F. Supp. 78 (D. Mass. 1992); Lotus

Dev. Corp. v. Borland Int’l, Inc., 799 F. Supp. 203 (D. Mass. 1992); Lotus Dev. Corp. v.
Borland Int’l, Inc., 831 F. Supp. 202 (D. Mass. 1993); Lotus Dev. Corp. v. Borland Int’l,

Inc., 831 F. Supp. 223 (D. Mass. 1993).

149. See Bender, supra note 111, at 1; Menell, The Challenges of Reforming Intellectual
Property Protection for Computer Software, supra note 4, at 2652; Lemley, supra note 111.

150. See Apple Comput., Inc. v. Microsoft Corp., 35 F.3d 1435, 1445 (9th Cir. 1994);

Eng’g Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335, 1342–43 (5th Cir. 1994);
Gates Rubber v. Bando Chem. Indus., Ltd., 9 F.3d 823, 841 (10th Cir. 1993).

151. 499 U.S. 340 (1991).

152. Several lower courts had found that copyright could be established on the basis of
substantial effort in gathering facts. See, e.g., Leon v. Pac. Tel. & Tel. Co., 91 F.2d 484 (9th

Cir. 1937); Jeweler’s Circular Publ’g Co. v. Keystone Publ’g Co., 281 F. 83 (2d Cir. 1922).

The Supreme Court’s Feist decision rejected this “sweat of the brow” theory in holding that
originality is a requirement of copyright and therefore, unless a factual work exhibits origi-

nality as a compilation, it does not receive protection under the Copyright Act.

Special Issue] API Copyright 339

principle “that the fact/expression dichotomy limits severely the scope

of protection in fact-based works.”153 Thus, systematic hierarchical

frameworks based on mathematical and accounting systems, even

though laboriously compiled, might not qualify for copyright protec-

tion. Furthermore, the Borland case had attracted tremendous interest

among academics and interest groups skeptical of overbroad copy-

right protection for computer software.154

The First Circuit viewed the case as one of first impression:

“[w]hether a computer menu command hierarchy constitutes copy-

rightable subject matter.”155 The court properly distinguished Altai as

dealing with the protection of computer code as opposed to the results

of such code.156 Instead, the First Circuit saw the subject matter of the

Lotus case as a “method of operation” falling directly within the ex-

clusions from copyright protection set forth in § 102(b):

We think that ‘method of operation,’ as that term

is used in § 102(b), refers to the means by which a

person operates something, whether it be a car, a

food processor, or a computer. Thus a text describing

how to operate something would not extend copy-

right protection to the method of operation itself;

other people would be free to employ that method

and to describe it in their own words. Similarly, if a

new method of operation is used rather than de-

scribed, other people would still be free to employ or

describe that method.

We hold that the Lotus menu command hierar-

chy is an uncopyrightable ‘method of operation.’ The

Lotus menu command hierarchy provides the means

by which users control and operate Lotus 1-2-3. If

users wish to copy material, for example, they use

the ‘Copy’ command. If users wish to print material,

they use the ‘Print’ command. Users must use the

command terms to tell the computer what to do.

Without the menu command hierarchy, users would

not be able to access and control, or indeed make use

of, Lotus 1-2-3’s functional capabilities.

The Lotus menu command hierarchy does not

merely explain and present Lotus 1-2-3’s functional

capabilities to the user; it also serves as the method

153. 499 U.S. at 350.

154. Amicus briefs were filed on behalf of computer scientists, intellectual property pro-

fessors, and computer industry organizations.
155. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 813. (1st Cir. 1995).

156. Id. at 814.

340 Harvard Journal of Law & Technology [Vol. 31

by which the program is operated and con-

trolled157

The Supreme Court granted certiorari and affirmed without opinion

by an equally divided vote.158

Subsequent appellate decisions reached similar outcomes, alt-

hough they did not fully embrace the First Circuit’s reasoning. In

MiTek Holdings, Inc. v. ARCE Engineering Co.,159 the holder of a

copyright in an application program that designed and arranged wood

trusses for framing roofs brought an infringement action against the

maker of a competing program that featured a similar menu command

tree and user interface. Affirming the lower court’s decision, the

Eleventh Circuit held that the menu and submenu command structure

of the truss design program was uncopyrightable under § 102(b) be-

cause it represented a process.160 The court did not need to reach the

broader question, addressed in Lotus, of whether all menu command

structures are uncopyrightable as a matter of law.

In Mitel, Inc. v. Iqtel, Inc.,161 Mitel, the maker of a widely adopt-

ed computer system for automating the selection of a particular long-

distance telephone carrier and remotely activating optional telecom-

munications features such as speed dialing, sued a competing firm that

used identical command codes for copyright infringement. Because

Mitel’s system had become a de facto standard in the market, Iqtel

defended its use of compatible controller codes on the ground that

“technicians who install call controllers would be unwilling to learn

Iqtel’s new set of instructions in addition to the Mitel command code

set, and the technician’s employers would be unwilling to bear the

cost of additional training.”162 Like Borland’s Quattro, Iqtel’s product

included both its own command codes as well as a “Mitel Translation

Mode.” While commenting that a method of operation may in some

circumstances contain copyrightable expression, the Tenth Circuit

nonetheless concluded that Mitel’s command codes, which were arbi-

trarily assigned, lacked the minimal degree of creativity necessary to

qualify for copyright protection.163 The court further held that Mitel’s

command codes should be denied copyright protection under the

scènes à faire doctrine because they are largely dictated by external

157. Id. at 815.

158. Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233 (1996) (Justice Stevens

recused himself from participation in consideration of the case).
159. 89 F.3d 1548 (11th Cir. 1996).

160. Id. at 1556–57.

161. 124 F.3d 1366 (10th Cir. 1997).
162. Id. at 1369.

163. Id. at 1373–74.

Special Issue] API Copyright 341

factors such as hardware compatibility requirements and industry

practices.164

Thus, although the Eleventh and Tenth Circuits did not expressly

hold that all menu command hierarchies are uncopyrightable as a mat-

ter of law, the outcomes of MiTek and Mitel aligned with the First

Circuit’s holding in Lotus. There were no further reported cases ad-

dressing copyright protection for APIs over the next fifteen years.

2. Legislative Developments

The uncopyrightability of interoperable features of computer

software arose as part of legislative deliberation over the passage of

the DMCA.165 Title I generally prohibits circumvention of technical

protection measures put in place by copyright owners to protect copy-

righted works.166 Various interest groups advocated exempting cir-

cumvention for the purpose of developing interoperable computer

programs and devices. Congress obliged by enacting § 1201(f)(1),

which provides that:

[A] person who has lawfully obtained the right to use

a copy of a computer program may circumvent a

technological measure that effectively controls ac-

cess to a particular portion of that program for the

sole purpose of identifying and analyzing those ele-

ments of the program that are necessary to achieve

interoperability of an independently created comput-

er program with other programs, and that have not

previously been readily available to the person en-

gaging in the circumvention, to the extent any such

acts of identification and analysis do not constitute

infringement under this title.167

The legislative history notes that this provision is:

[I]ntended to allow legitimate software developers to

continue engaging in certain activities for the pur-

pose of achieving interoperability to the extent per-

mitted by law prior to the enactment of this chapter.

The objective is to ensure that the effect of current

case law interpreting the Copyright Act is not

164. Id. at 1374–76.

165. Digital Millennium Copyright Act, Pub. L. 105-304, 112 Stat. 2860 (1998).

166. See WIPO Copyright and Performances and Phonograms Treaties Implementation
Act, codified at 17 U.S.C. §§ 1201–05. (2012).

167. 17 U.S.C. § 1201(f) (2012).

342 Harvard Journal of Law & Technology [Vol. 31

changed by enactment of this legislation for certain

acts of identification and analysis done in respect of

computer programs. See, Sega Enterprises Ltd. v Ac-
colade, Inc., 977 F.2d 1510, 24 U.S.P.Q.2d 1561

(9th Cir. 1992). The purpose of this section is to fos-

ter competition and innovation in the computer and

software industry.168

Thus, in crafting the DMCA, Congress expressed its support for the

Sega decision and recognized its importance for “foster[ing] competi-

tion and innovation in the computer and software industry.”

D. The End of the First API Copyright War and the Logic of the Intel-

lectual Property System

After an inauspicious start, the federal courts implemented a bal-

anced framework for both protecting computer software against pira-

cy and interpreting the idea-expression doctrine to ensure that

copyright law excludes functional features of computer technology.

These decisions have effectuated the subtle balance to which the

CONTU Report referred.169 The courts have come to appreciate that

creativity must be understood contextually. While programming a

computer can unquestionably be considered creative in a general

sense, it might nonetheless be uncopyrightable due to functional char-

acteristics. The design of an efficient mechanical machine likewise

can be creative, but such devices are not eligible for copyright protec-

tion unless the aesthetic features can be separated from the functional

attributes under the useful article doctrine.170 Lines of code are the

gears and levers of digital machines. The fact that computer software,

like a sculptural work, is eligible for copyright protection does not

authorize protection for functional features.171

The courts have come to recognize that APIs have significant

functional dimensions. They serve in many contexts as the basis for

interoperability of computer technologies and the particular functional

specifications, as opposed to the implementing code, of a software

program can be fairly characterized as “methods of operation.” Alt-

hough the Supreme Court’s split decision in Lotus v. Borland left

168. See S. Rep. No. 105-190, at 13; (1998); see also id. at 32–34 (section-by-section

analysis).

169. See generally, Menell, supra note 12, at 707–08.

170. See 17 U.S.C. § 101 (2012) (“Pictorial, graphic, and sculptural works” include two-
dimensional and three-dimensional works . . .; the design of a useful article . . . shall be

considered a pictorial, graphic, or sculptural work only if, and only to the extent that, such

design incorporates pictorial, graphic, or sculptural features that can be identified separately
from, and are capable of existing independently of, the utilitarian aspects of the article.”).

171. See 17 U.S.C. § 102(b) (2012).

Special Issue] API Copyright 343

some uncertainty,172 the resolution of that litigation marked the end of

the major API copyright litigations that had raged since the early

1980s.

Precedential rulings in all courts of appeals applying copyright

law’s limiting doctrines to the functional elements of software reject-

ed the Apple v. Franklin dictum that “total compatibility with inde-

pendently developed application programs . . . is a commercial and

competitive objective which does not enter into the somewhat meta-

physical issue of whether particular ideas and expressions have

merged.”173 Courts outside of the Third Circuit also expressly rejected

the Whelan framework for analyzing the structure, sequence, and or-

ganization of computer software. Congress expressly endorsed the

Sega decision in adopting an interoperability exemption to the

DMCA’s anti-circumvention provisions. Furthermore, a unanimous

Supreme Court decision in TrafFix Devices, Inc. v. Marketing Dis-

plays, Inc.174 — which guarded against protection for functional fea-

tures in trade dress — fortified the principle that utility patent law is

the sole regime for protecting functional features and that courts

should carefully guard against overprotection of intellectual works.

By the turn of the millennium, the first API copyright war had come

to an end.175

III. COPYRIGHT PROTECTION FOR COMPUTER SOFTWARE 2.0:

THE ORACLE WAVE

Following the resolution of the first API copyright war, the soft-

ware engineering community came to view high-level functions, la-

beling conventions, and the functional specifications of APIs as

unprotectable under copyright law.176 These norms were reinforced by

172. Notwithstanding the divided result, Justice Stevens likely would have sided with the

First Circuit. He had generally taken less protectionist positions in intellectual property
cases. See, e.g., Sony Corp. of Am. v. Universal City Studios, Inc., 464 U.S. 417 (1984)

(limiting indirect copyright liability of device manufacturers); Parker v. Flook, 437 U.S. 584

(1978) (limiting patent protection for computer-related technologies).
173. Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240, 1253. (3rd Cir.

1983).

174. 532 U.S. 23 (2001).
175. See Menell, supra note 12.

176. See Brian Profitt, The Impact of Oracle’s Defense of API Copyrights, ITWORLD

(Aug. 23, 2011), http://www.itworld.com/article/2738675/mobile/the-impact-of-oracle-s-
defense-of-api-copyrights.html [https://perma.cc/PVC9-2GWR] (observing that

“[h]istorically, APIs have been regarded as not falling under copyright — the reasoning

being that APIs are not creative implementations but rather statements of fact,” but also
noting the issue had been clouded by the distinction between “open” and “closed” APIs);

see also Michael Hussey, Copyright Captures APIs: A New Caution For Developers,

TECHCRUNCH (Nov. 3, 2015), https://techcrunch.com/2015/11/03/copyright-captures-apis-
a-new-caution-for-developers/ [https://perma.cc/37XG-HE2Z] (observing that “[s]oftware

developers routinely treat APIs as exempt from copyright protection”). But see Edward J.

344 Harvard Journal of Law & Technology [Vol. 31

the spread of open source software.177 Furthermore, as the economics

of network effects and interoperability suggests, many computer

hardware and software companies actively sought platform

adopters.178 The Internet ushered in a new economic era in which

companies could give away software and services while earning mon-

ey from other sources, principally advertisers. Consistent with these

patterns, Jonathan Schwartz, Sun’s Chief Executive Officer, publicly

congratulated Google on its decision to use Java software in An-

droid,179 proclaiming that Google had “strapped another set of rockets

to the [Java] community’s momentum — and to the vision defining

opportunity across our (and other) planets.”180

Thus, Oracle’s filing of a lawsuit against Google over the An-

droid platform’s use of Java came as a surprise to many in the high

technology community.181 Yet to Sun and Google insiders, the writing

was on the wall. Schwartz and his Sun colleagues were gravely con-

cerned about Google’s Android strategy at the time that Schwartz

publicly celebrated the release of the Android Software Development

Kit (“SDK”).182 Sun’s hardware business had long been in decline and

the company desperately needed to find ways to recoup its ongoing

investments in Java. It actively pursued a strategy to establish its Java

ME (Micro Edition) platform for embedded and mobile devices.183

The congratulatory blog post was aimed at bringing Google to the

Naughton, Copyright in APIs: The Sky Won’t Fall, and The Clouds Are Safe, EMERGING

TECHNOLOGIES BLOG (May 30, 2012), http://brownrudnick.com/blog/emerging-

technologies/copyright-in-apis-the-sky-wont-fall-

and-the-clouds-are-safe/[https://perma.cc/5NHQ-64EZ] (questioning the validity of the
“long-held practice of API copyright exemption”).

177. See generally STEVEN WEBER, THE SUCCESS OF OPEN SOURCE (2005).

178. See Joe Mullin, Sun’s Jonathan Schwartz at Trial: Java Was Free, Android Had No
Licensing Problem, ARS TECHNICA (May 11, 2016), https://arstechnica.com/tech-

policy/2016/05/suns-jonathan-schwartz-at-trial-java-was-free-android-had-no-licensing-

problem/ [https://perma.cc/PT8Q-HFZS] (quoting former Sun CEO testifying that Sun
Microsystems welcomed widespread use of the Java programming language and APIs); see

generally SHAPIRO & VARIAN, supra note 54, at 173–93, 196-203.

179. See Juan Carlos Perez, Google Releases Android SDK [Software Development Kit],
MACWORLD (Nov. 12, 2007), www.macworld.com/article/1061005/androidsdk.html

[https://perma.cc/JV3Z-4CTX?type=image].

180. See Congratulations Google, Red Hat and the Java Community!!, JONATHAN’S

BLOG! (Nov. 5, 2007), http://web.archive.org/web/20101023072550/http://blogs.sun.com/

jonathan/entry/congratulations_google [https://perma.cc/53KC-GXBJ] (reporting that

Schwartz’s congratulatory note masked disappointment about Google’s unwillingness to
enter into a licensing arrangement).

181. See Clark & Tuna, supra note 23.

182. See supra text notes 179–80.
183. The Java Platform, Micro Edition (ME) was launched in late 2006. See Java Plat-

form, Micro Edition, WIKIPEDIA,

https://en.wikipedia.org/wiki/Java_Platform,_Micro_Edition
[https://perma.cc/DWR9-E9SM]. One significant difference is that Sun opted to distribute

ME using the GNU GPL license.

Special Issue] API Copyright 345

negotiating table. When licensing negotiations with Google reached

an impasse, something had to give.184

Oracle’s acquisition of Sun brought legal action against Google

into play. Larry Ellison, Oracle’s co-founder and CEO, had a reputa-

tion for brash business tactics.185 Whereas Sun’s leadership had em-

braced open technology with religious fervor, Oracle’s approach had

been strategic.186 Furthermore, Oracle had enjoyed recent success in

high stakes copyright enforcement.187 Oracle’s leadership team sought

to pursue a far more aggressive Java licensing strategy.

This Part examines the tumultuous history leading up to and

through the Oracle v. Google litigation as background for understand-

ing the underlying copyright issues. Section III.A explains the techno-

logical and industrial context. Section III.B examines the first six

years of the Oracle v. Google litigation saga. Section III.C discusses

the uncertain state of play surrounding API copyright protection in the

wake of the Oracle v. Google litigation. Part IV critically analyzes the
Oracle v. Google decisions and explores the policy considerations

surrounding copyright treatment of APIs.

A. The Technological and Industrial Context

A confluence of forces set the stage for the Oracle v. Google liti-

gation: (1) the development, widespread adoption, and use of the Java

programming language for website design; (2) the smartphone revolu-

tion and Google’s decision to develop an open, distinctive mobile

platform using the Java language plus aspects of the Java Standard

184. See Oracle Buys Sun Microsystems For $7.4B, CBS NEWS (Apr. 20, 2009),

http://www.cbsnews.com/news/oracle-buys-sun-microsystems-for-74b/

[https://perma.cc/ZK3B-PQSV] (reporting that analysts had long said that Sun could not

stand on its own and were surprised when merger talks with IBM in late 2008 broke down).
185. See Madeline Stone, Here’s How Insanely Competitive Oracle Billionaire Larry El-

lison Really Is, BUS. INSIDER (May 7, 2016), http://www.businessinsider.com/billionaire-

larry-ellison-most-competitive-man-2016-5 [https://perma.cc/2F7X-AWZE]; Sarah Lacy,
Larry Ellison Hearsay: “We Can't Be Successful if We Don't Lie to Customers”,

TECHCRUNCH (Dec. 1, 2010), https://techcrunch.com/2010/12/01/larry-ellison-hearsay-we-

cant-be-successful-if-we-dont-lie-to-customers/ [https://perma.cc/GJY5-S7EZ].
186. While Oracle opposed strong intellectual property protection for computer software

in the early 1990s, it began to build its IP arsenal as IP threats emerged.

187. In 2007, Oracle sued SAP for copyright infringement by one of its subsidiaries. The
jury awarded Oracle damages of $1.3 billion in 2010, the largest copyright award in U.S.

history. See Verne F. Kopytoff, SAP Ordered to Pay Oracle $1.3 Billion, N.Y. TIMES (Nov.

23, 2010), http://www.nytimes.com/2010/11/24/business/24oracle.html?mcubz=0 (last
visited Jan. 27, 2018); Karen Gullo, Oracle Wins $1.3 Billion Verdict for Closed SAP Unit’s

Illegal Downloading, BLOOMBERG (Nov. 23, 2011), http://

www.bloomberg.com/news/articles/2010-11-23/sap-must-pay-oracle-1-3-billion-over-unit-
s-downloads (last visited Jan. 27, 2018). Although the trial judge overturned the damages

award as excessive, the parties eventually settled for $359 million. See Jim Henschen, Ora-

cle Lawsuit Against SAP Settled at Law, INFORMATIONWEEK (Nov. 14, 2016),
http://www.informationweek.com/cloud/software-as-a-service/oracle-lawsuit-against-sap-

settled-at-last/d/d-id/1317483 [https://perma.cc/2GTW-QWQB].

346 Harvard Journal of Law & Technology [Vol. 31

Edition API; and (3) Oracle’s acquisition of Sun Microsystems at a

critical stage of Android’s ascendance. The story illustrates the com-

plex interplay of technological evolution, industry norms, bargaining

leverage, ambiguity surrounding the meaning of “open” technology,

and lingering uncertainty about the scope of copyright protection for

APIs.

1. The Java Story

The Java ecosystem emerged from Sun Microsystems’s distinc-

tive — and somewhat quirky — business, technological, and innova-

tive culture.188

i. The Corporate Environment: Sun Microsystems in the 1980s and

1990s

In 1982, Stanford University classmates Vinod Khosla, Andy

Bechtolsheim, and Scott McNealy and Bill Joy, a University of Cali-

fornia at Berkeley computer scientist who played an integral role in

developing the Berkeley Software Distribution “(BSD”) UNIX oper-

ating system,189 envisioned a breakthrough networked computer engi-

neering workstation.190 During graduate school and their early careers,

they were exposed to the remarkable technologies being developed at

the Xerox Palo Alto Research Center: the Alto computer, bitmap dis-

plays, and the Ethernet.191 They formed Sun Microsystems in 1982 to

bring their visionary system to the marketplace.

188. See David Bank, The Java Saga, WIRED (Dec. 1, 1995),

http://www.wired.com/1995/12/java-saga/ [https://perma.cc/ELE5-ZPG3] (noting that while

“Sun’s machines had a reputation for being too complicated, too ugly, and too nerdy for

mass consumption,” its leadership was willing “to loosen[] the reins on some of its most
precocious [programmer] talent”); Tekla Perry, After the Sun (Microsystems) Sets, the Real

Stories Come Out, IEEE SPECTRUM (May 30, 2014), http://spectrum.ieee.org/view-from-

the-valley/at-work/tech-careers/after-the-sun-microsystems-sets-the-real-stories-come-out
[https://perma.cc/87DY-DUUG].

189. Originally developed by Bell Labs, MIT, and General Electric, UNIX established

the foundation for time sharing of mainframe computers. It was historically developed as a
closed, proprietary system. The BSD project developed an interoperable version of UNIX,

see Berkeley Software Distribution, WIKIPEDIA, https://en.wikipedia.org/wiki/

Berkeley_Software_Distribution [https://perma.cc/E839-6TPR]; Bill Joy, WIKIPEDIA,
https://en.wikipedia.org/wiki/Bill_Joy [https://perma.cc/LY7K-BSF3] (featuring a permis-

sive free software licensing framework with minimal restriction of the redistribution of

software built on this foundation). See BSD Licenses, WIKIPEDIA, https://en.wikipedia.org/
wiki/BSD_licenses [https://perma.cc/A2NR-VTV3]. The BSD license diverged from the

viral, open source (sometimes referred to as “copyleft”) licenses that require that software

built on open source code be made available to other developers on an open source basis —
the so-called share-alike requirement. See Carver, supra note 63.

190. See Perry, supra note 188; William Joy (1954–), Programmer; Founder of Sun Mi-

crosystems, in THE INTERNET: BIOGRAPHIES 138 (Hilary W. Poole ed., 2005).
191. See PARC (company), WIKIPEDIA, https://en.wikipedia.org/wiki/PARC_(company)

[https://perma.cc/B5Z3-FB7Q]; Sun Microsystems, WIKIPEDIA, https://en.wikipedia.org/

Special Issue] API Copyright 347

Sun hit profitability in its first quarter of operations and quickly

developed a reputation for high performance, networked UNIX-based

workstations with high-quality graphics.192 Their technology fueled

Silicon Valley’s meteoric rise. Although less widely known than Ap-

ple, Microsoft, or IBM because its products were sold to other tech-

nology companies rather than the general public, Sun nevertheless

commanded the respect of the high technology sector. Sun expanded

into processors and servers and became one of the world’s most suc-

cessful technology companies. Sun went public in 1986 under the

stock symbol SUNW, for Sun Workstations (later Sun World-

Wide),193 and hit $1 billion in revenues in 1988, a record for a Silicon

Valley company.194 Thanks to its reputation for cutting-edge products

and an engineer-friendly culture, the company attracted a talented,

eclectic, and loyal group of engineers and programmers.

Sun’s revenues and market value grew steadily from its founding

into the mid-1990s and skyrocketed during the dot-com boom.195

Flush with venture capital investment, many start-ups wanted the best

workstations and servers for their engineering and programming

teams. Sun’s outlook was bright as the Internet Age commenced.

ii. Development of Java

Sun’s foray into developing a new programming language began

in 1990 as a skunkworks project.196 Triggered by an effort to retain a

top programmer, the initiative aimed initially at developing a new

generation of software to replace Sun’s C++ and C APIs and tools.197

Sun’s leaders recognized that the success of the project required that

the elite team be insulated from the rest of Sun’s operations, especial-

wiki/Sun_Microsystems [https://perma.cc/CY4T-32DG]; MICHAEL A. HILTZIK, DEALERS

OF LIGHTNING: XEROX PARC AND THE DAWN OF THE COMPUTER AGE (2000).

192. See Sun Microsystems, WIKIPEDIA, https://en.wikipedia.org/wiki/Sun_Microsystems
[https://perma.cc/CY4T-32DG].

193. See id.

194. See William Joy (1954–), Programmer, supra note 190.
195. See Sun Microsystems, WIKIPEDIA, https://en.wikipedia.org/wiki/Sun_Microsystems

[https://perma.cc/CY4T-32DG]; Lee Devlin, The Sun Also Sets, K0LEE.COM (Oct. 2, 2009),

http://k0lee.com/2009/10/sun-also-sets/ [https://perma.cc/UGW7-Z5F8] (tracing Sun’s
meteoric stock rise from 1982 to 2000, and fall).

196. A skunkworks project refers to “a project developed by a small and loosely struc-

tured group of people who research and develop a project primarily for the sake of radical
innovation.” See Skunkworks Project, WIKIPEDIA,

https://en.wikipedia.org/wiki/Skunkworks_

project [https://perma.cc/A8AH-Y65R]. The term, derived from the name of the moonshine
factory in the Li’l Abner comic book series, traces to Lockheed’s World War II Advanced

Developments Program.

197. See Bank, supra note 188; History of the Java™ Programming Language,
WIKIBOOKS, https://en.wikibooks.org/wiki/Java_Programming/History [https://perma.cc/

36RD-33ES].

348 Harvard Journal of Law & Technology [Vol. 31

ly the business pressures to meet quarterly targets.198 This so-called

“Green Project” team took up residence in rented office space else-

where in Silicon Valley.199

The project evolved into developing a computer language and

handheld device that could be used for both digitally controlled con-

sumer products (such as televisions) and computers.200 Such a lan-

guage needed to be scaled for embedded systems — computer

systems with a dedicated function within other systems.201 The team

initially focused on developing a distributed computing environment

for set-top boxes, interactive TVs, and video cassette recorders

through a wireless network.202 Such a system would have more lim-

ited functionality than general purpose computers and requires a more

compact footprint.

James Gosling took the lead in developing the software.203 He de-

signed a secure, reliable, object-oriented,204 platform-independent

language that could interpret other languages and function on small

computer chips embedded in consumer devices. By 1993, the software

(code-named Oak) was integrated into a versatile device that could

work with interactive TV technology, but Sun was unable to interest

consumer electronics or cable companies.205

Just when the project looked doomed, Bill Joy saw the opportuni-

ty to adapt Gosling’s software for the nascent, but promising, World

Wide Web.206 Joy realized that Oak could be re-purposed to program

webpages, as opposed to consumer devices. The team convinced Sun

to pump more resources into the project.207 “Java,” the renamed pro-

ject, aimed to develop a simple, lean, platform-independent, real-time,

embeddable, multi-tasking programming language for web functional-

ity. Java had a similar syntax to the widely-used C language, but was

far more compact, efficient, and secure. Of perhaps greatest im-

portance, Java enabled “write once, run anywhere” (“WORA”) func-

tionality: Java applets could run on Apple, Windows, or UNIX

machines without any customization. Java also enabled real-time in-

teractivity, multimedia, and animation, which greatly enhanced the

198. See Bank, supra note 188.

199. Id.

200. See History of the Java Programming™ Language, supra note 197.
201. See Embedded System, WIKIPEDIA, https://en.wikipedia.org/wiki/Embedded_system

[https://perma.cc/CDQ5-7K2S].

202. See James Gosling (1956-), Inventor of Java, in THE INTERNET: BIOGRAPHIES 132–
36 (Hilary W. Poole ed.)., 2005).

203. See id.

204. See Object-oriented Programming, WIKIPEDIA, https://en.wikipedia.org/wiki/
Object-oriented_programming [https://perma.cc/FCW5-HVB5].

205. See Bank, supra note 188; James Gosling, supra note 202.

206. See William Joy (1954–), Programmer, supra note 190.
207. See JOHN HUNT, JAVA FOR PRACTITIONERS: AN INTRODUCTION AND REFERENCE TO

JAVA AND OBJECT ORIENTATION 49 (2012).

Special Issue] API Copyright 349

dynamism of webpages. Java added new dimensions to Web func-

tionality. Java applets enabled users to interact with websites in new

and exciting ways.

Gosling built Java as an object-oriented programming (“OOP”)

language and platform, utilizing a powerful programming paradigm

that was gaining salience in the programming community in the early

1990s.208 In contrast to conventional procedural programming lan-

guages such as C, Fortran, Pascal, and Basic, which break tasks down

into a structured series of computational steps,209 OOP models tasks

using relational objects that expose behavior (methods) and data

(members or attributes) using interfaces.210 The OOP paradigm of-

fered various programming efficiencies, such as reusability and ease

of modification and maintenance.211

With the experimental new software platform reaching fruition,

Sun faced a difficult business strategy choice. Although Sun had al-

ways been a proponent of open standards for software interfaces,212

this project would require the free release of a software implementa-

tion — that is, the full program. Marc Andreessen,213 the University

of Illinois wunderkind who created the pioneering Mosaic web

browser,214 had released Mosaic for free for noncommercial use, but

major companies were not yet in the business of giving away source

code. Many in the industry coveted source code as the crown jewels

of high technology businesses and were loath to share it.215

Eric Schmidt, Sun’s Chief Technology Officer who had assured

the “Green” team that they would be insulated from the business man-

agers, was at the center of an impending corporate storm. As he would

later describe:

208. See Object-oriented Programming, supra note 204.

209. See Procedural Programming, WIKIPEDIA, https://en.wikipedia.org/wiki/
Procedural_programming [https://perma.cc/3ZBB-649B].

210. See Object-oriented Programming, WIKIPEDIA, https://en.wikipedia.org/wiki/

Object-oriented_programming [https://perma.cc/FCW5-HVB5].
211. See Advantages and Disadvantages of Object-Oriented Programming (OOP), THE

SAYLOR FOUNDATION http://www.saylor.org/site/wp-content/uploads/2013/02/CS101-

2.1.2-AdvantagesDisadvantagesOfOOP-FINAL.pdf [https://perma.cc/MNL9-NDSJ].
212. Sun Microsystems has been the leading member of the American Committee for In-

teroperable Systems (“ACIS”), an early lobbying organization advocating open platforms.

See BAND & KATOH, supra note 10, at 308 (noting that Peter Choy, who headed ACIS,
worked for Sun).

213. See Marc Andreessen, WIKIPEDIA, https://en.wikipedia.org/wiki/Marc_Andreessen

[https://perma.cc/Q2VU-X9E9].
214. See Mosaic (web browser), WIKIPEDIA, https://en.wikipedia.org/wiki/

Mosaic_(web_browser) [https://perma.cc/E4Q4-BFMJ].

215. See Eugene A. Feher & Dmitriy S. Andreyev, Source Code in Patent Litigation,
LAW360 (Apr. 30, 2008) http://www.law360.com/articles/54750/source-code-discovery-in-

patent-litigation [https://perma.cc/3EMY-GPWG] (noting that “most companies consider

their source code to be highly confidential and part of the ‘crown jewels’ of the company”
and that “[s]ource code frequently contains secret proprietary algorithms that provide a vital

competitive advantage”).

350 Harvard Journal of Law & Technology [Vol. 31

The conversation that never took place, but that I

could feel all around me, was, ‘Eric, you are violat-

ing every principle in the company. You are taking

our technology and giving it away to Microsoft and

every one of our competitors. How are you going to

make money?’ At the time, I didn’t have an answer. I

would make something up. I would lie. What I really

believed was that Java could create an architectural

franchise. The quickest way was through volume and

the quickest way to volume was through the Inter-

net.216

Sun secretly invited a select group of programmers to test Java in

December 1994.217 The test revealed that the WORA functionality

was a game-changer and word of Java’s capabilities spread like wild-

fire throughout the programmer community.218

Sun officially launched Java in January 1995. The business strat-

egy epiphany came when Marc Andreessen, the new CEO of

Netscape and developer of Netscape’s breakthrough Navigator brows-

er,219 raved to the SAN JOSE MERCURY NEWS: “What these guys are

doing is undeniably, absolutely new. It’s great stuff. There’s so much

stuff people want to do over the network that they haven’t had the

software to do. These guys are really pushing the envelope.”220

Having already released Java to a select programmer audience,

Sun decided to focus on establishing Java as the standard language for

web development and figure out how to make money later. It fol-

lowed the “‘profitless’ approach to building market share” that

Netscape had employed in giving away its Navigator browser.221 As

Joy would later remark, “There was a point at which I said, ‘Just

screw it, let’s give it away.’ Let’s create a franchise.”222

Due in part to the robust performance of its hardware divisions,223

Sun could afford to take more risk with the revenue side of its soft-

216. See Bank, supra note 188.
217. See Bank, supra note 188; William Joy (1954–), Programmer, supra note 190.

218. See Bank, supra note 188 (reporting that release of early versions of Java in Decem-

ber 1994 “unleashed stratospheric expectations”); William Joy (1954–), Programmer, supra
note 190.

219. See Netscape Navigator, WIKIPEDIA, https://en.wikipedia.org/wiki/

Netscape_Navigator [https://perma.cc/4DT2-UB3E].
220. See David Bank, Why Sun Thinks Hot Java Will Give You a Lift New Software De-

signed to Make World Wide Web’s ‘Home Pages’ More Useful; And Spur Computer Sales,

SAN JOSE MERCURY NEWS 1A (Mar. 23, 1995); Bank, supra note 188 (quoting Kim Polese,
Java’s senior product manager: “That quote was a blessing from the god of the Internet”).

221. See Bank, supra note 188.

222. See id.
223. See id. (reporting that Sun’s annual revenues from its hardware products were ex-

pected to exceed $6 billion in 1995).

Special Issue] API Copyright 351

ware business. Its larger concern, as manifested in the years ahead,

was in preventing Microsoft from dominating the emerging Internet

marketplace in the same way it had dominated desktop computing

software.224 Scott McNealy, Sun’s fiercely competitive CEO, imag-

ined that “disposable word processors and spreadsheets delivered over

the Web via Java, priced per use” could “blow[] up Gates’s lock [on

the desktop software marketplace] and destroy[] his mode of shrink-

wrapped software that runs only on his platform.”225 The WORA ap-

proach promised to invigorate the software competition landscape.226

In May 1995, Netscape licensed Java as part of its market-leading

Navigator browser.227 Although Sun authorized Netscape’s use for a

pittance,228 it foresaw that this move would produce rapid diffusion

across the programming community and the Web. Sun also provided

Java for free to noncommercial users.229 Java’s ability to transform

static webpages into engaging, animated, interactive websites revolu-

tionized web design within a matter of months.230

Sun was especially concerned that Microsoft would leverage its

eighty percent share of the desktop software marketplace to control

Internet software development.231 In March 1995, Microsoft an-

nounced “Blackbird,” a new Web development package slated for a

January 1996 release, that would contain an application programming

language configured to work with Microsoft software.232 In response,

Sun actively pursued below-cost licensing deals in an effort to prevent

Microsoft from burying the competition.233 At the same time, Mi-

crosoft was pressuring other companies to withdraw support for Ja-

va.234

As Blackbird languished (and ultimately never launched),235 Mi-

crosoft shifted its Internet strategy. By late 1995, Sun and Microsoft

224. See id. (noting Sun co-founder and CEO Scott McNealy’s rivalry with Bill Gates).
225. See id. (first quotation Bank’s paraphrase of McNeely; second quotation from

McNealy).

226. See Mark A. Lemley & David McGowan, Could Java Change Everything? The
Competitive Propriety of a Proprietary Standard, 43 ANTITRUST BULL. 715 (1998).

227. See William Joy (1954–), Programmer, supra note 190.

228. See Bank, supra note 188 (reporting that Netscape “paid a paltry US$750,000” to
license without any per-copy charges).

229. See id.

230. See William Joy (1954–), Programmer, supra note 190.
231. See Bank, supra note 188 (quoting Michael Sheridan, an original member of the

“Green Project” team and Java business strategist, that “Sun’s window is six to twelve

months. [We] need to move quickly because Microsoft will respond in a way that freezes
development.”).

232. See Blackbird (online platform), WIKIPEDIA, https://en.wikipedia.org/wiki/

Blackbird_(online_platform) [https://perma.cc/GT37-R2PR].
233. See Bank, supra note 188 (quoting Eric Schmidt: “This loses money in the licensing

business for the foreseeable future. It's a strategic investment in market share.”).

234. See United States v. Microsoft Corp., 84 F. Supp. 2d 9 (D.D.C 1999) (declaring
findings of fact).

235. See Blackbird (online platform), supra note 232.

352 Harvard Journal of Law & Technology [Vol. 31

worked out the basis for a license agreement.236 In March 1996, Sun

agreed to a Technology License and Distribution Agreement

(“TLDA”) that allowed Microsoft to use, modify and adapt Java tech-

nology in developing MS Internet Explorer 4.0 and other software

products.237 In keeping with its WORA interoperability principle, the

TLDA required Microsoft to adhere to Java’s standardized application

environment and compliance tests.238

To live up to Java’s initial high praise and build momentum, Sun

expanded its Java development efforts. It rolled out the first stable

Java Development Kit in early 1996 and continued to expand features

over the following year.239 The Java language comprises words, sym-

bols, and pre-written programs to carry out various commands, such

as printing something on the screen or performing a basic mathemati-

cal calculation. Sun organized sets of pre-written programs (methods,

which are grouped in classes) into API packages (or class libraries).

Each API package reflects a set of declarations240 or functional speci-

fications needed to invoke the methods. It is executed through detailed

implementing code. Although a Java programmer can also write new

code (methods) from scratch, the pre-written methods within the Java

API packages provide convenient, efficient, reliable, standardized

building blocks, thereby saving Java programmers tremendous tedious

effort.

Sun’s strategy succeeded in establishing Java as a de facto indus-

try standard. By the end of 1996, Apple, IBM, Netscape, Oracle, and

more than a hundred other companies had committed to the Java plat-

form through the “100% Pure Java” initiative.241 By that time, Sun

employed three hundred people in its JavaSoft division and approxi-

mately thirty-five percent of websites used Java. The applets could be

viewed on UNIX, Windows, Apple, or DOS computers.

Sun’s respect for its programmer culture, and its effort to harness

network effects and thereby outmaneuver Microsoft, pushed Java onto

an open development path. Sun’s highly profitable hardware division

afforded its Java division flexibility to operate as a loss leader. As one

industry observer presciently noted in late 1995, “Java is unlikely ever

236. See Sun Microsystems, Inc. v. Microsoft Corp., 21 F. Supp. 2d 1109, 113 (N.D. Cal.

1998).
237. See id. at 113–14.

238. See id. at 114; see also Technology Compatibility Kit, WIKIPEDIA, https://

en.wikipedia.org/wiki/Technology_Compatibility_Kit [https://perma.cc/V3KP-9BQS] (de-
scribing the Java Compatibility Kit (JCK) used to ensure that implementations are compati-

ble with the Java platform).

239. See Java version history, WIKIPEDIA, https://en.wikipedia.org/wiki/
Java_version_history [https://perma.cc/Q6FC-889D].

240. See The Java™ Tutorials — Declaring Classes, ORACLE, https://docs.oracle.com/

javase/tutorial/java/javaOO/classdecl.html [https://perma.cc/3DXU-KNTJ].
241. See Paul Floren, Sun’s Java: Can It Burn Microsoft?, INT’L HERALD TRIBUNE, Jan.

20, 1997.

Special Issue] API Copyright 353

to become a major profit center at Sun, though any increase in Web

traffic is bound to increase sales of Sun’s workstations and serv-

ers.”242

As part of its effort to establish Java as the standard programming

language for the Internet, Sun proposed to the International Organiza-

tion for Standardization (ISO)/International Electrotechnical Commis-

sion (IEC) in March 1997 that the Java “platform” — consisting of

the Java language, class file format, byte codes recognized by the Java

Virtual Machine, and Java APIs –– be formally designated a de jure

international standard.243 The process bogged down as a result of con-

cerns among members of the Joint Technical Committee regarding the

appropriateness of a single firm seeking standard approval for their

product and whether such a firm should be permitted to retain intellec-

tual property rights in the proposed standard.244

Microsoft’s deployment of its own version of Java, compatible

only with other Microsoft products in violation of the WORA princi-

ple, threatened Sun’s Java development strategy. After Microsoft dis-

tributed its Internet Explorer 4.0 browser program without

components of the Java System Developer Kit 1.1 in October 1997,

Sun sued Microsoft for breach of contract, trademark infringement,

copyright infringement, false advertising, and unfair competition.245

These allegations coincided with and reinforced antitrust concerns

about Microsoft’s business practices.246

Of principal importance for the API copyright issue, the Mi-

crosoft threat pushed Sun to pursue an aggressively open Java devel-

opment strategy that encouraged widespread adoption as well as

adherence to the WORA principle.247 Sun ultimately withdrew from

efforts to seek formal standardization of Java out of concern that it

would have to cede too much control over Java’s development path to

other entities, including competitors who might not share Sun’s vi-

242. See Bank, supra note 188.

243. See Tineke M. Egyedi, Why Java™ Was - Not - Standardized Twice, IEEE

PROCEEDINGS OF THE 34TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES

(2001).

244. See Lemley & McGowan, supra note 226, at 755.
245. See John Markoff, Sun Sues Microsoft in Dispute Over Java, N.Y. TIMES (Oct. 8,

1997), http://politics.nytimes.com/library/cyber/week/100897java.html [https://perma.cc/

8WBG-HJ6F].
246. See United States v. Microsoft Corp., 87 F. Supp. 2d 30, 44 (D.D.C. 2000), aff’d in

part, rev’d in part per curiam, 253 F.3d 34 (D.C. Cir. 2001) (en banc); John E. Lopatka &

William H. Page, Antitrust on Internet Time: Microsoft and the Law and Economics of
Exclusion, 7 SUP. CT. ECON. REV. 157 (1999); William H. Page & John E. Lopatka, The

Dubious Search for “Integration” in the Microsoft Trial, 31 CONN. L. REV. 1251 (1999).

247. See Peter Wayner, What the Battle Over Java Is Really About, N.Y. TIMES (Oct. 11,
1997), http://politics.nytimes.com/library/cyber/week/101197java.html [https://perma.cc/

65LS-F87G].

354 Harvard Journal of Law & Technology [Vol. 31

sion.248 Nonetheless, the Microsoft threat committed Sun to an open

development path for Java.

In 1998, Sun released the Java 2 Standard Edition Platform. It

contained eight API packages, three of which — java.lang, java.io,

and java.util — were necessary to use the Java programming lan-

guage.249 In the following years, Sun gradually expanded the number

of API packages, classes, and methods.

Sun also established the Java Community Process (“JCP”) in

1998 to enable users to participate in the development of standard

technical specifications for Java technology.250 Community members

were invited to propose Java Specification Requests (“JSRs”) for ex-

panding and updating the Java platform. The JCP reviews JSRs

through a public process akin to administrative rulemaking. The JCP

Executive Committee,251 comprised of major stakeholders, decides

whether to approve JSRs.

One of the goals of the JCP was to bring order to the emerging,

but fragmented, mobile device ecosystem. The mobile marketplace

was taking off in the mid-1990s with a variety of personal digital as-

sistants (“PDAs”),252 cell phones, and other consumer devices. In

1998 and 1999, Sun coalesced the various interests through the JCP in

developing the Java 2 Micro Edition (“J2ME”).253 Many cell phone

developers licensed the J2ME Platform for their products.

After four years of tumultuous litigation,254 Sun and Microsoft

settled their litigation in January 2001.255 Microsoft agreed to pay Sun

$20 million and was permanently prohibited from using “Java com-

patible” trademarks on its products.256 The copyright infringement

allegations relating to APIs were not pursued.

248. See Lemley & McGowan, supra note 226, at 770.

249. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1349 (Fed. Cir. 2014).
250. See Java Community Process, WIKIPEDIA, https://en.wikipedia.org/wiki/

Java_Community_Process [https://perma.cc/NN53-WMJY].

251. See JCP Executive Committee, WIKIPEDIA, https://en.wikipedia.org/wiki/
JCP_Executive_Committee [https://perma.cc/7GN3-4SSN].

252. Palm successfully introduced the Palm Pilot in 1997, but gradually lost market share

as new devices, such as Research in Motion’s BlackBerry, became popular. See Palm, Inc.,
WIKIPEDIA, https://en.wikipedia.org/wiki/Palm,_Inc. [https://perma.cc/78Y8-MJD8];

BlackBerry, WIKIPEDIA, https://en.wikipedia.org/wiki/BlackBerry [https://perma.cc/7BED-

8JV7].
253. See J2ME Programming/The J2ME Platform, WIKIBOOKS, https://en.wikibooks.org

/wiki/J2ME_Programming/The_J2ME_Platform. [https://perma.cc/YQF4-J6AK].

254. See Sun Microsystems, Inc. v. Microsoft Corp., 21 F. Supp. 2d 1109 (N.D. Cal.
1998) (granting preliminary injunction enjoining Microsoft from distributing any software

implementing Java), vacated, 188 F.3d 115 (9th Cir. 1999), reinstating injunction, 87 F.

Supp. 992 (N.D. Cal. 2000).
255. See Stephen Shankland, Sun, Microsoft Settle Java Suit, CNET (Mar. 15, 2002),

http://www.cnet.com/news/sun-microsoft-settle-java-suit/. [https://perma.cc/R2DV-Z4NK].

256. Sun would later prevail in a separate antitrust and patent infringement action against
Microsoft resulting in an award of $1.6 billion. See Pruitt & Roberts, supra note 18; Stephen

Shankland, Sun brings antitrust suit against Microsoft: The company files a private antitrust

Special Issue] API Copyright 355

iii. The Setting Sun

Sun’s sales collapsed following the dot-com bubble burst in early

2000. Many of the dot-com companies that had ordered Sun hardware

went bankrupt, causing new orders to plummet and driving work-

station and server prices downward as failed start-ups auctioned off

their assets to repay creditors. Sun’s stock went into freefall.

As the Silicon Valley economy recovered in 2004, advanced mi-

crocomputers displaced demand for far more costly Sun workstations.

Sun cancelled major processor projects, closed one of its two major

factories, and initiated a series of layoffs. Sun’s hardware business

somewhat stabilized after 2005, but prospects for future growth were

bleak. To expand Java’s reach, Sun licensed Java, including its Stand-

ard Edition, Enterprise Edition, and Micro Edition, under the GNU

GPLv2 in 2006.257

Symbolizing its shift in direction, Sun changed its Nasdaq Stock

Market ticker in August 2007 from SUNW to JAVA.258 As the press

release highlighted, “[t]he new ticker reflects Sun’s 12-year-old Java

programming language, which is available free . . . There are 6 mil-

lion Java developers, and the language is used in 5.5 billion devices,

including personal computers and mobile phones.”259 In his accompa-

nying blog post, Jonathan Schwartz proudly proclaimed that:

Java touches nearly everyone — everyone — who

touches the internet. Hundreds of millions of users

see Java, and its ubiquitous logo, every day. On

PC’s, mobile phones, game consoles — you name it,

wherever the network travels, the odds are good Ja-

va’s powering a portion of the experience . . .

I know that sounds audacious, but wherever I travel

in the world, I’m reminded of just how broad the op-

portunity has become, and how pervasively the tech-

nology and brand have been deployed. Java truly is

everywhere.

suit against Microsoft seeking damages that could top $1 billion, CNET (Jul. 20, 2002),

https://www.cnet.com/news/sun-brings-antitrust-suit-against-microsoft-1/ [https://perma.cc/

U6PD-DS3L].
257. See Sun to Open-Source Java Under GPL, PRACTICAL TECH. (Nov. 11, 2006),

http://practical-tech.com/development/sun-to-open-source-java-under-gpl/415/

[https://perma.cc/XEC2-YC5B]. The GNU GPL requires that software built on the open
source code base be available to others on an open source basis — the so-called share-alike

requirement. See Carver, supra note 63.

258. See Sun Microsystems’ New Ticker: JAVA, L.A. TIMES (Aug. 24, 2007), http://
articles.latimes.com/2007/aug/24/business/fi-wrap24.s4 [https://perma.cc/3D7D-NK2D].

259. See id.

356 Harvard Journal of Law & Technology [Vol. 31

Ask a teenager if they know Java, and they’ll point

to their favorite mobile applications, the video up-

loader for their social network, or their game con-

sole. As for working professionals, I had dinner with

a financial analyst a few months ago who said he

saw the Java launch experience “a few times a day”

when accessing intranet applications — as did tens

of thousands of his fellow employees. Daily. Global

companies like Google and eBay (and Vodafone and

Citigroup) are built on Java, every major PC manu-

facturer bundles Java upon shipment, as does every

mobile phone manufacturer, and tens of millions of

developers touch it every day in the world’s IT

shops. Students learn it to get college credits for

computer science, and there are more Java courses

on university campuses than we ever imagined.

Wherever it goes, Java brings limitless opportuni-

ty — to Sun, and to our partners that develop, use or

deploy it.

 . . . SUNW represents the past, and [it’s] not without

a nostalgic nod that we’ve decided to look ahead.

JAVA is a technology whose value is near infinite to

the internet, and a brand that’s inseparably a part of

Sun (and our profitability)260

Sun initially succeeded in gaining wide adoption of the Java Mi-

cro Edition platform for feature phones — mobile phones with limited

capability, principally voice and text messaging with basic multimedia

and rudimentary internet access.261 It failed, however, to develop a

robust revenue stream and suffered further deep losses during the

2008 financial crisis. Sun’s market value fell eighty percent between

November 2007 and November 2008, resulting in further substantial

layoffs.262 By this point, Sun’s leadership viewed its software busi-

260. See Jonathan I. Schwartz, The Rise of JAVA — The Retirement of SUNW, JONATHAN

SCHWARTZ BLOG (Aug. 23, 2007), https://jonathanischwartz.wordpress.com/2007/

08/23/the-rise-of-java-the-retirement-of-sunw/ [https://perma.cc/3TST-RH6E] (emphasis in

original).
261. See Feature Phone, WIKIPEDIA, https://en.wikipedia.org/wiki/Feature_phone

[https://perma.cc/9T8F-9NDA].

262. See Ashlee Vance, Sun Microsystems Reports $1.7 Billion Loss and Falling Sales,
N.Y. TIMES (Oct. 30, 2008), at B3, http://www.nytimes.com/2008/10/31/technology/

companies/31sun.html (last visited Jan. 27, 2018); Lee Devlin, The Sun Also Sets,

Special Issue] API Copyright 357

nesses, revolving around Java, as the company’s future. They came to

see developing a robust licensing model as essential to the company’s

prosperity, and possibly its survival.

2. Google, the Mobile Computing Revolution, and Development of

Android

Just as Sun was reaching its highest point during the dot-com

bubble, Sergey Brin and Larry Page were developing a search engine

that would become the next shining star.263 Drawing on the Navigator

and Java strategies, Google focused on widespread adoption rather

than revenue generation. It offered free access to its simple, no-

nonsense search engine. As the technology press recognized its “un-

canny knack for returning extremely relevant results,”264 Google

amassed loyal users and separated itself from the crowded field of

search engines. Unlike Netscape and Sun, however, Google developed

a robust revenue model for its “free”-to-users software: keyword ad-

vertising. By October 2000, just as Sun’s hardware business was set-

ting, Google launched its AdWords program.265 In August 2001,

Google named Eric Schmidt, Sun’s former CTO, as its CEO. The

press touted that Schmidt had “led the development of Java, Sun’s

platform-independent programming technology, and defined Sun’s

Internet software strategy.”266

With revenue flowing from AdWords, Google developed a series

of new search projects — images, news, shopping, Gmail, maps —

which reinforced and expanded its advertising business. Google went

public in 2004267 and continued to expand its reach with Google

Books, YouTube, and other projects.268

K0LEE.com (Oct. 2, 2009), http://k0lee.com/2009/10/sun-also-sets./ [https://perma.cc/

UGW7-Z5F8].

263. Ironically, Andy Bechtolsheim, one of Sun’s co-founders, was among the first to
recognize Google’s promise. In August 1998, he wrote the founders a check for $100,000

before the company was established. See Tony Long, Sept. 7, 1998: If the Check Says

‘Google Inc., ‘We’re ‘Google Inc.,’ WIRED (Sept. 7, 2007),
http://www.wired.com/2007/09/dayintech-0907/ [https://perma.cc/5HS8-N9N3]. It would

prove to be one of the wisest investments in Silicon Valley history. See Andy Bechtolsheim,

WIKIPEDIA, https://en.wikipedia.org/wiki/Andy_Bechtolsheim [https://perma.cc/VF6R-
MMQ9] (estimating that Bechtolsheim’s $100,000 investment in 1998 was worth approxi-

mately $1.7 billion by March 2010). Google’s stock has more than doubled again since

2010.
264. See Top 100 Web Sites: Search Engines, PC MAGAZINE, Feb. 9, 1999, at 118.

265. See AdWords, GOOGLE, https://en.wikipedia.org/wiki/AdWords [https://perma.cc/

X4BR-R4SX].
266. See Google Names Dr. Eric Schmidt Chief Executive Officer, NEWS FROM GOOGLE

(Aug. 6, 2001), http://googlepress.blogspot.com/2001/08/google-names-dr-eric-schmidt-

chief.html [https://perma.cc/5365-UNWT].
267. See John Markoff, THE GOOGLE I.P.O.: THE OVERVIEW; Google’s Sale of Its

Shares Will Defy Wall St. Tradition, N.Y. TIMES (Apr. 30, 2004),

358 Harvard Journal of Law & Technology [Vol. 31

Google’s leaders foresaw the next gathering wave: smartphones

and mobile platforms.269 The mobile marketplace, however, was a

morass of telecommunication companies, handset makers, and soft-

ware providers.270 The telecommunications companies (telcos) were

notoriously protective of their networks.271 The handset makers,

commonly referred to as original equipment manufacturers

(“OEMs”), had divergent strategies and business models. The wide-

spread feature phones had little capability to access the Internet.

RIM’s BlackBerry phone, geared for business customers, had proven

the robust demand for mobile Email devices, but did not offer fully

functioning web browsing capability.272 Microsoft and Symbian were

promoting proprietary mobile operating systems but without notable

success. Google executives worried, however, that Microsoft could

gain traction and ultimately steer consumers away from Google search

and other services.273

Just as the Internet’s open architecture had brought order and in-

novation, Google’s leaders came to see that an open source platform

for mobile communications could provide a comparably important

platform for the growing shift to portable, hand-held devices.274 They

began to recognize that leading this transformation could pay large

http://www.nytimes.com/2004/04/30/business/google-ipo-overview-google-s-sale-its-

shares-will-defy-wall-st-tradition.html (last visited Jan. 27, 2018).
268. See Our History in Depth, GOOGLE, https://www.google.com/about/company/

history [https://perma.cc/A9XC-WZR7].
269. In its 2005 10-K filing, Google identified the emerging mobile marketplace as a po-

tential threat to its profitability (emphasis in original):

More individuals are using non-PC devices to access the In-

ternet, and versions of our web search technology developed for

these devices may not be widely adopted by users of these devices.

The number of people who access the Internet through devices
other than personal computers, including mobile telephones, hand-

held calendaring and email assistants, and television set-top devices,

has increased dramatically in the past few years. The lower resolu-
tion, functionality and memory associated with alternative devices

make the use of our products and services through such devices diffi-

cult. If we are unable to attract and retain a substantial number of al-
ternative device users to our web search services or if we are slow to

develop products and technologies that are more compatible with

non-PC communications devices, we will fail to capture a significant
share of an increasingly important portion of the market for online

services.

Google Inc., Commission Annual Report (Form 10-K) (Mar. 16, 2006) at 32.
270. See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND

STARTED A REVOLUTION 48–50 (2013).

271. See John Markoff, I, Robot: The Man Behind the Google Phone, N.Y. TIMES (Nov.
4, 2007), http://www.nytimes.com/2007/11/04/technology/04google.html (last visited Jan.

27, 2018).

272. See VOGELSTEIN, supra note 270, at 53.
273. See id. at 51.

274. See id. at 49–53.

Special Issue] API Copyright 359

dividends for Google’s search and other information services. Such an

initiative, however, posed serious challenges.

In 2003, Larry Page and Sergey Brin were smitten with the T-

Mobile Sidekick, a nifty mobile device designed by Andy Rubin, a

former Apple engineer.275 Page and Brin were especially impressed

by the way in which Sidekick provided an authentic web browsing

experience.276 Other mobile devices, such as the BlackBerry, only

showed text. Therefore users could not click on Google search ads.277

Page admired Sidekick’s engineering and was pleased that Rubin had

adopted Google as the default search engine.278

Rubin co-founded Android in October 2003 to develop “smarter

mobile devices that are more aware of [their owners’] location and

preferences.”279 When Rubin reached out to Page in 2005 to set up a

meeting, Page was eager to hear what Rubin had to say. Rubin ex-

plained that phones with computer capabilities were the future and

that Android was working toward an open platform.280 This pitch co-

incided with Google’s corporate philosophy and aspirations. In July

2005, Google acquired Android for $50 million, brought Rubin’s team

on board, and put Rubin in charge of its new mobile division.281

Building an open mobile communications platform posed sub-

stantial challenges.282 A new operating system would need to be opti-

mized for the small chips on which handsets were based. The devices

would have to work in real time. The platform had to be compact and

optimized to the particular functionalities consumers would demand.

In addition, the licensing model had to balance openness with

downstream competition and innovation. Google did not believe that

the GNU GPL would provide sufficient flexibility for the range of

275. See John Markoff, Where Does Google Plan to Spend $4 Billion?, N.Y. TIMES

(Aug. 22, 2005), http://www.nytimes.com/2005/08/22/technology/where-does-google-plan-
tospend-4-billion.html (last visited Jan. 27, 2018) (observing that Page and Brin wore the

Sidekick all-purpose voice and data communicators on their belts several years ago and that

Page had long envisioned a Google-branded smartphone).
276. See VOGELSTEIN, supra note 270, at 52–53.

277. See id. at 53.

278. See id. at 53.
279. See Ben Elgin, Google Buys Android for Its Mobile Arsenal, BUS. WK (Aug. 17,

2005), http://tech-insider.org/mobile/research/2005/0817.html [https://perma.cc/PAZ7-

WVP9].
280. See VOGELSTEIN, supra note 270, at 49 (explaining that:

[T]he software industry for mobile phones was one of the most dys-

functional in all technology. There wasn’t enough bandwidth for us-
ers to surf the Internet on a phone without frustration. Phones weren’t

powerful enough to run anything by rudimentary software. But the

biggest problem . . . was that the industry was ruled by an oligopoly.
).

281. See John Markoff, Where Does Google Plan to Spend $4 Billion?, N.Y. TIMES

(Aug. 22, 2005), http://www.nytimes.com/2005/08/22/technology/where-does-google-plan-
tospend-4-billion.html (last visited Jan. 21, 2018).

282. See VOGELSTEIN, supra note 270, at 53.

360 Harvard Journal of Law & Technology [Vol. 31

players it believed would be needed to establish a robust new mobile

platform. Google worried that the viral share and share alike provision

would discourage handset makers and telcos from making invest-

ments in innovative features. A more permissive licensing model, in

which downstream suppliers could make proprietary extensions on

top of the base platform, would better promote robust competition and

innovation.283

Google and its newly hired Android team also believed that they

would need to create an application programming environment that

was familiar and easy to use.284 At the first high-level Android plan-

ning meeting, convened on July 26, 2005, the newly established An-

droid team and Google leaders focused on three questions:

• Which type of Open Source are we?

• How do we interact with the OSS [open source

software community]?

• How do we Open Source our JVM [Java Virtual

Machine]?285

The group envisioned Android “as the world’s first Open Source

handset solution with built-in Google applications.”286 Google would

work closely with telcos and OEMs. Telcos would benefit from “the

ability to quickly deploy differentiating features and applications.”287

OEMs would benefit from a “robust, free consumer [open source]

platform.”288 And Google “benefits by having control of the user ex-

perience and built-in Google apps.”289 Open source was seen as a crit-

283. See Email from Andy Rubin to Bob Lee (Aug. 11, 2007), Trial Ex. 230, Oracle Am.,

Inc. v. Google Inc., 872 F. Supp. 2d 974, 975 (N.D. Cal. 2012) (No. C 10-03561 WHA)

(noting that “[t]he problem with GPL in embedded systems is that it’s viral, and there is no

way (for example) OEMs or Carriers to differentiate by adding proprietary works. We are
building a platform where the entire purpose is to let people differentiate on top of it.”). In a

complex and controversial twist, Google’s use of Linux kernel in Android, which is licensed

under the GNU GPL, arguably does not trigger the share and share alike licensing require-
ment. See HEATHER J. MEEKER, OPEN (SOURCE) FOR BUSINESS: A PRACTICAL GUIDE TO

OPEN SOURCE SOFTWARE LICENSING ch. 8 (2015) (discussing the GPL 2 Border Dispute).

284. Even beyond these challenging issues, smartphone technology was a patent mine-
field. See Smartphone Patent Wars, WIKIPEDIA, https://en.wikipedia.org/wiki/

Smartphone_patent_wars [https://perma.cc/8FBQ-ZDT5]. In the previous decades, telcos,

OEMs, and software companies had patented a wide range of mobile communication-
related technologies. Google would spend billions of dollars acquiring mobile technology

patents and defending patent lawsuits. Those issues, however, were not prominent on

Google’s radar screen as it embarked on its mobile technology odyssey, but they would
loom large in the years ahead. See VOGELSTEIN, supra note 270, at 53.

285. See Android GPS [Google Product Strategy]: Key strategic decisions around Open

Source at 2 (July 26, 2005), Trial Ex. 1, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d
974, 975 (N.D. Cal. 2012) (No. C 10-03561 WHA).

286. See id. at 4.

287. See id. at 5.
288. See id.

289. See id.

Special Issue] API Copyright 361

ical feature for three reasons: it was capable of (1) disrupting the

closed and proprietary nature of the Microsoft and Symbian plat-

forms, leading candidates for a smartphone platform at the time; (2)

providing carriers and OEMs “a non-threatening solution for cross-

vendor compatibility”; and (3) building a “community force around

Google handset APIs and applications.”290

The Android team thought a permissive open source license, such

as Mozilla’s, requiring licensees to maintain compatibility with

Google APIs, was appropriate.291 The team also saw Java as critical to

their plan for numerous reasons: (1) “Carriers require it”; (2) “[Mi-

crosoft] will never do it”; (3) “Elegant tools story”; (4) “Safe sandbox

for 3rd party developers”; (4) “Existing pool of developers and appli-

cations”; and (5) “Who pays? OEM pays [S]un a license, typically <

.30 in volume.”292

At the time, the Android team was planning to develop a clean

room implementation of a Java virtual machine (“JVM”).293 They

sought to obtain a Java™ logo certification for carrier certification,

which would require a license from Sun. Their main concern was en-

suring an open source JVM, not cost. The team proposed negotiating

the first open source Java 2 Platform, Micro Edition JVM license with

Sun.294

The Android team assumed they would be able to work out an

open-source license with Sun.295 By early October 2005, Rubin antic-

ipated Sun would decline to collaborate on a joint project, but that

Google could negotiate a license that granted rights to “open source”

Android with Java APIs:

We’ll pay Sun for the license and the TCK [Tech-

nology Compatibility Kit]. Before we release our

product to the open source community we’ll make

sure our JVM passes all TCK certification tests so

290. See id. at 6–7.

291. See id.

292. See id. at 8.
293. See id. at 9.

294. See id. The memo noted that Tim Lindholm, a former Sun Microsystems engineer

who was involved with Java (see John Letzing, Who Is Tim Lindholm? Google’s CEO is
Wondering That Too, WALL ST. J. (Apr. 18, 2012), http://blogs.wsj.com/digits/

2012/04/18/who-is-tim-lindholm-googles-ceo-is-wondering-that-too/ (last visited Jan. 27,

2018)), would lead the negotiation for Google, see Android GPS [Google Product Strategy],
supra note 285, at 9. It was hoped that the negotiation would reinforce Google’s JVM de-

velopment or persuade Sun to open source its multiple virtual machine implementation. See

id.
295. See Email from Andy Rubin at 14, 20–21 (Sept. 6, 2005), Trial Ex. 6, Oracle Am.,

Inc. v. Google Inc., 872 F. Supp. 2d 974, 975 (N.D. Cal. 2012) (No. C 10-03561 WHA)

(meeting notes from Aug. 30, 2005 Android GPS meeting; listing Java partnership as the
first item on “Building Partnerships” slide (p.14); listing 4th quarter 2005 as milestone for

Java partnership with Sun (p.21); estimating 4th quarter 2007 shipping date (p.20)).

362 Harvard Journal of Law & Technology [Vol. 31

that we don’t create fragmentation. Before a product

gets brought to market a manufacturer will have to

be a Sun licensee, pay appropriate royalties, and pass

the TCK again.296

Rubin outlined two options if Sun declined: (1) “Abandon our

work and adopt [Microsoft Common Language Runtime virtual ma-

chine] and C# language”; or (2) “Do Java anyway and defend our de-

cision, perhaps making enemies along the way.”297

As 2006 began, the Android team remained firmly committed to

pursuing the Java API route and Sun appeared to be warming to a li-

censing agreement. Brian Swetland, an Android Senior Software En-

gineer, communicated that the team was “pretty set” on using Java

and set forth a detailed set of reasons.298 “[T]he negotiations with Sun

are going far better than expected.”299 On January 13th, Rubin com-

municated to Sergey Brin the importance of Java for Android and ex-

plained he and Sun representatives had “conceptually agreed to open

java and additionally to broaden the relationship” to create a Red Hat-

type distribution model300 with Sun for Android.301 Rubin character-

ized the arrangement as an “industry changing partnership” which

would lead Sun to “walk away from a $100M annual J2ME licensing

business into an open source business model that we together crafted.

This is a huge step for Sun, and very important for Android and

Google.”302 By February, Scott McNealy, Sun’s CEO, expressed en-

thusiasm to Eric Schmidt over jointly developing “an Open Source

Java Linux Mobile Handset Platform implementation on the momen-

tum of over 1 Billion Java Micro Edition based handsets deployed in

the market currently.”303

296. See Email from Rubin to Tracey Cole (Oct. 11, 2005), Trial Ex. 7, Oracle Am., Inc.

v. Google Inc., 872 F. Supp. 2d 974, 975 (N.D. Cal. 2012) (No. C 10-03561 WHA). Rubin

had licensed Java for the Sidekick operating system, but that operating system did not sub-
stantially modify the platform. See VOGELSTEIN, supra note 270, at 57. The Android pro-

ject, however, sought substantial modifications. Hence, the negotiations would be more

difficult. See id.
297. See Email from Rubin to Tracey Cole (Oct. 11, 2005), supra note 296.

298. See Email from Brian Swetland (Jan. 2, 2006), Trial Ex. 13, Oracle Am., Inc. v.

Google Inc., 872 F. Supp. 2d 974, 975 (N.D. Cal. 2012) (No. C 10-03561 WHA).
299. See id.

300. See Red Hat, WIKIPEDIA, https://en.wikipedia.org/wiki/Red_Hat [https://perma.cc/

94M5-HHQK].
301. See Email from Andy Rubin to Sergey Brin (Jan. 13, 2006), Doc. 398–10, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA),

http://www.fosspatents.com/2011/09/sun-proposed-red-hat-style-android.html [https://
perma.cc/US4Q-K9SY].

302. See id.

303. See Email from Scott McNealy, contained in Email from Vineet Gupta (Feb. 9,
2006), Trial Ex. 16, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012)

(No. C 10-03561 WHA).

Special Issue] API Copyright 363

In early March, however, McNealy expressed some reticence to

Jonathan Schwartz: “The Google thing is really a pain. They are im-

mune to copyright laws, good citizenship and dont [sic] share. They

dont [sic] even call back.”304 Nonetheless, Rubin and Vineet Gupta,

Sun’s Chief Strategy/Technology Officer for OEM Software Systems

Engineering, were deep into the process of marking up a draft Collab-

oration Development and License Agreement.305

In the midst of these negotiations, Jonathan Schwartz took over

the CEO position from Sun co-founder McNealy.306 The press report-

ed that “McNealy and the company’s employees and customers are all

counting on Mr. Schwartz, a longtime admirer of Apple’s co-founder,

Steven P. Jobs, to find a way to recapture Sun’s magic.”307 In taking

the reins, Schwartz emphasized that Java was the number one driver

of growth at Sun. “More teenagers recognize Java than they do Mi-

crosoft, because that is what they have in their pocket on their cell-

phone. Shame on me if I can’t find a way to monetize that.”308

During the intervening month, the push to create a Sun-Google

collaboration lost momentum.309 On April 28th, Rubin confidently

emailed Alan Eustace, Senior Vice President of Engineering and Re-

search at Google, and Schmidt: “I smell fear and think we’re in a

great negotiating position.”310 On the structure of the deal, Rubin

summarized:

1) I am convinced they will open source java with no

tricks

2) Final price: $28M

3) We did such a good [job] of convincing them our

platform was a good idea, they want to have a hand

in it’s[sic] design and “own” parts where they have

no value add.311

304. See Email from Scott McNealy (Mar. 8, 2006), Trial Ex. 563, Oracle Am., Inc. v.

Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).

305. See Email from Andy Rubin (Mar. 26, 2006), Trial Ex. 618, Oracle Am., Inc. v.
Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (appending

draft agreement and draft agreement with further mark-ups).

306. See John Markoff, For Sun Microsystems, a Leader with Little Taste for Conven-
tion, N.Y. TIMES (Apr. 26, 2006), http://www.nytimes.com/2006/04/26/technology/for-sun-

microsystems-a-leader-with-little-taste-for-convention.html (last visited Jan. 27, 2018).

307. See id.
308. See id.

309. See Email thread from Gupta (May. 8, 2006), Trial Ex. 2372, Oracle Am., Inc. v.

Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).
310. See Rubin Email thread (Apr. 28, 2006), Trial Ex. 3443, Oracle Am., Inc. v. Google

Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).

311. See id.; see also Google’s Trial Brief, No. 1706, at 3–4, Oracle Am., Inc. v. Google
Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (“By the end of April

2006, though other terms of their partnership remained unsettled, Sun had agreed to accept a

364 Harvard Journal of Law & Technology [Vol. 31

Rubin indicated he was not onboard with the third point. Schmidt

replied the next day to say that he had not heard back from Schwartz

and to remind Rubin to make sure that Larry Page was comfortable

with the deal, noting that Page “is loathe [sic] to accept any re-

strictions on us.”312

On May 4th, Rubin emailed Schwartz proposing a meeting “to

hash this out and get the deal back on track . . . [F]rom the email ex-

change between you and Eric [Schmidt], it’s obvious to me that both

parties want to make this work. One final push may be all it takes.”313

The negotiations, however, soon hit an impasse over the code forking

issue.314

Google opted for Plan B: “Do Java anyway and defend our deci-

sion.” The Android team pushed ahead with its own Java implementa-

tion.315 Using the Java language would not be a problem as Sun had

released it to the public. But the Android team also wanted to use se-

lected Java API packages from the Java Standard Edition and develop

its own virtual machine.

If the Java programming language is analogized to the letters,

words, and syntax of the English language, the API implementations

can roughly be characterized as paragraphs or chapters within a book

written in the Java language.316 Copying the full API implementa-

tions, involving large chunks of code, would run afoul of copyright

law. The Google team believed that Android could achieve its goals

by emulating the API functionality with independently written im-

plementing code. By avoiding Sun’s restrictive licensing terms,

payment from Google of $28 million over three years to compensate Sun for the risk of lost
licensing revenue that might result from an open source Android platform.”).

312. See Andy Rubin Email thread (Apr. 28, 2006) Trial Ex. 3443, Oracle Am., Inc. v.

Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).
313. See Email thread from Vineet Gupta (May. 8, 2006) Trial Ex. 2372, Oracle Am.,

Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).

314. See Email from Eric Schmidt to Andy Rubin (May 14, 2006), Trial Ex. 215, Oracle
Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA);

Email from Desalvo to Rubin (Jun. 1, 2006), Trial Ex. 2372, Oracle Am., Inc. v. Google

Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA); VOGELSTEIN, supra
note 270, at 57 (reporting that Sun would not agree to forking of its platform); Email from

Andy Rubin to Bob Lee (Aug. 11, 2007), Trial Ex. 230, Oracle Am., Inc. v. Google Inc.,

872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (explaining Sun’s profit
motivation for choosing GPL for Java ME: “Sun chose GPL . . . so that companies would

need to come back to them and take a direct license and pay royalties.”; and noting that

Google “negotiated 9 months with Sun and decided to walk away after they threatened to
sue us over patent violations.”).

315. See Email from Chris Desalvo to Andy Rubin (Jun. 1, 2006), Trial Ex. 215, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA)
(“With talks with Sun broken off where does that leave us regarding Java class libraries?

Ours are half-ass at best. We need another half of an ass.”).

316. There are, however, critical limitations to this analogy for purposes of copyright
analysis. API packages, unlike words, function as the gears and levers of a virtual machine.

See infra notes 631–33.

Special Issue] API Copyright 365

Google could blaze its own trail without Sun’s meddling.317 Of partic-

ular importance, Google sought to avoid the GNU GPL to provide

Android adopters — carriers, OEMs, chip-makers, and other compo-

nent manufacturers — greater opportunity to customize and profit

from their own innovations and market strategies. More permissive

open licenses, such as the BSD, Mozilla, and Apache licenses, better

fit Google’s vision.

Google recognized that this path involved risk of copyright and

patent liability. The copyright issue turned on whether and to what

extent copyright law protected the function labels and structure, se-

quence, and organization (“SSO”) of Java APIs. Because of the Su-

preme Court’s deadlock in Lotus v. Borland, the First Circuit’s

treatment of function labels as uncopyrightable methods of operation

strictly governed only in the First Circuit. Nonetheless, the Second

Circuit’s Altai decision and the Ninth Circuit’s Apple decision ex-

posed the weakness of the Third Circuit’s superficial analysis of SSO

in Whelan. Furthermore, the Altai decision and the Ninth Circuit’s

Sega decision clearly viewed achieving interoperability with another

computer interface through a different implementation to be fair

game. Yet Android was aiming for something other than complete end

user interoperability. It wanted to pick and choose among interface

elements in building a new platform with an optimized interface for a

different consumer marketplace.

The Sun-Microsoft controversy further complicated the analysis.

Microsoft had licensed Java and agreed not to fork the code.318 When

it did, Sun sued for breach of contract, copyright infringement, trade-

mark infringement, and unfair competition.319 Although Sun ultimate-

ly enjoined Microsoft’s incompatible Java implementations and

recovered $20 million in damages, the copyright issue was never

squarely resolved in a judicial decision. The later antitrust settlement

only further complicated the matter. Would Sun see Google’s forking

of the Java Standard Edition API as similarly anti-competitive?

The Google strategists faced serious legal and reputational risk

proceeding without some sort of collaboration with Sun or a Java li-

cense.320 But by not proceeding quickly and independently, Google

317. See Email from Tim Lindholm to Andy Rubin (Mar. 24, 2006), Trial Ex. 18, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA)

(expressing consternation at Sun’s licensing model: “Ha, wish them luck. Java.lang api’s are

copyrighted. And Sun gets to say who they license the tck [Technology Compatibility Kit
used to ensure Java compatibility, see Appendix A] to, and forces you to take the ‘shared

part’ which taints any clean room implementation.”).

318. See Fork (Software Development), supra note 16; see also Appendix A (defining
forking).

319. See supra text accompanying notes 231–56.

320. See Email from Tim Lindholm to Andy Rubin (Oct. 26, 2005), Trial Ex. 125, Oracle
Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (“If

we don’t show strong efforts toward avoiding fragmentation we are also going to have much

366 Harvard Journal of Law & Technology [Vol. 31

faced other risks to its core business as mobile computing emerged.

The Microsoft and Symbian mobile platforms were gaining market

share and Apple was poised (and rumored) to be entering the mobile

computing marketplace.321

Over the next two years, the Android team independently devel-

oped its own implementing code for 37 of the 166 Java API packages

in the Java Standard Edition322 and an independent virtual machine

(“Dalvik”). In this way, the Android operating system emulated the

functionality of known and tested APIs that fit the Android team’s

constrained design parameters. The Android design effort can be

analogized to the Sun Green Project team’s adaptation of the C pro-

gramming language to design a secure, reliable, object-oriented, plat-

form-independent language that could interpret other languages and

could function on small computer chips embedded in consumer devic-

es.323 It can also be analogized to their earlier effort to adapt Oak for

the web, which resulted in Java.324 Android’s use of the same function

labels as Java would enable millions of Java programmers to quickly

master Android app development. Although Android apps would not

be fully interoperable with Java, they were similar enough and better

optimized to the constraints of mobile devices.325 This clean room

effort added substantially more time and cost to Android develop-

more trouble with Sun.”); Email from Andy Rubin to Eric Schmidt (Nov. 14, 2007), Trial
Ex. 180, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-

03561 WHA) (commenting that the Java licensing issue “is a touchy subject”).

321. See Timeline of Apple “iPhone” Rumors (1999-present), FIERCE WIRELESS (Dec.
18, 2006 10:26 AM), http://www.fiercewireless.com/story/timeline-apple-iphone-rumors-

1999-present [https://perma.cc/HY7C-QJSE].

322. See Oracle Am., Inc. v. Google Inc., 872 F. Supp.2d 974, 977 (N.D. Cal. 2010),
rev’d, 750 F.3d 1339 (Fed. Cir. 2014). Appendix A lists and summarizes the 37 APIs.

As a lead Android programmer would later explain:

there’s certain of these APIs which you . . . fundamentally think of
as . . . part of the system that you can just use without really having to

think too much about it. . . . [M]y job was . . . to . . . sift through all of

that and come up with a nice and consistent set of APIs that we have
would then implement and provide to developers.

See Testimony of Dan Bornstein, Trial Tr. at 1782–83, Oracle Am., Inc. v. Google Inc., 872

F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA). The goal was not to implement
all of the API packages present in any particular Java Platform, but rather “to provide some-

thing that was familiar to developers” in a “good mobile platform” that met “certain con-

straints” of that medium, such as battery limitations, less memory than a desktop computer
or server, and slower CPU speed. See id. at 1783–84.

323. See supra text accompanying notes 196–205.

324. See id.
325. See Stephen Shankland, Google Carves an Android Path Through Open-source

World: Google Is Committed to Many Open-source Tenets With Its Android Mobile Phone

Software — But it's Willing to Step on a Few Open-source Toes, Too. CNET (May 22, 2008),
http://www.cnet.com/news/google-carves-an-android-path-through-open-source-world/ (last

visited Jan 27, 2018).

Special Issue] API Copyright 367

ment, but avoided literal copying of the Java API implementation

code.326

Within the larger Google enterprise, the company hedged its mo-

bile strategy by pursuing two paths: (1) working with Apple, which

was developing a phone platform, to integrate Google applications;

and (2) developing the independent Android platform. Rival groups

within Google competed for primacy.327 Even within the Android

path, there was some tension about whether to focus on software

(Schmidt’s instinct) or develop a Google handset (Page’s vision).328

Google was a software company, with no experience in designing and

manufacturing devices.

By the end of 2006, the Android team had been working inten-

sively for the better part of two years developing code, negotiating

license and partnership agreements, and designing prototypes. They

were on track to release the Android platform by the end of 2007.329

Those plans encountered a seismic jolt on January 9, 2007, the day

Steve Jobs unveiled the iPhone to a rapturous response.330 Rubin im-

mediately realized that “we’re not going to ship that [the current ver-

sion of the Android] phone.”331 It looked conventional and lacked the

magical touchscreen and seamless design of the iPhone. While the

Android platform and phone was more advanced than the iPhone in

many of its features and integration with Google web applications, it

had nowhere near the visual and tactile appeal of the iPhone.332

After the initial shock of the iPhone announcement, the Android

team realized that Apple’s remarkable device and business plan

played into Android’s “open platform” strategy. Apple had entered

into an exclusive distribution deal with AT&T, one of the major

telcos.333 The other telcos, some of whom had been hesitant to partner

with Google, were now anxious to join forces to compete with

AT&T.334 Moreover, Apple’s proprietary platform left little room for

telcos to develop distinctive features. Android’s open platform and

more generous partnership terms provided greater opportunity for

326. See VOGELSTEIN, supra note 270, at 57 (reporting that “[w]ithout the Java code,

Rubin had to spend months of extra time creating a work-around”).

327. See id. at 62, 84–95.

328. See id. at 56–57.
329. See id. at 45.

330. See John Markoff, Apple Introduces Innovative Cellphone, N.Y. TIMES (Jan. 10,

2007), at A1, http://www.nytimes.com/2007/01/10/technology/10apple.html (last visited
Jan. 27, 2018).

331. See VOGELSTEIN, supra note 270, at 46; see also id. at 45 (quoting Chris DeSalvo:

“As a consumer I was blown away. I wanted on immediately. But as a Google engineer, I
thought, ‘we’re going to have to start over.’”).

332. See id. at 47.

333. See Markoff, supra note 330 (reporting that the iPhone would be available solely
through Cingular Wireless, AT&T’s wireless division, by mid-year).

334. See VOGELSTEIN, supra note 270, at 119–121.

368 Harvard Journal of Law & Technology [Vol. 31

telcos to differentiate their products, innovate, and profit.335 Further-

more, Google’s partnering with Apple on the iPhone through integra-

tion of Google applications and assurances from Google leaders that

Android was not a significant initiative lulled Steve Jobs into a false

sense of security that Google was not seriously pursuing a robust

competing platform or line of products.336

The fanfare surrounding the iPhone announcement rallied support

within Google for the Android project. Google’s leadership came to

see Apple’s rapid rise in the mobile computing field as a threat to its

core businesses in much the same way that Microsoft had dominated

desktop computing.337 Google allocated more resources to the An-

droid project.338 The Android team found negotiating partnerships

with telcos and OEMs far easier.339 By working around Sun on the

Java API copyright issue, Android programmers had greater flexibil-

ity to optimize the platform without interference from Sun.340 Google

leadership pressured the Android team to accelerate Android’s re-

lease.341

Google began the rollout of the Android platform in early No-

vember 2007.342 On November 5th, Google unveiled the Open Hand-

335. See id. Google sweetened the partnership for telcos by offering them a cut of app

revenues. This motivated the carriers to push Android phones, which in the end contributed
to Google’s bottom line through enhanced use of Google applications. The combined push

catapulted Android to record sales. See id. at 123.

336. See id. at 84–103, 113–15, 129.
337. See id. at 129–30.

338. See Android GPS Meeting Notes (Jul. 17, 2007), Trial Ex. 433, Oracle Am., Inc. v.
Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA); VOGELSTEIN,

supra note 270, at 83–84.

339. See VOGELSTEIN, supra note 270, at 119–21.
340. See Email from Andy Rubin to Eric Schmidt (May 11, 2007), Trial Ex. 207, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA)

(referring to Sun’s renewed interest to discuss mobile technology and favoring independ-
ence:

I don’t see any way we can work together and not have it revert to ar-

guments of control. I’m done with Sun (tail between my legs, you
were right). They won’t be happy when we release our stuff, but we

now have a huge alignment with industry, and they are just begin-

ning. While I’m not underestimating their abilities, when folks like
DoCoMo [leading mobile phone operator in Japan] tell us they want

to dump Sun for us, I’m assuming we have something valuable and

good.
).

341. See Email from Eric Schmidt to Andy Rubin, Larry Page, Sergey Brin, et al. (Jan.

15, 2007), Trial Ex. 216, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal.
2012) (No. C 10-03561 WHA) (“I’d like to have an Android GPS as soon as practical”);

VOGELSTEIN, supra note 270, at 83.

342. See Open Source Alliance, Industry Leaders Announce Open Platform for Mobile
Devices: Group Pledges to Unleash Innovation for Mobile Users Worldwide, OPEN

HANDSET ALLIANCE (Nov. 5, 2007), http://www.openhandsetalliance.com/

press_110507.html [https://perma.cc/DQ9V-GXT2]; Miguel Helft & John Markoff, Google
Enters the Wireless World, N.Y. TIMES (Nov. 5, 2007), http://www.nytimes.com/

2007/11/05/technology/05cnd-gphone.html (last visited Jan. 27, 2018); Saul Hanseel, The

Special Issue] API Copyright 369

set Alliance, a consortium of handset makers, application developers,

telcos, and component manufacturers (such as chip makers), in con-

junction with the outlines of the Android platform.343 Andy Rubin

explained that Android’s software was based on the Linux operating

system and Sun’s Java language, which would enable programmers to

easily develop applications that connect to independent Web ser-

vices.344

Jonathan Schwartz, Sun’s CEO, publicly applauded Google’s use

of Java, proclaiming that Google had “strapped another set of rockets

to the [Java] community’s momentum-and to the vision defining op-

portunity across our (and other) planets.”345 Privately, Sun feared that

Android’s use of Java would undermine its WORA paradigm and its

mission to establish Java ME as the leading mobile platform and a

significant revenue generator.346 Following Google’s November 5th

Android announcement, Jonathan Schwartz communicated to col-

leagues that “[a] separate implementation isn’t a fork — so long as

Google agrees to certify their platform as compliant with the Java

specification. If they don’t, they won’t be able to call it Java.”347 In an

“off the record” communication with a New York Times reporter one

day after the Android announcement, Schwartz sniped about Google’s

opposition to Sun’s plan to open source Java.348

The Android announcement produced significant fallout beyond

Sun. Steve Jobs saw the Android announcement as betrayal by Brin,

Page, and Schmidt.349 Schmidt had served on Apple’s Board of Direc-

Gphone: So Open It Could Be Closed, N.Y. TIMES (Nov. 5, 2007), http://

bits.blogs.nytimes.com/2007/11/05/the-gphone-so-open-it-could-be-closed/

[https://perma.cc/H2UX-9U2J].
343. See Open Handset Alliance, WIKIPEDIA, https://en.wikipedia.org/wiki/

Open_Handset_Alliance [https://perma.cc/2YTZ-Z9ZJ].

344. See Miguel Helft & John Markoff, Google Enters the Wireless World, N.Y. TIMES

(Nov. 5, 2007), http://www.nytimes.com/2007/11/05/technology/05cnd-gphone.html (last

visited Jan. 27, 2018).

345. See Jonathan I. Schwartz, Congratulations Google, Red Hat and the Java Communi-
ty!, JONATHAN’S BLOG! (Nov. 5, 2007), http://web.archive.org/web/20101023072550/

http://blogs.sun.com/jonathan/entry/congratulations_google [https://perma.cc/53KC-GXBJ].

346. See Email thread involving Vineet Gupta (Sun) (Sep. 24, 2007), Trial Ex. 565, Ora-
cle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).

347. See Email from Schwartz (Nov. 12, 2007), Trial Ex. 1055, Oracle Am., Inc. v.

Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA). At the time
that Schwartz wrote that Email, Google had not yet released the Android SDK.

348. See Email from Jonathan Schwartz to John Markoff (Nov. 6, 2007),

http://www.fosspatents.com/2012/04/former-sun-chief-about-google-immune-to.html
[https://perma.cc/NRD5-QSFJ].

349. See WALTER ISAACSON, STEVE JOBS 511–14, 524, 563 (2011). After initially disbe-

lieving that Google had betrayed him, see id. at 95, Steve Jobs declared war over the An-
droid betrayal. Jobs characterized its 2011 patent infringement suit against HTC (and, by

extension, Android) as saying:

‘Google, you fucking ripped off the iPhone, wholesale ripped us off.’
Grand theft. I will spend my last dying breath if I need to, and I will

spend every penny of Apple’s $40 billion in the bank, to right this

370 Harvard Journal of Law & Technology [Vol. 31

tors since 2006.350 The ensuing jockeying for mobile phone patent

portfolios, lawsuits, and interpersonal repercussions restructured ma-

jor industries. The growing rift between Apple and Google generated

rivalry with the iPhone and rallied support, even among those who

had worked to support integration of Google applications with the

iPhone, for a robust, independent, and competitive Android plat-

form.351

Based on the Android SDK, Sun and other industry observers

could see that Google was diverging from the Java standard platform

and the Java Community Process.352 Google deflected suggestions

that Android fragmented Java by focusing attention on how the Open

Handset Alliance provided a more responsive, less restrictive, open

platform for mobile devices.353 Sun and Google continued to monitor

wrong. I’m going to destroy Android, because it’s a stolen product. I’m

willing to go thermonuclear war on this. They are scared to death, be-

cause they know they are guilty. Outside of Search, Google’s prod-
ucts — Android, Google Docs — are shit.

Id. at 512.

350. See Dr. Eric Schmidt Resigns from Apple’s Board of Directors, APPLE NEWSROOM
(Aug. 3, 2009), https://www.apple.com/pr/library/2009/08/03Dr-Eric-Schmidt-Resigns-

from-Apples-Board-of-Directors.html [https://perma.cc/P58N-LTT9] (quoting Steve Jobs:

Eric has been an excellent Board member for Apple, investing his
valuable time, talent, passion and wisdom to help make Apple suc-

cessful. Unfortunately, as Google enters more of Apple’s core busi-

nesses, with Android and now Chrome OS, Eric’s effectiveness as an
Apple Board member will be significantly diminished, since he will

have to recuse himself from even larger portions of our meetings due
to potential conflicts of interest. Therefore, we have mutually decided

that now is the right time for Eric to resign his position on Apple’s

Board.
).

351. See VOGELSTEIN, supra note 270, at 115–19.

352. See Stephen Shankland, Sun’s Worried that Google Android Could Fracture: Java
Company’s Software Chief Wants to Work with Google to Make Sure that the Android

Phone Software Won’t Split Java into Incompatible Versions, CNET (Nov. 14, 2007),

http://www.cnet.com/news/suns-worried-that-google-android-could-fracture-java/ (last
visited Jan. 27, 2018) [hereinafter Shankland, Sun’s Worried that Google Android Could

Fracture] (reporting that:

[p]ainful flashbacks are beginning to torment those of us who lived
through the Java wars between Sun Microsystems and Microsoft that

began 10 years ago. Earlier this week, Google released programming

tools for its Android mobile-phone software project that shun the ex-
isting Java standard-setting process in favor of a Google-specific va-

riety. Sun responded on Wednesday by expressing concern that

Google’s Android project could fragment Java into incompatible ver-
sions.

); see also Stephen Shankland, Google’s Android Parts Ways with Java Industry Group

Heads Up, Programmers: Google Opted to Create its Own Java Standards and Technology
for its Android Mobile Phone, Not Piggyback on the Existing Java Community Process,

CNET (Nov. 13, 2007), http://www.cnet.com/news/googles-android-parts-ways-with-java-

industry-group/ (last visited Jan. 27, 2018).
353. See id.; Shankland, Sun’s Worried that Google Android Could Fracture (quoting a

Google press statement:

Special Issue] API Copyright 371

each other’s activities warily as Android products moved into the

marketplace in 2008 and 2009,354 a period in which Apple’s iPhone

was ascendant. Leaders at both companies occasionally broached li-

censing and collaboration,355 but a gulf remained.356 Sun refrained

from blocking Android through legal action.

The marketplace quickly resolved the fate of the two companies.

With Java ME failing to take off, Sun became an acquisition target.357

Rubin’s vision proved prescient: “‘When you have multiple O.E.M.’s

building multiple products in multiple product categories, it’s just a

matter of time’ before sales of Android phones exceed the sales of

Google and the other members of the Open Handset Alliance are

working to help solve fragmentation and supporting the developer

community by creating Android, a mobile platform that responds to
the needs of the developers, has the backing of industry leaders, and

will be available as open source under a nonrestrictive license.

).
354. See Email from Vineet Gupta to Jonathan Schwartz (Oct. 23, 2008), Trial Ex. 2070,

Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561

WHA) (indicating that Google’s Android “proposal more than likely is going to be about
buying out Java”); Email from Andy Rubin to Dick Wall (Mar. 24, 2008), Trial Ex. 29,

Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561

WHA) (warning Google representatives not to demonstrate Android features to Sun em-
ployees or lawyers at JavaOne convention); Email from Dave Sobata to Tim Lindholm

(Feb. 19, 2009), Trial Ex. 326, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D.

Cal. 2012) (No. C 10-03561 WHA) (raising the question of who will own Java if Sun col-
lapses and suggesting Google could buy the patent and copyright rights as a way of making

“[o]ur Java lawsuits go away”); Email from Tim Lindholm to Daniel Bornstein (Apr. 29,
2009), Trial Ex. 1029, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal.

2012) (No. C 10-03561 WHA) (recommending avoiding interaction with Sun so as to avoid

“inadvertently stir[ring] anything up for Android”).
355. See Lindholm-Rubin Email thread (Nov. 24, 2008), Trial Ex. 1002, Oracle Am., Inc.

v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (discussing

recent efforts by Sun to “certify Android through the Java process and become licensees of
Java.”); Email from Eric Schmidt to Jonathan Schwartz (Mar. 31, 2008), Trial Ex. 3466,

Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561

WHA) (Re: update on android licensing; “We are happy to have our team meet with anyone
at Sun who would like more information or who has ideas for us”; calling attention to an

explanation of why Google chose to distribute Android to the public using the Apache v2

license); see also Ryan Paul, Why Google Chose the Apache Software License over GPLv2
for Android, ARS TECHNICA (Nov. 6, 2007), http://arstechnica.com/uncategorized/

2007/11/why-google-chose-the-apache-software-license-over-gplv2/ [https://perma.cc/

U4HB-HW2C] (linked in Schmidt’s March 31, 2008 Email to Schwartz).
356. Sun had proposed to license Java to Google for $60 million over three years plus an

additional amount of up to $25 million per year in revenue sharing. See Letter from Scott

Weingaertner (Counsel to Google) to Judge Alsup at 5, Oracle Am., Inc. v. Google Inc., 872
F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA), https://www.scribd.com/

document/58133136/Oracle-Google-Damages-June-6-Precis-Unredacted (last visited Jan.

27, 2018). It is unclear whether that offer would have afforded Google the flexibility and
independence in developing Android that it sought.

357. See Patrick Thibodeau and Elizabeth Montalbano, Update: Oracle Buying Sun in

$7.4B Deal, COMPUTERWORLD (Apr. 20, 2009), http://www.computerworld.com/article/
2523479/data-center/update--oracle-buying-sun-in--7-4b-deal.html (last visited Jan. 27,

2018).

372 Harvard Journal of Law & Technology [Vol. 31

proprietary systems like Apple’s and R.I.M.’s.”358 Figure 2 tells the

story. After a gradual start, Android took the global smartphone oper-

ating systems market by storm, surpassing 50% of global smartphone

operating systems by the third quarter of 2011 and rising to 80% of

the market by the middle of 2013. 359 It exceeded 84% of the market

in 2016, with Apple’s iOS coming in second place with about 15% of

the market.360

Figure 2. Global Market Share: Smartphone Operating Systems

3. Oracle’s Acquisition of Sun Microsystems

Despite consternation over Android’s “unofficial,” non-standard,

and incomplete Java implementation,361 Sun declined to pursue legal

358. See Brad Stone, Google’s Andy Rubin on Everything Android, N.Y. TIMES (Apr. 27,

2010), http://bits.blogs.nytimes.com/2010/04/27/googles-andy-rubin-on-everything-android/

[https://perma.cc/6RBL-HE7R].
359. See Statista, Global Market Share Held By the Leading Smartphone Operating Sys-

tems in Sales to End Users from 1st Quarter 2009 to 1st Quarter 2016, THE STATISTICS

PORTAL (2016), http://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/ [https://perma.cc/W6CP-92XL?type=image].

360. See id.

361. See Dan Farber, Java Creator James Gosling: ‘Google Totally Slimed Sun,’ CNET
(Apr. 30, 2012), http://www.cnet.com/news/java-creator-james-gosling-google-totally-

slimed-sun/ [https://perma.cc/7MUC-UAY3] (quoting Gosling stating that Sun was

“wronged” by Google and citing Sun’s objections to Android’s “very weak notions of in-
teroperability” with Java); Java (programming language), WIKIPEDIA,

https://en.wikipedia.org/wiki/Java_(programming_language) [https://perma.cc/X94V-5LG9]

(referring to Android as an “unofficial” Java software platform); Joe Mullin, Sun’s Jonathan
Schwartz at Trial: Java Was Free, Android Had No Licensing Problem, ARS TECHNICA

(May 11, 2016), http://arstechnica.com/tech-policy/2016/05/suns-jonathan-schwartz-at-trial-

Special Issue] API Copyright 373

action.362 Such a course of action would have gone against Sun’s

long-standing cultural norms about open technology and evangelism

within the industry.363 Moreover, Sun could ill afford a prolonged

litigation battle and the risk to Sun’s reputation with other technology

companies. Google was well-positioned financially and legally to put

up a stiff defense. Sun’s business was struggling and Wall Street and

potential suitors would likely have seen such a lawsuit as a sign of

desperation and a distraction from Sun’s business goals.

With its hardware business in decline, software acquisitions sput-

tering,364 and inability to monetize Java, Sun Microsystems’s ability

to move forward as an independent company came into question.365

After acquisition negotiations with IBM failed in late 2008, Oracle

successfully bid $7.4 billion in April 2009.366 Oracle had built many

of its software products with Java and hence had strong motivation to

ensure that the Java platform would be in safe hands. Moreover, Ora-

cle believed that it could significantly reduce Sun’s operating costs as

part of a combined company. It believed that the Sun products could

bring in $1.5 billion in operating profits in the first year following the

acquisition.367

Oracle’s acquisition of Sun Microsystem dramatically altered the

Java enforcement equation. Larry Ellison, Oracle’s co-founder and

CEO, had a reputation for brash business tactics.368 Whereas Sun’s

leadership had embraced open technology with religious fervor, Ora-

java-was-free-android-had-no-licensing-problem/ [https://perma.cc/BZ28-SDF9] (quoting
former Sun CEO expressing annoyance at Google’s refusal to work out a license with Sun).

362. See Farber, supra note 361.

363. See James Gosling: The Shit Finally Hits the Fan (Aug. 12, 2010),
http://news.java-virtual-machine.net/6018.html [https://perma.cc/T8EY-N5GV] (observing

that “[f]iling patent suits was never in Sun’s genetic code”) (quoted in Oracle’s Java API

Suit Against Google — Five Years Later, FELDTHOUGHTS (Jun. 29, 2015),
http://www.feld.com/archives/2015/06/oracles-java-api-suit-google-five-years-later.html

[https://perma.cc/UQ8Q-

CGKW]); Mullin, Sun’s Jonathan Schwartz at Trial, supra note 178 (quoting Sun’s CEO
explaining that Android “was completely consistent with [Sun’s] practices. When you say

APIs are open, there are competitive implementations . . . It wasn’t going to call itself Java,

so there was nothing we could do”); but see Farber, supra note 361 (quoting Scott McNealy,
Sun’s co-founder and former CEO, disputing Schwartz’s assertion that Sun allowed any

forking of Java code so long as the implementer did not use the Java name or logo).

364. Sun had purchased StorageTek, a storage vendor, in 2005 for $4.1 billion and
MySQL, a relational database company, in 2008, for $1 billion. See Jon Brodkin, The

Downfall of Sun Microsystems, NETWORKWORLD (Apr. 24, 2009), http://

www.networkworld.com/article/2268096/servers/the-downfall-of-sun-microsystems.html
[https://perma.cc/XTP6-DCYM].

365. See id.

366. See Oracle Buys Sun Microsystems for $7.4B, CBS NEWS (Apr. 20, 2009),
http://www.cbsnews.com/news/oracle-buys-sun-microsystems-for-74b/ [https://perma.cc/

9YS8-QZLP] (reporting that analysts had long said that Sun could not stand on its own and

were surprised when merger talks with IBM in late 2008 broke down).
367. See Brodkin, supra note 364.

368. See supra note 185.

374 Harvard Journal of Law & Technology [Vol. 31

cle's approach had been strategic. Unlike Sun, Oracle possessed the

financial strength and diversified business strategy to pursue high

stakes litigation. It had done well in recent years pursuing copyright

litigation against SAP and instituting corporate takeovers.369

In announcing the Sun acquisition, Ellison characterized Java as

“the single most important software asset we have ever acquired” and

touted Oracle’s Java-based middleware business, bolstered first by its

BEA Systems acquisition370 and purchase of Sun, as being “on track

to become as large as Oracle’s flagship database business.”371 Oracle

would need to re-position Java’s licensing business to achieve that

goal. Oracle’s leadership team sought to pursue a far more aggressive

Java licensing strategy.

The Sun acquisition was completed in early 2010.372 Oracle im-

mediately approached Google about its use of Java in the Android

platform. Google seriously considered alternatives to using Java,373

but ultimately stood its ground because of the lack of good worka-

rounds. For Oracle, the prospect of spending millions on attorneys’

fees and costs for even a modest possibility of sharing in the large and

growing Android marketplace was a plausible, if not attractive, busi-

ness proposition. Moreover, it could quickly establish Oracle as a key

player in the lucrative, strategically important, and rapidly growing

mobile operating system marketplace. Delay would only enhance

Google’s laches and equitable estoppel defenses.

Yet Google would be a formidable adversary. Google was enor-

mously profitable and had established a strong reputation for protect-

369. See Verne F. Kopytoff, SAP Ordered to Pay Oracle $1.3 Billion, N.Y. TIMES, Nov.

23, 2010; Jim Henschen, Oracle Lawsuit Against SAP Settled at Law, INFORMATIONWEEK
(Nov. 14, 2016), http://www.informationweek.com/cloud/software-as-a-service/oracle-

lawsuit-against-sap-settled-at-last/d/d-id/1317483 [https://perma.cc/R5NR-EUUD]; Oracle

Corp. v. SAP AG, WIKIPEDIA, https://en.wikipedia.org/wiki/Oracle_Corp._v._SAP_AG
[https://perma.cc/R5KF-BLJX]; PeopleSoft, WIKIPEDIA, https://en.wikipedia.org/

wiki/PeopleSoft [https://perma.cc/7Z2Y-R8ZP].

370. See Larry Dugan, Surprise! Oracle buys BEA Systems, ZDNET (Jan. 16, 2008),
http://www.zdnet.com/article/surprise-oracle-buys-bea-systems/ [https://perma.cc/YV8N-

5BDB]. BEA Systems specializes in enterprise infrastructure software products.

371. See Patrick Thibodeau and Elizabeth Montalbano, Update: Oracle Buying Sun in
$7.4B Deal, COMPUTERWORLD (Apr. 20, 2009), http://www.computerworld.com/article/

2523479/data-center/update--oracle-buying-sun-in--7-4b-deal.html [https://perma.cc/X9LG-

NLA7].
372. Antitrust authorities in the U.S. and Europe delayed the acquisition out of concern

that Oracle, the leading relational database vendor, was acquiring a promising competing

business (MySQL). See James Kanter, New Snag for Oracle in Sun Deal, N.Y. TIMES (Sept.
3, 2009), http://www.nytimes.com/2009/09/04/technology/companies/04oracle.html (last

visited Jan. 27, 2018).

373. See Email from Tim Lindholm to Andy Rubin (Aug. 6, 2010), http://
www.fosspatents.com/2011/11/googles-five-failed-attempts-to-give.html [https://perma.cc/

EY8Y-KMSW] (noting that Page and Brin had asked engineers to “investigate what tech-

nical alternatives exist to Java for Android and Chrome. We’ve been over a bunch of these,
and think they all suck. We conclude that we need to negotiate a license for Java under the

terms we need.”).

Special Issue] API Copyright 375

ing its business initiatives at substantial cost and with almost religious

fervor. By mid-2010, Android had already surpassed Apple’s market

share of the global smartphone marketplace.374 Google had fought

long and hard to secure its core business assets and there was little

reason to believe that its approach to defending Android would be any

different. Google was actively defending patent lawsuits as well as

copyright threats to YouTube and Google Books.375 The conditions

were set for a second API intellectual property battle royale.

B. The Oracle v. Google Litigation

After six months of negotiations with Google, Oracle fired a

broadside salvo in the Northern District of California in August 2010,

alleging that Android infringed Java-related patents and copyrights.

With billions of dollars and control of two of the most important

software platforms at stake, the parties would spare no expense in

litigating the case over the next eight years, with more battles yet to

unfold.

As background for understanding the complex issues surrounding

legal protection for APIs, this Section chronicles the Oracle v. Google

litigation. The key phases are: (1) the complaint; (2) the first trial fol-

lowed by Judge Alsup’s ruling that the Java APIs are not copyrighta-

ble; (3) the Federal Circuit’s reversal of Judge Alsup’s

copyrightability ruling and remand for a fair use trial; (4) the interloc-

utory certiorari petition; (5) the fair use trial; and (6) the road ahead.

Section III.C examines the uncertain copyright status of APIs. Part IV

examines the district court and Federal Circuit decisions and assesses

the larger policy ramifications.

1. Oracle’s Complaint and Pretrial Case Management

Oracle’s initial complaint alleged, in the barest of bones, that An-

droid infringed seven utility patents and copyrights in the “code, doc-

umentation, specifications, libraries, and other materials that comprise

the Java platform.”376 Oracle sought a permanent injunction and dam-

ages. The case was assigned to Judge William Alsup, an experienced

374. See Figure 2.

375. See Viacom International, Inc. v. YouTube, Inc., Civil Action No. 07 CV 2103

(S.D.N.Y. filed Mar. 13, 2007); Author’s Guild, et al. v. Google Inc., Class Action Com-
plaint, Civil Action No. 05 CV 8138 (S.D.N.Y. filed Sep. 20, 2005).

376. See Complaint for Patent and Copyright Infringement, Oracle Am., Inc. v. Google

Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA), https://
docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/1

[https://perma.cc/QV4W-6KST].

376 Harvard Journal of Law & Technology [Vol. 31

and well-respected jurist who was not afraid of technologically com-

plex subject matter.377

After Google challenged the adequacy of Oracle’s copyright in-

fringement allegations, Oracle asserted that:

[a]pproximately one third of Android’s Application

Programmer Interface (API) packages . . . are deriva-

tive of Oracle America’s copyrighted Java API

packages . . . and corresponding documents. The in-

fringed elements of Oracle America’s copyrighted

work include Java method and class names, defini-

tions, organization, and parameters; the structure, or-

ganization and content of Java class libraries; and the

content and organization of Java’s documentation.378

Much of the pretrial case management revolved around the patent

allegations, damages experts, admissibility of the August 2010 Lind-

holm Email,379 and court-ordered mediation.380 Google sought reex-

amination of the asserted patents in February 2011.381 The PTO’s

377. See Dan Farber, Judge William Alsup: Master of the Court and Java, CNET (May 31,

2012), http://www.cnet.com/news/judge-william-alsup-master-of-the-court-and-java/ (last

visited Jan. 27, 2018).

378. See Amended Complaint for Patent and Copyright Infringement at ¶ 40, Oracle
Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA),

https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/
231846/36 [https://perma.cc/Z5RA-G4MP].

379. See Email from Tim Lindholm to Andy Rubin (Aug. 6, 2010), supra note 373 (stat-

ing that:
What we’ve actually been asked to do (by Larry and Sergei [sic]) is to

investigate what technical alternatives exist to Java for Android and

Chrome. We’ve been over a bunch of these, and think they all suck.
We conclude that we need to negotiate a license for Java under the

terms we need.

); Failed attempt #7: Federal Circuit Denies Google Petition to Exclude Lindholm Email,
FOSS PATENTS (Feb. 6, 2012), http://www.fosspatents.com/2012/02/failed-attempt-7-

federal-circuit-denies.html [https://perma.cc/Q4LB-X9KV]; Google’s Five Failed Attempts

to Give Confidential Status to ‘Damning’ Email in Oracle Case, FOSS PATENTS (Nov. 9,
2011), http://www.fosspatents.com/2011/11/googles-five-failed-attempts-to-give.html

[https://perma.cc/P2GZ-8J5P].

380. See Order Re: Further Settlement Conferences, Oracle Am., Inc. v. Google Inc., 872
F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (Mag. Judge Paul Grewal),

https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/

231846/848 [https://perma.cc/5DGS-HJKP] (stating:
We are referred to as trial courts because, in the end, some cases just

need to be tried. [¶] This case is a good example of why that is so.

Despite their diligent efforts and those of their able counsel, the par-
ties have reached an irreconcilable impasse in their settlement discus-

sions with the undersigned.

) (emphasis in original).
381. See Darryl K. Taft, Google Asks Patent Office for Second Opinion on Oracle’s An-

droid Claims, EWEEK (Feb. 17, 2011), http://www.eweek.com/c/a/Application-

Special Issue] API Copyright 377

rejection of all claims in several of the Oracle patents,382 although still

subject to further review and appeal, provided Google with leverage

to narrow the scope of the patent case or to stay part of the litigation.

Under pressure from Judge Alsup, who sought to avoid multiple pro-

ceedings, Oracle dismissed many of its patent claims to get an earlier

trial date.383

Google sought summary judgment on the copyright cause of ac-

tion.384 On September 15, 2011, Judge Alsup largely rejected

Google’s copyright summary judgment motion.385 While agreeing

with Google that “the names of the Java language API files, packages,

classes, and methods are not protectable as a matter of law”386 under

the copyright doctrine which denies protection for names and short

phrases,387 the court nonetheless rejected Google’s broader argument

that API declarations (beyond short phrases) and documentation are

unprotectable under the scènes à faire, merger, or methods of opera-

tion (§ 102(b)) doctrines. Judge Alsup concluded that Google’s cate-

gorical approach “ignores the possibility that some method

declarations (for example) may be subject to the merger doctrine or

may be scènes à faire, whereas other method declarations may be cre-

ative contributions subject to copyright protection.”388 As for the

methods of operation, Judge Alsup explained that “[e]ven if Google

can show that APIs are methods of operation not subject to copyright

Development/Google-Asks-Patent-Office-for-Second-Opinion-on-Oracles-Android-Claims-
100246 [https://perma.cc/BA4N-L8H2].

382. See Scott Daniels, An Update on Oracle’s Infringement Case Against Google,

USPTO LITIGATION ALERT™ (Feb. 14, 2012), http://blog.whda.com/2012/02/an-update-on-
oracles-infringement-case-against-google/ [https://perma.cc/EJ39-6DB3].

383. See Oracle-Google Trial to Start on April 16, 2012, FOSS PATENTS (Mar. 13,

2012); Oracle Offers Withdrawal of Three More Patents in Exchange for Spring Trial
Against Google, FOSS PATENTS (Mar. 9, 2012), http://www.fosspatents.com/2012/03/

oracle-offers-withdrawal-of-three-more.html [https://perma.cc/G4AG-4KCC]; Pressure

Mounting on Oracle to Drop Patent Claims Against Google and Focus on Copyright, FOSS

PATENTS (Mar. 5, 2012), http://www.fosspatents.com/2012/03/pressure-mounting-on-

oracle-

to-drop.html [https://perma.cc/J3XV-BKRZ].
384. See Mot. for Summary Judgment on Count VIII of Plaintiff Oracle Am.’s Amended

Complaint filed by Google Inc., Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D.

Cal. 2012) (No. C 10-03561 WHA).
385. See Order Partially Granting And Partially Denying Defendant’s Mot. For Summary

Judgment On Copyright Claim, Oracle Am., Inc. v. Google Inc., 810 F. Supp. 2d 1002

(N.D. Cal. 2011).
386. Id. at 1009–10.

387. See Material Not Subject to Copyright, 37 C.F.R. § 202.1(a) (2014) (Copyright Of-

fice regulation denying copyright registration for “Words and short phrases such as names,
titles, and slogans”); Planesi v. Peters, No. 04-16936, slip op. at *1 (9th Cir. Aug. 15, 2005);

Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1524 n.7 (9th Cir. 1992) (“Sega’s security

code is of such de minimis length that it is probably unprotected under the words and short
phrases doctrine.”).

388. See Oracle Am., 810 F. Supp.2d at 1010–11.

378 Harvard Journal of Law & Technology [Vol. 31

protection, that would not defeat Oracle’s infringement claim con-

cerning the accused specifications.”389

After some wrangling, Judge Alsup established an April 2012 tri-

al date.390 He structured the trial in three phases: (I) copyright in-

fringement claims; (II) patent infringement claims; and (III) all

remaining issues, including damages and willfulness, if necessary.391

As the case wended its way toward trial, the core copyright alle-

gations were boiled down to the following: (1) “12 Android files of

source code (copied from 11 Java files), including rangeCheck”; (2)

“Plain English descriptions in the user manual, sometimes called the

API ‘specifications’”; (3) “37 APIs but only as to their specific selec-

tion, structure, and organization, it being conceded that the imple-

menting code is different”; and (4) “Android’s entire source code and

object code as derivative works of the 37 Java APIs.”392 The follow-

ing elements or works were not at issue: (a) “Android’s use of the

Java programming language (other than any direct copying of source

code)”; (b) “The titles and names of APIs, including all package and

class names and definitions, fields, methods and method signatures

(names in the left column of specifications)”; (c) “The idea of APIs”;

and (d) “The Dalvik virtual machine.”393

The parties agreed that Judge Alsup would decide the copyrighta-

bility of the Java APIs and the jury would decide copyright infringe-

ment, fair use, and whether any copying was de minimis.394 Thus, the

most salient copyright issue — the copyrightability of APIs — was

not going to be tried to the jury.

2. 2012 Trial

The Oracle-Google trial opened to great fanfare in the technology

and business communities. The case represented one of the major bat-

tlefronts in the rapidly developing “smartphone war.” Just as the Ora-

cle case was heading to trial, Google was engaged in other high stakes

patent battles with smartphone patent owners.395

389. See id. at 1011 (emphasis in original).

390. See Order Setting Trial Date of April 16, 2012, Oracle Am., Inc. v. Google Inc., 872

F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA).
391. See Final Pretrial Order, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D.

Cal. 2012) (No. C 10-03561 WHA).

392. See Request for Statement of Issues Re Copyright, at 1–2, Oracle Am., Inc. v.
Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA), https://

docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/854

[https://perma.cc/GBP3-YV9T].
393. See id. at 2.

394. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 975 (N.D. Cal. 2011).

395. In August 2011, Google announced its acquisition of Motorola Mobility. Motorola
Mobility owned more than 17,000 patents (as well as another 7,500 patent applications)

which Google believed would bolster Android’s ability to survive the smartphone patent

Special Issue] API Copyright 379

Oracle emphasized three themes during the copyright phase of the

trial: (1) that the Google engineers believed that they needed a Java

license to develop the Android platform;396 (2) the importance of the

Java “Write Once, Run Anywhere” philosophy;397 and (3) that design-

ing APIs and writing its code is a highly creative activity.398 Google

countered with the following arguments: (1) Sun freely licensed the

Java language, encouraged the use of the Java APIs (thereby leading

software developers to believe that they were also freely available),

and publicly welcomed and supported Android’s use of Java;399 (2)

after Sun failed to build a successful Java phone or mobile platform,

Oracle acquired Sun with the intention of shaking Google down for a

share of Android’s profits;400 (3) Google independently implemented

the functions of the Java 37 APIs at issue and, in any case, the Java

API declarations are but a small portion of Android’s 15 million lines

of code;401 and (4) Google made fair use of Java APIs.402

As a result of Judge Alsup’s case management decision to reserve

the copyrightability of APIs, the jury’s infringement verdict was

largely a foregone conclusion. Judge Alsup instructed the jury that

Oracle’s Java-related copyrights “cover the structure, sequence and

organization [SSO] of the compilable code”403 and that Google

“agrees that the structure, sequence and organization of the 37 ac-

cused API packages in Android is substantially the same as the struc-

ture, sequence and organization of the corresponding 37 API packages

in Java.”404 Judge Alsup further instructed the jury that “[w]hile indi-

arms race. See David Goldman, Google Seals $13 Billion Motorola Buy, CNN MONEY

(May 22, 2012), http://money.cnn.com/2012/05/22/technology/google-motorola/

[https://perma.cc/EFN9-
9T7B].

396. Oracle’s lead counsel began the opening argument by quoting Tim Lindholm’s Au-

gust 6, 2010 Email to Andy Rubin:
What we have actually been asked to do by Larry and Sergey is to in-

vestigate what technical alternatives exist to Java for Android. We

have been over a bunch of these and think they all suck. We conclude
that we need to negotiate a license for Java under the terms we need.

See Trial Tr. at 182–83, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal.

2012) (No. C 10-03561 WHA) (ECF No. 942); see also id. at 190–93 (quoting Google
engineer Emails discussing Java licensing).

397. See Trial Tr. at 193–97, 209–10, 219–20, Oracle Am., Inc. v. Google Inc., 872 F.

Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (ECF No. 942).
398. See id. at 197–99, 213; id. at 831 (Google engineer who formerly worked at Sun ac-

knowledging that there can be “creativity and artistry” in even a single method declaration).

399. See id. at 243–45, 247–53, 266–69.
400. See id. at 245–46, 269–70.

401. See id. at 258–59.

402. See id. at 247, 270–74.
403. See Final Charge To The Jury (Phase One) And Special Verdict Form at 8, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA)

(ECF No. 1018), https://docs.justia.com/cases/federal/district-courts/california/candce/
3:2010cv03561/231846/1018 [https://perma.cc/9338-9LHH].

404. See id. at 10.

380 Harvard Journal of Law & Technology [Vol. 31

vidual names are not protectable on a standalone basis, names must

necessarily be used as part of the structure, sequence, and organiza-

tion and are to that extent protectable by copyright.”405

Oracle’s principal copyright infringement argument boiled down

to showing the jury a side-by-side comparison of Java and Android

source code. As Figure 3 from Oracle’s closing argument slide deck

shows, Google conceded that it copied the API declarations.

Figure 3. Oracle’s Closing Argument Slide Deck, Slide 5

Google’s Admission of Copying of Declarations

Oracle illustrated the copying of declarations with a side-by-side

code comparison of one method (ClassLoader) from one class (Pro-

tection Domain) from the java.security API package.

405. See id.

Special Issue] API Copyright 381

Figure 4. Oracle’s Closing Argument Slide Deck, Slide 7

java.security ProtectionDomain ClassLoader

Oracle illustrated the extent of copying by showing the number of

classes, methods, and declarations copied into Android.

Figure 5. Oracle’s Closing Argument Slide Deck,

Slide 8 on Extent of Copying

382 Harvard Journal of Law & Technology [Vol. 31

Beyond its motion seeking a determination that the Java APIs are

not copyrightable,406 Google’s principal path to a trial victory was that

the jury would find that Android’s use of Java was permissible under

the fair use doctrine. The jury would also provide factual input for

Judge Alsup’s assessment of equitable estoppel.

As the copyright phase of the trial wound down, the parties filed

motions for judgment as a matter of law on all of the issues being liti-

gated.407 In an effort to focus on the key question, Judge Alsup re-

quested that the parties answer sixteen questions regarding

copyrightability of the structure, sequence, and organization of the

APIs.408

Jury deliberations following the copyright phase of the trial ended

with a partial Oracle victory.409 Not surprisingly given Judge Alsup’s

API SSO instruction, the jury concluded that Android infringed the 37

Java API packages in question taken as a group.410 The jury nonethe-

less held that Google did not infringe the documentation of the 37

Java API packages taken as a group under a virtual identity stand-

ard411 and that the copying of eight of the nine specific source code

406. See Google’s Mot. for Judgment as a Matter of Law on Sections Court VIII of Ora-

cle’s Amended Complaint, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal.

2012) (No. C 10-03561 WHA) (ECF No. 984), https://docs.justia.com/
cases/federal/district-courts/california/candce/3:2010cv03561/231846/984 [https://perma.cc/

7EBV-JSPM].

407. See id.; Oracle Am., Inc.’s Corrected Rule 50(A) Mot. at the Close of All Evidence,
Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561

WHA) (ECF No. 1045), https://docs.justia.com/cases/federal/district-courts/
california/candce/3:2010cv03561/231846/1045 [https://perma.cc/UWF4-QVNT].

408. See Request for Further Phase One Briefing Re Copyrightability of SSO, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA)
(ECF No. 1057), https://docs.justia.com/cases/federal/district-courts/california/candce/

3:2010cv03561/231846/1057 [https://perma.cc/8NHB-SNJZ]; see also FURTHER ITEMS

TO BRIEF IN TWENTY-PAGE BRIEFS DUE MAY 10, Oracle Am., Inc. v. Google Inc.,
872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA) (ECF No. 1062),

https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/

231846/1062 [https://perma.cc/2LLK-BNHL]; FURTHER ITEM FOR TWENTY-PAGE
BRIEFS DUE MAY 10, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal.

2012) (No. C 10-03561 WHA) (ECF No. 1088), https://docs.justia.com/

cases/federal/districtcourts/california/candce/3:2010cv03561/231846/1088 [https://
perma.cc/U8DN-LZVC].

409. See Special Verdict Form, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974

(N.D. Cal. 2012) (No. C 10-03561 WHA) (ECF No. 1089), https://docs.justia.com/cases/
federal/district-courts/california/candce/3:2010cv03561/231846/1089 [https://perma.cc/

V64F-ALYB]; Joe Mullin, Google Guilty of Infringement in Oracle Trial; Future Legal

Headaches Loom, ARS TECHNICA (May 7, 2012), http://arstechnica.com/tech-
policy/2012/05/jury-rules-google-violated-copyright-law-google-moves-for-mistrial/

[https://perma.cc/GJ5L-DK6J].

410. See Special Verdict Form at 1, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974
(N.D. Cal. 2012) (No. C 10-03561 WHA) (ECF No. 1089), https://docs.justia.com/cases/

federal/district-courts/california/candce/3:2010cv03561/231846/1089 [https://perma.cc/

V64F-ALYB].
411. See Final Charge To The Jury (Phase One) And Special Verdict Form at 12, Oracle

Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-03561 WHA)

Special Issue] API Copyright 383

files at issue was de minimis.412 The jury hung on whether Google’s

infringement of the Java API SSO constituted fair use.413 The jury

further split on the special interrogatories relating to Google’s equita-

ble estoppel defense, holding that Sun/Oracle engaged in conduct that

they knew or should have known would reasonably lead Google to

believe that it would not need a license to use the Java API SSO, but

that Google had not proven that it reasonably relied on such con-

duct.414

The patent phase of the trial commenced shortly after the jury

rendered its copyright verdict. The same jury ruled that Google did

not infringe the seven asserted claims of the two patents at issue.415

Therefore, the need for a third phase of the trial hinged on Judge

Alsup’s resolution of the post-trial copyright motions.

One week later, Judge Alsup filed a released opinion holding that

the Java APIs were not copyrightable.416 This determination resulted

in dismissal of the case. Although Judge Alsup cautioned that the rul-

ing did not hold that “Java API packages are free for all to use without

license” or that “the structure, sequence and organization of all com-

puter programs may be stolen,” the court ruled that “on the specific

facts of this case the particular elements replicated by Google were

free for all to use under the Copyright Act.”417

Judge Alsup grounded his decision in the uncopyrightability of

collections of functional attributes contained in the 37 Java APIs at

issue and the fact that Google wrote its own implementing code.418

The principal copying concerned the lines of declaring code, which

(ECF No. 1018), https://docs.justia.com/cases/federal/district-courts/california/candce/

3:2010cv03561/231846/1018 [https://perma.cc/R4CR-E4YL].
412. See Special Verdict Form at 2, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974

(N.D. Cal. 2012) (No. C 10-03561 WHA) (ECF No. 1089), https://docs.justia.com/

cases/federal/district-courts/california/candce/3:2010cv03561/231846/1089 [https://
perma.cc/V64F-ALYB].

413. See id. at 1.

414. See id. at 3.
415. See Special Verdict Form, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974

(N.D. Cal. 2012) (No. C 10-03561 WHA) (ECF No. 1190), https://docs.justia.com/

cases/federal/district-courts/california/candce/3:2010cv03561/231846/1190 [https://
perma.cc/6SPL-4RXP]; Josh Lowensohn, Jury Verdict: Android Doesn’t Infringe Oracle’s

Patents, CNET (May 23, 2012), http://www.cnet.com/news/jury-verdict-android-doesnt-

infringe-oracles-patents/ (last visited Jan. 27, 2018).
416. See Oracle Am., Inc. v. Google Inc., 872 F. Supp.2d 974 (N.D. Cal. 2012). In a pyr-

rhic victory for Oracle, Judge Alsup granted judgment as a matter of law holding that

Google’s copying of the eight test files that the jury deemed de minimis were infringing. See
id. at n.1.

417. Id. at 1002.

418. Google included a small (9 lines of a 3,179 line function), “innocent,” and “inconse-
quential” segment of code (rangeCheck) in Android and eight test files that were never

introduced into Android. See id. at 982–83. To clear the way for appeal, however, the par-

ties stipulated, that these relatively modest code portions produced no damages. See Final
Judgment, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C

10-03561 WHA), (ECF No. 1211).

384 Harvard Journal of Law & Technology [Vol. 31

are necessary to operate the particular methods of the APIs at issue.

As Judge Alsup explained:

Significantly, the rules of Java dictate the precise

form of certain necessary lines of code called decla-

rations, whose precise and necessary form explains

why Android and Java must be identical when it

comes to those particular lines of code. That is, since

there is only one way to declare a given method

functionality, everyone using that function must

write that specific line of code in the same way.419

While acknowledging that the overall structure of the Java API

packages is creative, original, and “resembles a taxonomy,” Judge

Alsup nonetheless concluded that it functions as “a command struc-

ture, a system or method of operation — a long hierarchy of over six

thousand commands to carry out pre-assigned functions.”420 Judge

Alsup placed particular emphasis on Sega for its rejection of the Third

Circuit’s broad protection for the SSO of computer software421 and its

recognition that “the functional requirements for compatibility with [a

software platform developed by another company] are not protected

by copyright. 17 U.S.C. § 102(b).”422

Applying copyright’s limiting doctrines as interpreted by Ninth

Circuit cases423 and following CONTU’s guidance that when specific

computer instructions, “even though previously copyrighted, are the

only and essential means of accomplishing a given task, their later

419. Oracle Am., 872 F. Supp. 2d at 979 (emphasis in original). See id. at 981 (finding

that “[i]n order to declare a particular functionality, the [Java] language demands that the

method declaration take a particular form (emphasis in original)); id. at 982 (finding that

“the names of the methods and the way in which the methods are grouped” have to be the
same in order to “be interoperable. Specifically, code written for one API would not run on

an API organized differently, for the name structure itself dictates the precise form of com-

mand to call up any given method.”).
420. Id. at 999–1000.

421. See Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1524–25 (9th Cir. 1992) (noting

that “[t]he Whelan rule . . . has been widely — and soundly — criticized as simplistic and
overbroad” (citing the Second Circuit’s decision in Computer Associates, Inc. v. Altai)).

422. See id. at 1522.

423. The Ninth Circuit expressly endorsed the Second Circuit’s Altai approach:
Under a test that breaks down a computer program into its compo-

nent subroutines and sub-subroutines and then identifies the idea or

core functional element of each, such as the test recently adopted
by the Second Circuit in CAI, 23 U.S.P.Q.2d at 1252–53, many as-

pects of the program are not protected by copyright. In our view,

in light of the essentially utilitarian nature of computer programs,
the Second Circuit’s approach is an appropriate one.

Sega, 977 F.2d at 1525 (emphasis added).

Special Issue] API Copyright 385

use by another will not amount to an infringement,”424 Judge Alsup

determined that Google was free to write code that accomplished the

same functionality as the Java APIs at issue even if it did not achieve

complete compatibility with the full Java platform:

While fragmentation is a legitimate business consid-

eration, it begs the question whether or not a license

was required in the first place to replicate some or all

of the command structure. (This is especially so in-

asmuch as Android has not carried the Java trade-

mark, and Google has not held out Android as fully

compatible.) The immediate point is this: fragmenta-

tion, imperfect interoperability, and Oracle’s angst

over it illustrate the character of the command struc-

ture as a functional system or method of operation.425

In essence, later developers can achieve the particular functionality or

method of operation of an API subsystem (and even groups of subsys-

tems) so long as they write their own code and that method is not pro-

tected by a patent.

Judge Alsup’s framework provided a general and concrete solu-

tion to the API copyright puzzle. Although he cautioned that his opin-

ion was limited to the facts of the case and did not declare APIs

uncopyrightable, Judge Alsup’s analysis illuminated a clear pathway

for software developers seeking to use APIs defined and first imple-

mented by others without running afoul of copyright law.426 Later

developers are free to use declaring code so long as they use a clean

room to implement the declarations. To many in the software indus-

try, the ruling validated what was considered a best practice.427 To

others, it jeopardized the substantial effort and investment in develop-

ing software platforms and pioneering products, and threatened to

undermine interoperability.428

424. Oracle Am., 872 F. Supp. 2d at 986 (quoting CONTU REPORT, supra note 47, at 20

(emphasis added by Judge Alsup)).
425. Oracle Am., 872 F. Supp. 2d at 1000.

426. Patent protection, trade secret law, and contractual limitations could nonetheless

stand in the way, but copyright protection could not bar re-implementation of functional
features of computer programs.

427. See Nick Wingfield & Quentin Hardy, Google Prevails as Jury Rebuffs Oracle in

Code Copyright Case, N.Y. TIMES (May 26, 2016), http://www.nytimes.com/2016/
05/27/technology/google-oracle-copyright-code.html (last visited Jan. 23, 2018) (quoting

representatives of the Electronic Frontier Foundation, Public Knowledge, and a venture

capital firm praising the jury’s verdict); supra text accompanying notes 176–77.
428. See Annette Hurst, Op-ed: Oracle Attorney Says Google’s Court Victory Might Kill

the GPL, ARS TECHNICA (May 27, 2016), http://arstechnica.com/tech-policy/2016/05/op-ed-

oracle-attorney-says-googles-court-victory-might-kill-the-gpl/ [https://perma.cc/66KG-
2Z4C]; Florian Mueller, Google's ‘Fair Use’ Defense Against Oracle Is an Insult to Human

Intelligence: Android's Use of Java APIs Violates Copyright, FOSS PATENTS (May 22,

386 Harvard Journal of Law & Technology [Vol. 31

3. Federal Circuit Appeal

Oracle filed its appeal with the U.S. Court of Appeals for the

Federal Circuit.429 Regional circuit law binds the Federal Circuit when

reviewing questions of law and precedent not exclusively assigned to

the Federal Circuit.430 Thus, the Federal Circuit was required to re-

view the copyright issues according to Ninth Circuit precedents.431

The appeal attracted broad interest in the technology sector, with

established software companies favoring Oracle432 and start-ups and

application developers favoring Google on the API copyrightability

issue.433 Among the more notable briefs was the one filed by former

Sun executives Scott McNealy and Brian Sutphin.434 They empha-

sized the creativity involved in API design.435

Picking up on that theme, Oracle began its brief with a creative

literary analogy:

Ann Droid wants to publish a bestseller. So she

sits down with an advance copy of HARRY POTTER

AND THE ORDER OF THE PHOENIX — the fifth

book — and proceeds to transcribe. She verbatim

copies all the chapter titles — from Chapter 1 (‘Dud-

ley Demented’) to Chapter 38 (‘The Second War

2016), http://www.fosspatents.com/2016/05/googles-fair-use-defense-against-oracle.html

[https://perma.cc/J79U-4QA3].
429. The Federal Circuit has exclusive jurisdiction over appeals from district court cases

involving patent infringement allegations even though, as was the circumstance in Oracle v.

Google, neither party challenged the district court’s patent rulings.
430. See Atari Games Corp. v. Nintendo of Am., Inc., 897 F.2d 1572, 1575 (Fed. Cir.

1990).

431. Copyright issues are not exclusively assigned to the Federal Circuit. See 28 U.S.C.
§ 1295 (2012).

432. The Business Software Alliance, one of the largest and oldest software trade associ-

ations, as well as Microsoft Corp. and other established companies favored Oracle. See
Corrected Brief for BSA | the Software Alliance as Amicus Curiae in Support of Plaintiff-

Appellant Oracle Am., Inc., Oracle Am., Inc. v. Google Inc., No. 2013-1021, 1022 (Fed.

Cir. Feb. 22, 2013); Brief for Amici Curiae Microsoft Corporation, EMC Corporation, and
Netapp, Inc. in Support of Appellant, Oracle Am., Inc. v. Google Inc., No. 2013-1021, 1022

(Fed. Cir. Feb. 19, 2013).

433. See Brief of Amici Curiae Rackspace US, Inc., Application Developers Alliance,
TMSOFT, LLC, and Stack Exchange Inc., Oracle Am., Inc. v. Google Inc., No. 2013-1021,

1022) (Fed. Cir. May 30, 2013); Corrected Brief of Amici Curiae of Software Innovators,

Start-ups, and Investors in Support of Affirmance, Oracle Am., Inc. v. Google Inc., No.
2013-1021, 1022 (Fed. Cir. May 30, 2013).

434. See Corrected Brief of Scott McNealy & Brian Sutphin as Amici Curiae in Support

of Reversal, Oracle Am., Inc. v. Google Inc., No. 2013-1021, 1022 (Fed. Cir. Feb. 22, 2013)
435. See id. at 8 (“Java’s success rested in large part upon its elegant and creative set of

packages that Sun designed and developed [T]hese packages provide a lengthy and

creative set of pre-existing programs that made it much easier for Java programmers to
quickly write programs and intuitively grasp and learn the Java platform.”); id. at 13 (“The

Selection Naming and Organization of Java’s Packages (APIs) Are Unique and Creative.”).

Special Issue] API Copyright 387

Begins’). She copies verbatim the topic sentences of

each paragraph, starting from the first (highly de-

scriptive) one and continuing, in order, to the last,

simple one (‘Harry nodded.’). She then paraphrases

the rest of each paragraph. She rushes the competing

version to press before the original under the title:

Ann Droid’s HARRY POTTER 5.0. The knockoff flies

off the shelves.

J.K. Rowling sues for copyright infringement.

Ann’s defenses: ‘But I wrote most of the words from

scratch. Besides, this was fair use, because I copied

only the portions necessary to tap into the Harry Pot-

ter fan base.’

Obviously, the defenses would fail.436

Oracle’s approach was reminiscent of an ultimately unsuccessful

strategy from the first wave of API copyright litigation. Apple, IBM,

and Lotus lawyers sought to compare creativity in the design and cod-

ing of computer software with conventional literary and dramatic

works.437

However, the “software as creative expression” theme resonated

with the Federal Circuit. The court’s opinion repeatedly references the

creativity of Java APIs.438 The court pointed to the testimony of Josh-

ua Bloch, the former Sun software engineer whom Google referred to

as its “Java guru,” who “conceded” that there can be “creativity and

artistry even in a single method declaration.”439 The Federal Circuit

offered its own literary metaphor, noting that “the opening of Charles

Dickens’ A TALE OF TWO CITIES is nothing but a string of short

phrases. Yet no one could contend that this portion of Dickens’ work

436. See Opening Brief and Addendum of Plaintiff-Appellant at 12–13, Oracle Am., Inc.

v. Google Inc., No. 2013-1021, 1022 (Fed. Cir. Feb. 11, 2013).
437. See supra note 90; Clapes, Lynch & Steinberg, supra note 90, at 1547.

438. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1352 (Fed. Cir. 2014) (“Alt-

hough [the district court] acknowledged that the overall structure of Oracle’s API packages
is creative . . .”); id. at 1356 (“The testimony at trial revealed that designing the Java API

packages was a creative process and that the Sun/Oracle developers had a vast range of

options for the structure and organization.”); id. (“In its copyrightability decision, the dis-
trict court specifically found that the API packages are both creative and original, and

Google concedes on appeal that the originality requirements are met.”). See Oracle Am.,

Inc. v. Google Inc., 872 F. Supp.2d 974, 976 (N.D. Cal. 2012) (“The overall name tree, of
course, has creative elements”); id. at 999 (“Yes, it is creative. Yes, it is original.”);

Oracle v. Google, 750 F.3d at 1361, n.6 (noting that the Amicus Brief filed by Scott

McNealy & Brian Sutphin “provide[d] a detailed example of the creative choices involved
in designing a Java package”); id. at 1368 (observing that “Amici McNealy & Sutphin ex-

plain that ‘a quick examination of other programming environments shows that creators of

other development platforms provide the same functions with wholly different creative
choices.’”).

439. Oracle v. Google, 750 F.3d at 1339.

388 Harvard Journal of Law & Technology [Vol. 31

is unworthy of copyright protection because it can be broken into

those shorter constituent components.”440

The Federal Circuit reversed the district court’s determination

that the structure, sequence, and organization of the 37 Java APIs

were not copyrightable and remanded the fair use issue for retrial with

revised jury instructions.441

i. Copyrightability

In reviewing the district court’s determination that the Java API

packages at issue were not copyrightable, the Federal Circuit distin-

guished between copyrightability of the “declaring code” and copy-

rightability of the structure, sequence, and organization of the API

packages.442

a. Declaring Code

The Federal Circuit ruled that the district court should not have

considered the merger and scènes à faire doctrines in evaluating copy-

right subsistence because the Ninth Circuit treats these doctrines as

affirmative defenses to infringement, not as limitations on copyrighta-

bility.443 Hence, these doctrines were relevant only in determining

what elements of the APIs should be filtered out in the infringement

analysis.444 Furthermore, the Federal Circuit held that the merger doc-

trine — which bars protection where an idea can only be expressed in

one or a limited number of ways — properly focuses on the creative

choices available to Sun when it created Java, not on the options

available to Google when it copied Java APIs.445 The Federal Circuit

also held that the short phrases doctrine did not bar copyright protec-

tion for compilations of words and short phrases as reflected in the

declaring code.446 On these bases, the appellate court ruled copyright

440. Id.
441. Id.

442. See id., at 1359–68.

443. See id. at 1358 (citing Ets-Hokin v. Skyy Spirits, Inc., 225 F.3d 1068, 1082 (9th Cir.
2000)); Satava v. Lowry, 323 F.3d 805, 810 n.3 (9th Cir. 2003) (“The Ninth Circuit treats

scènes à faire as a defense to infringement rather than as a barrier to copyrightability.”).

444. See Oracle v. Google, 750 F.3d at 1359–62 (addressing the merger doctrine); id. at
1363–64 (addressing the scènes à faire doctrine, which Judge Alsup had rejected as a basis

for holding the Java APIs to be unprotectable but that Google challenged on appeal).

445. See id. at 1360–61.
446. See id. at 1362–63. It should be noted that the district court’s determination that the

declaring code was uncopyrightable did not turn on the short phrases doctrine. Judge Alsup

recognized that the selection and arrangement of short phrases could be protectable. See
Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 992 (N.D. Cal. 2012) (quoting Feist

Publ’ns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 349 (1991) for the proposition that

even thinly protected, factual compilations are protectable with respect to original “selection
and arrangement”). His ultimate determination hinged on § 102(b) of the Copyright Act and

interoperability. See id. at 997–1002.

Special Issue] API Copyright 389

law protected the 7,000 lines of declaring code. It did not directly con-

front the argument that the precise API declarations functioned as

uncopyrightable “methods of operation,” which more accurately char-

acterizes Judge Alsup’s essential holding. The Federal Circuit did,

however, address the “method of operation” argument in its API SSO

ruling.

b. SSO of the API Packages

The Federal Circuit focused its review of Judge Alsup’s holding

that the SSO of the Java APIs was uncopyrightable on the district

court’s reliance upon Lotus v. Borland,447 the First Circuit case hold-

ing that the Lotus 1-2-3 menu command hierarchy was an unprotecta-

ble “method of operation.” The appellate court distinguished Lotus on

factual grounds, noting that the command labels at issue there, unlike

the Java API declaring code, were “not creative” and were “essential”

to operating the computer system.448 Moreover, the Federal Circuit

interpreted the Ninth Circuit’s Johnson Controls to hold that the SSO

of a computer program is eligible for copyright protection and hence

was inconsistent with Lotus.449 In so doing, the Federal Circuit resur-

rected the Third Circuit’s flawed analytical framework: analyzing

copyrightability of computer software based on whether the high level

function(s) of the software could be implemented in multiple ways

rather than viewing a particularized set of software functions as an

unprotectable “method of operation.”450

The Federal Circuit rejected the district court’s invocation of in-

teroperability as a basis for holding the SSO of the Java APIs to be

uncopyrightable. Notwithstanding the language in Sega and Sony that

the precise coding to achieve interoperability is not protectable under

copyright law,451 the appellate court distinguished these cases as “fo-

cused on fair use, not copyrightability.”452 The Federal Circuit repeat-

ed its earlier observation that “copyrightability is focused on the

447. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st Cir.1995), aff’d without

opinion by equally divided court, 516 U.S. 233 (1996).
448. Oracle v. Google, 750 F.3d at 1365.

449. See id. at 1365–66. The Federal Circuit’s interpretation of Johnson Controls stretch-

es its holding and overlooks important insights from later Ninth Circuit cases. See infra
Section IV(A). In addition, the copyrightability of software SSO in some circumstances

does not necessarily conflict with the exclusion of methods of operation.

450. See id. at 1366–67.
451. See Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1525 (9th Cir. 1992); Sony

Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 603 (9th Cir. 2000) (“There is no

question that the Sony BIOS contains unprotected functional elements.”).
452. See 750 F.3d at 1369 (observing that Sega and Sony never addressed whether the

functional code had separable expressive elements). This assertion overlooks, however, that

both courts ruled that the code necessary to interoperability was unprotectable and hence
copying of the entirety of the software for purposes of reverse engineering the code to de-

termine those interoperable features constituted fair use.

390 Harvard Journal of Law & Technology [Vol. 31

choices available to the plaintiff at the time [of] the computer pro-

gram[’s] [] creat[ion],” and not on the defendant’s goal of achieving

interoperability.453 Therefore, Google’s interoperability argument

comes into play only as part of a fair use defense.

ii. Fair Use

The Federal Circuit was tempted to rule in Oracle’s favor on the

fair use issue.454 The court observed that “[o]n many of [Oracle’s]

points,455 Google does not debate Oracle’s characterization of its con-

duct, nor could it on the record evidence.”456 Nonetheless, the Federal

Circuit determined that remand was necessary because materials facts

were in dispute, notably the transformativeness of the Android plat-

form, Google’s interoperability objectives, and the commercial impact

of Android on Sun’s/Oracle’s mobile licensing activities and the po-

tential market for a Java smartphone.457 The Federal Circuit empha-

sized, however, that the district court should “revisit and revise its

jury instructions on fair use consistent with [the Federal Circuit’s]

opinion.”458 The Federal Circuit’s opinion did not, however, offer

specific criticism of the district court’s jury instructions.

4. Interlocutory Certiorari Petition

Google sought to challenge the Federal Circuit’s reversal by filing

a petition for a writ of certiorari with the U.S. Supreme Court.459

Google’s petition pressed the argument that the Java API declarations

fall within the § 102(b) exclusion from copyright protection of meth-

ods of operation. Oracle responded that the case was not appropriate

for interlocutory review on substantive and prudential grounds.460 The

Supreme Court nonetheless requested the views of the Solicitor Gen-

eral,461 which produced one of the more surprising filings in the

453. See id. at 1370. The Federal Circuit follows the Third Circuit’s dicta — “a defend-

ant’s desire ‘to achieve total compatibility . . . is a commercial and competitive objective

which does not enter into the . . . issue of whether particular ideas and expressions have
merged,’” id. (quoting Apple Comput., 714 F.2d at 1253) — and not the rejection of that

position in Sega and Sony. See Sega, 977 F.2d at 1525; Sony v. Connectix, 203 F.3d at 603.

454. See 750 F.3d at 1376.
455. See id. (noting that Oracle asserts that “Google knowingly and illicitly copied a

creative work to further its own commercial purposes, and did so verbatim, and did so to the

detriment of Oracle's market position”).
456. See id.

457. See id. at 1377.

458. See id.
459. See Petition for a Writ of Certiorari, Google Inc. v. Oracle America, Inc., No. 14-

410 (U.S. Oct. 6, 2014).

460. See Brief in Opp’n, Google Inc. v. Oracle Am., Inc., No. 14-410 (U.S. Dec. 8,
2014).

461. See Google Inc. v. Oracle Am., Inc., 135 S. Ct. 1021 (2015).

Special Issue] API Copyright 391

case.462 The Solicitor General not only recommended against granting

review on prudential grounds, but also sided with Oracle on substan-

tive grounds.463 The Supreme Court denied review.464

5. 2016 Fair Use Trial

The API copyright battle returned to Judge Alsup’s court for a ju-

ry trial focused on applying “‘the most troublesome [doctrine] in the

whole law of copyright.’”465 Google also planned to assert equitable

estoppel and laches defenses.466 Oracle expanded the scope of its

complaint to account for new Android versions, Google’s expansion

into new product areas (clothing, television, automobiles, appliances,

and media (Google Play)), and Android’s dramatic market growth.467

Leading up to the trial, the parties squabbled over the fair use jury

instructions.468 After adjusting the draft instructions following input

from the parties, one of the few, and most momentous, fair use jury

trials in modern U.S. history commenced. Judge Alsup instructed the

jury at the outset of the trial about the contours of the fair use doc-

trine, noting that the doctrine is an “equitable rule of reason” for

which no generally accepted definition is possible.469 He then read the

statutory provision470 and explained the four factors, boiling down the

462. See Brief for the United States as Amicus Curiae, Google Inc. v. Oracle Am., Inc.,

No. 14-410 (U.S. May 2015).

463. See id. at 11–17; cf. Dan Levine & Lawrence Hurley, Google Versus Oracle Case
Exposes Differences Within Obama Administration, REUTERS (May 15, 2015), http://

www.reuters.com/article/us-google-oracle-lawsuit-insight-idUSKBN0O017Z20150515

[https://perma.cc/GM3W-3AGZ].
464. Google Inc. v. Oracle Am., Inc., 135 S. Ct. 2887 (2015).

465. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1372 (Fed. Cir. 2014) (quoting

Monge v. Maya Magazines, Inc., 688 F.3d 1164, 1170 (9th Cir. 2012) (quoting Dellar v.
Samuel Goldwyn, Inc., 104 F.2d 661, 662 (2d Cir. 1939) (per curiam)).

466. See Google’s Trial Brief at 11–12, Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (ECF No. 1706) (asserting that
Sun’s public statements and acts approving of Android’s use of Java bar enforcement of its

copyrights); ORDER RE WILLFULNESS AND BIFURCATION, Oracle Am., Inc. v.

Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (ECF
No. 1321). The equitable defenses were bifurcated and hence did not arise during the fair

use trial.

467. See PLAINTIFF ORACLE’S [PROPOSED] SUPPLEMENTAL COMPLAINT, Or-
acle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-

03561 WHA) (ECF No. 1288-1).

468. See, e.g., Oracle Am., Inc., v. Google Inc., 118 U.S.P.Q.2d 1561 (N.D. Cal. 2016)
(rejecting Google’s request to include “as part of a broader work” within the jury instruction

defining “transformative”); Oracle’s Response To The Court’s Request For Critique Re

Instructions On Fair Use, Oracle Am., Inc. v. Google Inc., No. C 10-03561 WHA (N.D. Cal.
filed Apr. 14, 2016) (ECF No. 1663).

469. See PENULTIMATE JURY INSTRUCTION ON FAIR USE, Oracle Am., Inc. v.

Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (ECF
No. 1790).

470. See 17 U.S.C. § 107 (2012).

392 Harvard Journal of Law & Technology [Vol. 31

subtleties of the vast fair use jurisprudence into about a dozen treatise-

like paragraphs.

The trial played out over eight grueling days of testimony ranging

from the dramatic (embarrassing Emails) to the mind-numbing (ex-

perts and fact witnesses explaining API design, open source, GNU,

GPL, virtual machines, and distinctions between declaring and im-

plementing code).471 The jurors were treated to creative and strained

analogies (filing cabinets, breakfast menus featuring hamburgers, and

Harry Potter novels), all manner of demonstrative exhibits, and a wit-

ness list featuring some of Silicon Valley’s most celebrated tech bil-

lionaires. Economic experts opined about transformativeness (from an

economic, as opposed to a legal, perspective) and network effects.

Both sides made witnesses squirm. The connection of some lines of

questioning to copyright law’s fair use factors was often tenuous. For

example, Oracle devoted much of its trial time to exposing Emails

sent among Google engineers suggesting that they thought that the

Java APIs were copyright-protected.472

In view of the large stakes — Oracle sought upwards of $10 bil-

lion in damages and injunctive relief473 — both sides employed top-

notch trial teams and spared little expense. The fair use trial felt like a

roller coaster, with prognosticators divided on how the jury would

come out.474 Google bore the burden of proof on the fair use defense

471. The media and bloggers covered the trial extensively. I canvassed various sources,

including: Joe Mullin’s reporting for ARS TECHNICA; Sarah Jeong Storify (Twitter feed of

Sarah Jeong, a contributing editor at Motherboard), https://storify.com/sarahjeong
[https://perma.cc/P73V-DHDF]; FOSS PATENTS (blog published by Florian Mueller, a self-

described “intellectual property activist”), http://www.fosspatents.com/; I also reviewed

exhibits, such as pleadings, jury instructions, and slide decks.
472. See id.

473. See Joe Mullin, Oracle Will Seek a Staggering $9.3 Billion in 2nd Trial Against

Google, ARS TECHNICA (Mar. 29, 2016) http://arstechnica.com/tech-policy/2016/03/oracle-
will-seek-a-staggering-9-3-billion-in-2nd-trial-against-google/ [https://perma.cc/2X2Q-

LGC3] (noting that Oracle sought the “biggest IP verdict ever”).

474. See Oracle vs. Google — The Merry-go-round, RADIO FREE MOBILE (May 11,
2016), http://www.radiofreemobile.com/oracle-vs-google-the-merry-go-round/

[https://perma.cc/

LL75-YQN4] (predicting a settlement of less than $1 billion); Jeff Taylor, Oracle v.
Google: How to Create Beautiful Closing Argument Slides, THE DROID LAWYER (May 26,

2016), http://thedroidlawyer.com/2016/05/oracle-v-google-how-to-create-beautiful-closing-

argument-slides/ [https://perma.cc/JAP3-3R9C] (observing that Oracle’s trial team’s closing
slides show that they “gathered the evidence they needed to prove their case”; but in a post-

script, noting the irony that Oracle lost); Florian Mueller, Oracle v. Google Copyright Retri-

al Won't Bring Clarification on Application Programming Interfaces (APIs) (May 8, 2016),
http://www.fosspatents.com/2016/05/oracle-v-google-copyright-retrial-wont.html

[https://perma.cc/6MHU-RFGK] (“While I’m as convinced as ever that there is hardly a

clearer case of UNfair use than this one . . . the trial is a tossup”; predicting a “55% or 60%
chance for Google” before a jury, but that the appeals court “would be fairly likely to side

with Oracle”); cf. Joel Rosenblatt, Stakes Are High at Google vs. Oracle Copyright Trial #2,

INS. J. (May 10, 2016), http://www.insurancejournal.com/news/national/2016/05/
10/407960.htm [https://perma.cc/2QWN-LURA] (quoting Professor Tyler Ochoa stating

that it’s a “fool’s errand” to predict the outcome of the case with a new jury).

Special Issue] API Copyright 393

and hence, presented its case first. Judge Alsup limited each side to

fifteen hours (nine hundred minutes) of testimony presentation time,

including cross-examination. Each side was also afforded an hour for

opening argument and ninety minutes for closing argument. Judge

Alsup bifurcated the damages phase, which would be needed only if

Google’s use of Java APIs was not fair use.

i. Opening Arguments

Building upon the infringement ruling revived by the Federal Cir-

cuit, Oracle opened the second trial in rhythmic, Cochranesque475

fashion: Google copied the heart of the Java platform so as to enter

the mobile marketplace quickly and now seeks to use the “fair use

excuse” to avoid the consequences.476 Peter Bicks, Oracle’s lead

counsel, framed the battle in moralistic terms and epic proportions:477

• Internal e-mails show that Google took illegal “shortcuts” to

create Android.

• “It took 10,000 lines to power this Apollo computer module,

when lives were at stake. OVER ONE THOUSAND FEWER

THAN WHAT GOOGLE COPIED.”

• “Oracle was seeing money go out the door,” while Google was

earning billions on the Sun/Oracle investments in Java.

• “If [Java] code wasn’t in their three billion phones, not one

would work.”

Drawing on its successful Federal Circuit strategy, Oracle charac-

terized the crafting of the Java API code as highly creative, whereas

Google’s copying of Java APIs was slavish and not transformative.

Bicks quoted liberally from internal Google Emails singing the praises

of Java’s APIs and expressing the need to obtain a license. He charac-

terized the Android team’s decision to forgo a license as underhand-

ed — breaking the Write Once, Run Anywhere interoperability

promise — and hence ineligible under the fair use doctrine’s equitable

standards.

Robert Van Nest, Google’s lead counsel, emphasized Google’s

hard work and large investment in building a transformative

475. See O. J. Simpson Murder Case, WIKIPEDIA, https://en.wikipedia.org/wiki/

O._J._Simpson_murder_case [https://perma.cc/88E6-3W8J] (noting defense attorney John-

ny Cochran’s quip “If [the glove] doesn’t fit, you must acquit”).
476. See Joe Mullin, Google Took Our Property — and Our Opportunity, Oracle Tells

Jury: “If that Code Wasn’t in Their Three Billion Phones, Not One Would Work.” ARS

TECHNICA (May 10, 2016), http://arstechnica.com/tech-policy/2016/05/oracle-tells-jury-
dont-buy-googles-fair-use-excuse/ [https://perma.cc/QN6S-9BDB].

477. See id.

394 Harvard Journal of Law & Technology [Vol. 31

smartphone platform.478 He justified use of Java, in part, based on

Sun’s encouragement of the developer community to use Java and its

APIs. He downplayed the expressive creativity of Java APIs by anal-

ogizing the API packages to the labels on a filing cabinet, carting a

real filing cabinet into the courtroom to illustrate the point.479 He em-

phasized that Sun’s then-CEO Jonathan Schwartz publicly applauded

Google’s use of Java technologies in Android: Google had “strapped

another set of rockets to the [Java] community’s momentum — and to

the vision defining opportunity across our (and other) planets,”480 and

that Oracle’s CEO Larry Ellison welcomed Google’s use of Java for

its mobile platform.

Van Nest countered the allegation that Android caused Java’s

mobile platform to falter with an internal Oracle document pointing to

its own internal problems, arguing that Oracle sued only after the Java

mobile strategy failed to reap what Google had sown. He distin-

guished between the Java SE and ME platforms to highlight the trans-

formativeness of Android’s path-breaking approach. Java ME was a

“feature phone” platform,481 whereas Android brought the functionali-

ty of robust web browsing, apps, and a host of other functionalities

such as cameras and games (e.g., Angry Birds) to mobile devices. Van

Nest displayed a graphic showing that Java code represented a very

small percentage, less than one-tenth of a percent, of the Android code

base. Furthermore, Google developed its own virtual machine for An-

droid devices.

Van Nest also sought to sow the seed of a new fair use factor or

sub-factor: compliance with industry norms surrounding APIs. Alt-

hough not one of the four express statutory fair use factors, in

Google’s view API declaring code was fair game so long it was im-

plemented independently (i.e., clean room), especially where the plat-

form developer had welcomed platform adopters. He concluded his

opening by arguing that:

Android is precisely the kind of thing that fair use

was intended to encourage. It’s a leap forward to a

new platform in a new market. It has allowed inno-

478. See Joe Mullin, Google to Jury: Android Was Built with Our Engineers’ Hard

Work: “Android Is Precisely the Kind of Thing that Fair Use Was Intended to Encourage,”

ARS TECHNICA (May 10, 2016), http://arstechnica.com/tech-policy/2016/05/google-to-jury-

android-was-built-with-our-engineers-hard-work/ [https://perma.cc/XZS8-MMKJ].
479. See Sarah Jeong, In a $9 Billion Trial, Google’s Secret Weapon Is a Filing Cabinet,

VICE: MOTHERBOARD (May 11, 2016), http://motherboard.vice.com/read/googles-lawyers-

tried-to-explain-apis-to-a-jury-using-a-physical-filing-cabinet [https://perma.cc/4G23-
CH8T]. This analogy echoed earlier API copyright cases, notably Apple v. Microsoft (desk-

top icons of the graphical user interface) and Lotus v. Borland (spreadsheet command la-

bels).
480. See Congratulations Google, supra note 180.

481. See supra text accompanying note 261.

Special Issue] API Copyright 395

vation by lots and lots of other people — developers

and wireless carriers. It’s become a whole communi-

ty, because Google made it open and free. Now Mr.

Ellison wants to shut it down and put it in his pocket.

That is not fair, not right, and not what copyright was

intended to allow.482

ii. Google’s Case in Chief

Google began its testimony with Eric Schmidt, Google’s Chair-

man and Sun’s former Chief Technology Officer at the time that Java

was developed.483 Schmidt discussed Sun’s encouragement of Java

adoption as well as his understanding that Google was free to use the

Java APIs without a license. On cross-examination, Oracle sought to

undermine Schmidt’s rosy characterization of the Sun-Google rela-

tionship and highlighted Google’s reputation for pushing to “the

creepy line” in business tactics.484

Google then called Jonathan Schwartz, who enthusiastically ex-

plained that Java had always been free and open.485 Schwartz testified

that Sun promoted Java’s use to build a community of developers

throughout the world and counter Microsoft’s power in the desktop

operating system marketplace. Schwartz further explained that the

Java APIs were also free for others to use and independently imple-

ment.

Schwartz bizarrely analogized APIs to hamburgers on a breakfast

menu:486 different restaurants offer the same item, but they have their

482. Id.

483. See Joe Mullin, On the Stand, Google’s Eric Schmidt Says Sun Had No Problems

with Android, ARS TECHNICA (May 10, 2016), http://arstechnica.com/tech-
policy/2016/05/oracles-lawyer-grills-googles-eric-schmidt-on-the-nature-of-apis/

[https://perma.cc/32KM-

F8RY]; Sarah Jeong, Oracle v. Google — Day 1 (May 10, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-1 [https://perma.cc/45QC-PPR6]; Sarah

Jeong, Oracle v. Google — Day 2 (May 10, 2016), https://storify.com/sarahjeong/oracle-v-

google-day-2-5748d3691f6a1e6260160f34 [https://perma.cc/RN4V-ETRN].
484. See Derek Thompson, Google’s CEO: ‘The Laws Are Written by Lobbyists,’ THE

ATLANTIC (Oct. 1, 2010), http://www.theatlantic.com/technology/archive/2010/10/googles-

ceo-the-laws-are-written-by-lobbyists/63908/ [https://perma.cc/F9YL-F5JL].
485. See Joe Mullin, Sun’s Jonathan Schwartz at trial: Java was free, Android had no li-

censing problem, ARS TECHNICA (May 11, 2016), http://arstechnica.com/tech-

policy/2016/05/suns-jonathan-schwartz-at-trial-java-was-free-android-had-no-licensing-
problem/ [https://perma.cc/Y6R8-APG4]; Sarah Jeong, Oracle v. Google — Day 1 (May 10,

2016), https://storify.com/sarahjeong/oracle-v-google-day-1 [https://perma.cc/45QC-PPR6];

Sarah Jeong, Oracle v. Google — Day 2, (May 10, 2016), https://storify.com/sarahjeong/
oracle-v-google-day-2-5748d3691f6a1e6260160f34 [https://perma.cc/RN4V-ETRN].

486. Cf. Sarah Jeong, In Oracle v. Google, a Nerd Subculture Is on Trial,

MOTHERBOARD (May 12, 2016), http://motherboard.vice.com/read/in-google-v-oracle-the-
nerds-are-getting-owned [https://perma.cc/ZB6Y-YPBD] (noting Judge Alsup’s statement

that “[t]he thing about the breakfast menu makes no sense,” and commenting that “[n]o one

396 Harvard Journal of Law & Technology [Vol. 31

own implementation — i.e., their own way of preparing the quintes-

sential American sandwich. According to Schwartz, Sun’s strategy

was to offer open APIs and compete on implementations. He noted

that this sometimes undermined Sun’s control, such as when the free

software community developed the GNU Classpath project, a free

implementation of the standard class library for the Java programming

language, without a license.487 Schwartz testified that he was “an-

noyed, but it was completely consistent with our practices. When you

say APIs are open, there are competitive implementations.”488

Schwartz also discussed the Apache Harmony platform, supported by

a coalition including IBM, Oracle, and Google, which modestly

forked the Java platform without a license.489 Schwartz acknowledged

that Sun’s only control was through trademark protection: “It wasn’t

going to call itself Java, so there was nothing we could do.” He noted,

however, that all of the projects promoted use of the Java language,

which enhanced Sun’s reputation and leadership.

Schwartz also testified about Sun’s failure to introduce its own

mobile phone product and his disappointment that Sun and Google

did not reach a licensing arrangement that could have enhanced Sun’s

reputation in the marketplace. He denied, however, that Android con-

tributed to Sun’s failure to develop a Java-based smartphone.

On cross-examination, Oracle challenged Schwartz’s objectivity

and business acumen. Schwartz acknowledged that Oracle had not

offered him a senior management position following its acquisition of

Sun and that he was not aware that Sun had entered into a specifica-

tion license with Apache regarding the Harmony platform. Bicks

brought out internal Sun Emails showing great frustration with

Google’s unwillingness to partner on a mobile platform and concern

that Android would undermine the interoperability of the Java plat-

form. Schwartz explained that he was trying to put a positive public

face (“make lemonade with lemons”490) on a difficult business cir-

cumstance. He acknowledged his consternation with Google: “They

bothered to challenge Schwartz’s apparent belief that hamburgers are commonly featured on

breakfast menus”).

487. See Apache Harmony, WIKIPEDIA, https://en.wikipedia.org/wiki/Apache_Harmony
[https://perma.cc/U6A3-WNWF].

488. See Joe Mullin, Sun’s Jonathan Schwartz At Trial: Java Was Free, Android Had No

Licensing Problem, ARS TECHNICA (May 11, 2016), https://arstechnica.com/tech-
policy/2016/05/suns-jonathan-schwartz-at-trial-java-was-free-android-had-no-licensing-

problem/ [https://perma.cc/VPK6-HGRN].

489. Id.
490. See Dan Farber, Java Creator James Gosling: ‘Google Totally Slimed Sun,’ CNET

(Apr. 30, 2012) (quoting Gosling stating that “[w]e were all really disturbed, even Jonathan

[Schwartz]: he just decided to put on a happy face and tried to turn lemons into lemonade.”),
http://www.cnet.com/news/java-creator-james-gosling-google-totally-slimed-sun/ (last

visited Jan. 27, 2018).

Special Issue] API Copyright 397

take Java without attribution or contribution. That is why I love

Scroogle.”

Google then called Andy Rubin, leader of the Android project, to

the witness stand.491 He explained Google’s vision of creating an open

smartphone platform where Google would profit not from the sale of

devices or software but from promoting its web services and advertis-

ing platform. He denied that Java was necessary for Android’s suc-

cess, but acknowledged that it accelerated its entry into the

marketplace. Rubin explained his understanding that Android could

not use the Java trademarks without a license, but admitted that his

team could independently implement the Java APIs.

Annette Hurst, Oracle’s co-lead counsel, put Rubin through a re-

lentless, aggressive cross-examination lasting more than four hours

aimed at establishing that Google took shortcuts and knowingly cop-

ied Java APIs in developing the Android platform. Rubin acknowl-

edged that he stood to earn $60 million by getting the Android

smartphone to market by specified milestones. Much of the cross-

examination explored Rubin’s Emails, first seeking to work out a Java

platform license that would enable the Android team to pursue its

open source model, and then, after negotiations reached an impasse,

strategizing about independently implementing the Java APIs.

By the end of a full day of cross-examination, Oracle had burned

through much of its allotted time and had not yet begun its case in

chief. Judge Alsup warned Oracle that he did not plan to grant addi-

tional time.

Google presented video deposition excerpts in which Larry El-

lison denied saying he found Android’s use of Java flattering and did

not recall saying that he was excited about more Java-based products

coming from his friends at Google.492 Google then played a video

from the Java One Conference in which Ellison made both statements.

The deposition excerpts further showed Oracle did not pursue a mo-

bile smartphone device and that Java had continued to grow since An-

droid’s release. Google then introduced deposition testimony from an

IBM executive explaining that IBM uses the unlicensed Apache Har-

mony implementation of Java SE.

491. See Joe Mullin, Copyright and consequences: Google’s Andy Rubin Defends An-

droid to Jury, ARS TECHNICA (May 12, 2016), http://arstechnica.com/tech-

policy/2016/05/copyright-and-consequences-googles-andy-rubin-defends-android-to-jury/

[https://perma.cc/4JC9-YBUV]; Sarah Jeong, Oracle v. Google — Day 2 (May 12, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-2-5748d3691f6a1e6260160f34

[https://perma.cc/RN4V-ETRN]; Sarah Jeong, Oracle v. Google — Day 3 (May 12, 2016),

https://storify.com/sarahjeong/oracle-v-google-day-3 [https://perma.cc/T5FB-DUEZ].
492. See Joe Mullin, Top Programmer describes Android’s Nuts and Bolts in Oracle v.

Google, ARS TECHNICA (May 14, 2016), http://arstechnica.com/tech-policy/2016/05/top-

programmer-describes-androids-nuts-and-bolts-in-oracle-v-google [https://perma.cc/QAE6-
FXZU]; Sarah Jeong, Oracle v. Google — Day 4 (May 13, 2016), https://storify.com/

sarahjeong/oracle-v-google-day-4 [https://perma.cc/X52E-ZAKR].

398 Harvard Journal of Law & Technology [Vol. 31

Google called Joshua Bloch, the former Sun employee who be-

came Google’s “Java guru.” Bloch played a significant role in devel-

oping Java APIs and authored EFFECTIVE JAVA,493 a book about

writing Java code. Bloch explained the goals of API design (to make

them concise and difficult to misuse) and Sun’s desire to make them

widely available. He discussed differences in writing APIs for mobile,

as opposed to desktop, environments. Drawing on Bloch’s writings,

Oracle focused its cross-examination on the creativity involved in

designing APIs. He acknowledged that writing good APIs is difficult.

Google played video deposition excerpts of Donald Smith, a des-

ignated Oracle representative,494 in which Smith stated the Java pro-

gramming language and the Java APIs were defined together under

the same specification and hence were inseparable. He further testi-

fied that there were more than ten million Java developers and Ora-

cle’s Java division was growing and profitable. In a later segment of

the deposition, Smith walked back his earlier testimony that the Java

language and APIs were inseparable.

Google next called Simon Phipps, who was previously Sun’s

Chief Open Source Officer and was also President of the Open Source

Initiative until 2015.495 Phipps testified that Sun had not taken actions

to stop other projects that used Java APIs such as GNU Classpath and

Apache Harmony.

Google then called Daniel Bornstein, a key member of the An-

droid development team, to discuss APIs and the Android team’s ap-

proach to using Java declarations and APIs. Bornstein considered Java

declarations “A-OK to use.” He explained that Google used a lot of

open source software, including Apache Harmony “core libraries,” to

build Android. He noted that no other product offered the functionali-

ty, such as running multiple applications simultaneously on a

smartphone, that Google sought to develop. On cross-examination,

Hurst questioned Bornstein about Google’s efforts to purge java-

related terms from the Android code. Bornstein made light of the sug-

gestion that this indicated that Sun owned the APIs. On re-direct,

Bornstein explained that he was not a lawyer and had called for

scrubbing the “J-word” (Java) from Android code to avoid trademark

concerns.496

493. See JOSHUA BLOCH, EFFECTIVE JAVA (2001); JOSHUA BLOCH, EFFECTIVE JAVA (2d

ed. 2008)

494. See FED. R. CIV. P. 30(b)(6).

495. See Open Source Initiative, WIKIPEDIA, https://en.wikipedia.org/
wiki/Open_Source_Initiative [https://perma.cc/J88L-5Y5W].

496. See Joe Mullin, At Trial, Top Android Coder Explains Oracle’s Questions on

“Scrubbed” Source Code, ARS TECHNICA (May 16, 2016), http://arstechnica.com/tech-
policy/2016/05/at-trial-top-android-coder-explains-oracles-questions-on-scrubbed-source-

code/ [https://perma.cc/HRR3-G4SL]; Sarah Jeong, Oracle v. Google — Day 5 (May 16,

Special Issue] API Copyright 399

Google completed its direct fair use case with Professor Owen

Astrachan, Professor of the Practice of Computer Science at Duke

University.497 Professor Astrachan provided clear and measured tes-

timony about API design, the distinction between declaring and im-

plementing code, and the importance of consistent functional labels in

programming.498 He explained that Android is not fully compatible

with Java SE because the SE platform is designed for desktop or lap-

top computers whereas Android is designed for mobile devices.

Google designed Android to make use of 37 well-known Java APIs.

Since Java is the most widely used computer program in the world,

“[d]evelopers would expect that if you’re going to be using the Java

programming language, you’d have access to a rich suite of APIs, to

write whatever program you’re going to write.” Professor Astrachan

illustrated that the Java API labels (declarations) are functional and

descriptive — discussing java.net (network classes); java.io (in-

put/out), java.sql (accessing and processing data stored in a data

source, usually a relational database), java.security (classes and inter-

faces for the security framework), and java.util (various collections of

functions, including date and time and internationalization).499 He

explained the GNU Classpath implementation of Java APIs and the

clean room process. He further noted that Sun had reimplemented the

Linux APIs in its Solaris platform.

On cross-examination, Hurst pressed Professor Astrachan on the

creativity involved in designing APIs. While agreeing that designing a

good API is difficult, Astrachan observed that the difficulty was “not

exactly” the same as that encountered by painters or musicians.500 He

acknowledged that the Java language did not require the selection of

the particular 37 Java APIs that Google incorporated in Android, but

that it was necessary to meet developer expectations.

2016), https://storify.com/sarahjeong/oracle-v-google-day-2 [https://perma.cc/T5MU-

GZEX].
497. See Owen Astrachan, DUKE U., https://users.cs.duke.edu/~ola/ [https://perma.cc/

K83A-NWRP]; Owen Astrachan, WIKIPEDIA, https://en.wikipedia.org/wiki/

Owen_Astrachan [https://perma.cc/9PW6-4Y9H].
498. See Joe Mullin, Google Puts Its Expert on the Stand to Combat Oracle, Wraps Up

Its Case, ARS TECHNICA (May 16, 2016), http://arstechnica.com/tech-

policy/2016/05/google-puts-its-expert-on-the-stand-to-combat-oracle-wraps-up-its-case/
[https://perma.cc/XE4V-VLS6]; Sarah Jeong, Oracle v. Google — Day 5 (May 16, 2016),

https://storify.com/

sarahjeong/oracle-v-google-day-2 [https://perma.cc/T5MU-GZEX].
499. See Appendix A.

500. See Joe Mullin, Google puts its expert on the stand to combat Oracle, wraps up its

case, ARS TECHNICA (May 16, 2016), http://arstechnica.com/tech-policy/2016/05/google-
puts-its-expert-on-the-stand-to-combat-oracle-wraps-up-its-case/ [https://perma.cc/XE4V-

VLS6].

400 Harvard Journal of Law & Technology [Vol. 31

iii. Oracle’s Case in Chief

By the time that Google completed its case, Oracle had used

much of its allotted time cross-examining Google’s witnesses. Oracle

opened its case in chief with Oracle co-CEO, Safra Catz.501 She ex-

plained that Oracle acquired Sun to ensure the stability and reliability

of Java, on which many of Oracle’s software products were built. She

testified that “Java was the single most important asset Oracle ever

acquired.”502 She denied that Oracle sought to pursue a copyright in-

fringement lawsuit against Google. Catz explained the importance of

intellectual property protection to support Oracle’s $5.5 billion annual

investment in research and development. She discussed how An-

droid’s forking of Java code had undermined Oracle’s licensing strat-

egy. On cross-examination, Catz acknowledged that Sun had licensed

“significant elements” of Java technology as open source, which

could reduce the ability to appropriate revenue from users.

Oracle next called two other company executives.503 Edward

Screven, Oracle’s chief corporate architect, reinforced Catz’s testimo-

ny regarding Oracle’s motivation for acquiring Sun. He also explained

that the Apache Harmony license required that the Apache license

meet the Java Technology Compatibility Kit (“TCK”) test suite and

hence was not equivalent to Android’s use.504 He testified that An-

droid was the only unlicensed use of Apache Harmony.

Oracle next called Mark Reinhold, Oracle’s chief architect for Ja-

va SE, in what may have been the most significant testimony in the

case. Reinhold noted that the APIs for the Java ME (Micro Edition,

for feature phones) contain the same structure, sequence, and organi-

zation as those of Java SE (for desktop computers). Drawing on Ora-

cle’s Federal Circuit strategy, Reinhold testified that “the Java API

Package is like a book series” as the Harry Potter series flashed on the

courtroom presentation screen. He developed the following syllogism:

501. See Joe Mullin, Oracle CEO Safra Catz: “We Did Not Buy Sun to File this Law-

suit,” ARS TECHNICA (May 16, 2016), http://arstechnica.com/tech-policy/2016/05/oracle-

ceo-safra-catz-we-did-not-buy-sun-to-file-this-lawsuit/ [https://perma.cc/7HP3-SQ8Y]; Joe
Mullin, Oracle CEO: Google’s Android Broke Java in Two, ARS TECHNICA (May 17,

2016), http://arstechnica.com/tech-policy/2016/05/oracle-ceo-googles-android-broke-java-

in-two/ [https://perma.cc/V2WC-CLYK]; Sarah Jeong, Oracle v. Google — Day 6 (May 17,
2016), https://storify.com/sarahjeong/oracle-v-google-day-7 [https://perma.cc/8BAQ-

3AJX].

502. See Mullin, supra note 501.
503. See Joe Mullin, Oracle Java Architect Conscripts Harry Potter in Making the Case

Against Google, ARS TECHNICA (May 17, 2016), http://arstechnica.com/tech-

policy/2016/05/oracle-java-architect-conscripts-harry-potter-in-making-the-case-against-
google/ [https://perma.cc/T2FJ-LVVU]; Sarah Jeong, Oracle v. Google — Day 6 (May 17,

2016), https://storify.com/sarahjeong/oracle-v-google-day-7 [https://perma.cc/8BAQ-

3AJX].
504. See Technology Compatibility Kit, WIKIPEDIA, https://en.wikipedia.org/

wiki/Technology_Compatibility_Kit [https://perma.cc/ELH6-KC3D].

Special Issue] API Copyright 401

Package = Book

Class = Chapter

Method = Paragraph

Reinhold explained that Google’s copying of the Java API declar-

ing code is:

[L]ike using the titles of the books, the headings of

each chapter, and the title sentences of each para-

graph as well as the connections between the charac-

ters. Three books later, there are all these deep

connections. It’s intensely creative. Like writing a

book, you have to keep a lot of stuff in your head,

and the end result is rich and complex. A lot of it is

about figuring out what structures you want.505

Reinhold dismissed Van Nest’s analogy of Java APIs to labels on

a filing cabinet as “laughably simplistic.”

On cross-examination, Google pressed Reinhold on the incompat-

ibility across Java various platforms, getting him to acknowledge that

Java ME would not pass the Java SE compatibility test. Reinhold also

acknowledged that Java SE did not scale down for smaller devices,

implicitly acknowledging that Android provided an innovative new

platform.

Oracle then called Douglas Schmidt, Professor of Computer Sci-

ence at Vanderbilt University, as an expert witness.506 Professor

Schmidt presented a visual software map illustrating the interconnect-

edness of the APIs at issue. He testified that Google used the 37 Java

APIs in the same way that Sun designed them for the Java platform.

He corroborated Reinhold’s testimony that the APIs at issue were

“creative” and “substantial.” He presented test results showing that

Android failed if any of the Java APIs or the declaring code were re-

moved. Schmidt put into context Google’s claim that the Java declara-

tory code represented less than one-tenth of one percent of Android’s

fifteen million lines of code by illustrating that more than sixty per-

cent of the Android code was copied from third-parties. Furthermore,

of the twenty-three percent of the Android code that Google wrote,

nine percent were blank or comment lines. On cross-examination,

Professor Schmidt acknowledged that he was not familiar with the

meaning of “free and open” source software when he began preparing

his testimony.

505. See Mullin, supra note 503.

506. Professor Schmidt is not related to Google’s executive chairman.

402 Harvard Journal of Law & Technology [Vol. 31

Oracle completed its fair use case with testimony about the eco-

nomic impacts of Android’s release.507 Neil Civjan, Sun’s head of

global sales, testified that there were 2.6 billion Java-enabled mobile

phones at the peak (85% of the global marketplace). That number fell

precipitously after the introduction of Android’s phones and its freely

licensed operating system. Civjan noted that Java licensees did not see

why they should license the Java ME platform when they could get

Android, which was essentially Java and Linux, for free. He charac-

terized the effect on Sun’s licensing business as “devastating.”

Alan Brenner, Sun’s Senior Vice President of client systems from

1997 until 2007, corroborated Civjan’s testimony and testified that

Sun had persuaded a Korean research institute to take a Java license

rather than use the GNU Classpath project. Brenner rebutted Jonathan

Schwartz’s testimony that Sun accepted other implementations of the

Java platform. On cross-examination, Brenner acknowledged that Ja-

va licensing revenue was in decline before Android launched.

Oracle called Stefano Mazzocchi, a Google engineer who was

one of the original Apache Harmony developers, to rebut Google’s

argument that Sun acceded to others’ use of the Java APIs.508 Apache

Harmony obtained a license, subject to restrictions, on its use of the

Java platform. Following the announcement of Oracle’s acquisition of

Sun in 2009, Mazzocchi emailed members of the Apache listserv with

his concerns about Java’s future: “What is Oracle going to do about

Android’s ripping off some of (now) their IP and getting away with

it?”509 In an earlier Email, Mazzocchi expressed the view that copy-

right protected the Java APIs:

But what I was missing is the fact that the copyright

on the API is real and hard to ignore.

Simply by implementing a class with the same signa-

ture of another, in another namespace and simply by

looking at available javadocs could be considered

copyright infringement, even if the implementation

is clean room.

507. See Joe Mullin, Sun’s Head of Java Sales: Android Was “Devastating,” ARS

TECHNICA (May 18, 2016), https://arstechnica.com/tech-policy/2016/05/suns-head-of-java-

sales-android-was-devastating/ [https://perma.cc/3EE8-P2AU].

508. See Joe Mullin, Apache E-mails, Shown in Court, Say Android “Ripped Off” Oracle
IP, ARS TECHNICA (May 18, 2016), http://arstechnica.com/tech-policy/2016/05/apache-

e-mails-shown-in-court-say-android-ripped-off-oracle-ip./ [https://perma.cc/5YMC-U82V].

509. See Email from Stefano Mazzocchi to members@apache.org (Apr. 20, 2009), Trial
Ex. 9201, Oracle Am., Inc. v. Google Inc., (No. C 10-03561 WHA), http://

arstechnica.com/wp-content/uploads/2016/05/9201.pdf [https://perma.cc/V73L-DBSL]

Special Issue] API Copyright 403

So, we are, in fact, infringing on the spec lead copy-

right if we distribute something that has not passed

the TCK and *we know that*.510

On cross-examination, Mazzocchi acknowledged that he was neither a

lawyer nor an expert on copyright law.

Oracle concluded its case by calling Professor Adam Jaffe, an

economics expert, to explain network effects and his conclusion that

Android was not transformative from an economic perspective.511

Professor Jaffe testified that Android “very likely would not have

been successful” had Google not copied the 37 Java APIs. He further

opined that Java was “poised to enjoy continued success” in the mo-

bile marketplace. But because of network effects, the market quickly

tipped toward the Android platform and Sun was unable to recover.

Professor Jaffe contended that Java ME supported smartphones, but

was unable to gain traction in Android’s wake. On cross-examination,

Van Nest used the Java ME-based SavaJe phone (see Figure 6), which

lacked a QWERTY keyboard or touch screen, to illustrate the stark

differences between the Java ME platform and the Android platform.

Professor Jaffe acknowledged that SavaJe was a failure.

510. See Email from Sam Ruby to members@apache.org (Apr. 17, 2008), Trial Ex. 5046,

Oracle Am., Inc. v. Google Inc., No. C 10-03561 WHA)), http://arstechnica.com/wp-

content/uploads/2016/05/5046_REDACTED.pdf [https://perma.cc/BX79-5BE2] (including

Email from Mazzocchi in Email thread).
511. See Joe Mullin, Oracle Economist: Android Stole Java’s “Window of Opportunity,”

ARS TECHNICA (May 18, 2016), http://arstechnica.com/tech-policy/2016/05/oracle-

economist-android-stole-javas-window-of-opportunity/ [https://perma.cc/J8VM-6QMB];
Sarah Jeong, Oracle v. Google — Day 7 (May 18, 2016), https://storify.com/sarahjeong/

oracle-v-google-day-7-573d5aff5cb000d21eb9311d [https://perma.cc/99MG-QRTQ].

404 Harvard Journal of Law & Technology [Vol. 31

Figure 6. Java ME-Based SavaJe Phone.

iv. Google’s Rebuttal

Google first called Larry Page, Google’s co-founder and CEO of

Alphabet, Google’s parent corporation, who testified that Google nev-

er believed that it needed a license for the Java APIs because they

were “free and open.”512 On cross-examination, Page acknowledged

that unauthorized use of Google’s intellectual property could harm the

company. He did not believe, however, that API declarations consti-

tuted computer code. He reiterated that he considered the Java APIs to

be free and open. He acknowledged, however, that he was not a law-

yer and did not “know the vagaries of licensing.”

Google then called Dr. Greg Leonard, an economics expert, to re-

spond to Professor Jaffe’s testimony.513 Dr. Leonard concluded that

512. See Joe Mullin, CEO Larry Page Defends Google on the Stand: “Declaring Code is

Not Code”, ARS TECHNICA (May 19 2016), http://arstechnica.com/tech-policy/2016/05/ceo-
larry-page-defends-google-on-the-stand-declaring-code-is-not-code/ [https://perma.cc/

85QW-TMS2].

513. See Joe Mullin, Oracle v. Google Draws to a Close, Jury Sent Home Until Next
Week, ARS TECHNICA (May 19, 2016), http://arstechnica.com/tech-policy/2016/05/oracle-v-

google-draws-to-a-close-jury-sent-home-until-next-week/ [https://perma.cc/7AZE-RSBS].

Special Issue] API Copyright 405

Android did not have any impact on licensing of Java ME because

feature phones were not substitutes for smartphones. He further

opined that use of the thirty-seven APIs was not “central to Android’s

success”; in his view, C++ could have done comparably well.

Google completed the testimony phase of the trial by recalling

Professor Owen Astrachan, its programming expert. Professor Astra-

chan was not at all surprised that Android failed to operate with the

Java declaring code removed. He then summarized Google’s approach

to designing Android:

(1) Google selected 37 (not all) packages from Java SE, and used

those method declarations;

(2) wrote implementing code for those declarations;

(3) added other libraries specific to smartphones, like GPS, cam-

era, etc.;

(4) brought in third-party libraries for stuff like web browsers

and graphics;

(5) made the Dalvik Virtual Machine; and

(6) built whole thing on top of Linux.

In his expert opinion, this effort produced an innovative, open source

mobile platform.

v. Closing Arguments

The final day of the trial began with Judge Alsup reading the jury

twenty-one pages of instructions: general instructions regarding evi-

dence, witnesses, credibility, and burden of proof (seven pages); es-

tablished facts regarding the copyrighted works at issue (three pages);

the meaning of fair use under copyright law (eight pages); and jury

deliberation procedures (three pages).514 The fair use instructions mir-

rored the instructions set forth at the outset of the trial. Judge Alsup

allotted each side ninety minutes for closing argument.

Van Nest began by emphasizing that this case was very important

not only for Google, but for innovation and technology in general.515

514. See Notice of Final Charge to the Jury (Phase One) and Special Verdict Form, Ora-

cle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561

WHA) (ECF No. 1928).

515. See Joe Mullin, Google’s Closing Argument: Android Was Built from Scratch, the
Fair Way, ARS TECHNICA (May 23, 2016), http://arstechnica.com/tech-

policy/2016/05/googles-closing-argument-android-was-built-from-scratch-the-fair-way/

[https://perma.cc/U2XD-CE3C]; Sarah Jeong, Oracle v. Google - Closing Arguments (May
23, 2016), https://storify.com/sarahjeong/oracle-v-google-closing-arguments [https://

perma.cc/YK4U-CWTN].

406 Harvard Journal of Law & Technology [Vol. 31

He then noted that the clear, consistent, and largely uncontested testi-

mony of Eric Schmidt, Jonathan Schwartz, Andy Rubin, and Joshua

Bloch established that Sun made Java free and open to use and en-

couraged widespread use. Google took up that invitation and devel-

oped a pathbreaking mobile platform. Google independently

implemented the selected Java APIs, resulting in a software platform

that used less than one half of one percent of Java code. Van Nest laid

blame for this litigation squarely on Oracle Chairman Larry Ellison,

who Van Nest asserted brought this case after he had tried to use Java

to build his own smartphone and failed.

Van Nest then launched into his core copyright defense: “Android

is exactly the kind of thing the fair use doctrine was supposed to pro-

tect.” Van Nest emphasized Android’s transformative purpose: it is

not a substitute for Java SE or Java ME, but rather is an innovative

smartphone platform. Furthermore, Sun invited others to use Java.

Van Nest characterized the Java APIs as functional, reminding the

jury of the filing cabinet labels. He recalled Schwartz’s hamburger

implementation metaphor. Van Nest noted that Android had not inter-

fered with the market for Java SE and that the Java language remained

the most popular coding language in the world. Van Nest concluded

with an industry custom argument — every witness acknowledged

that re-implementing APIs was common in the software industry.

In response, Bicks returned to simple, moralistic themes: “You

don’t take people’s property without permission and use it for your

own benefit”; you don’t take “shortcuts” at other people’s expense;

the “fair use excuse.”516 Bicks methodically built Oracle’s closing

around the “mountain of evidence,” principally Emails that Google

engineers never thought would see the light of day. He deployed a

professionally-crafted storyboard to illustrate Oracle’s fair use analy-

sis.517

In constructing the argument against fair use, Bicks emphasized

the clear commerciality of Google’s use of the Java APIs and the ex-

tensive copying — 11,500 lines of Java code. He emphasized the Har-

516. See Joe Mullin, Oracle slams Google to jury: “You don’t take people’s property”,

ARS TECHNICA (May 23, 2016), /http://arstechnica.com/tech-policy/2016/05/oracle-slams-
google-to-jury-you-don’t-take-peoples-property [https://perma.cc/BN7H-2SAJ]; Sarah

Jeong, Oracle v. Google — Closing Arguments (May 23, 2016), https://storify.com/

sarahjeong/oracle-v-google-closing-arguments [https://perma.cc/YK4U-CWTN].
517. See Joe Mullin, How Oracle Made Its Case Against Google, in Pictures: Armed

with Google’s Own E-mails, Oracle Said “Fair Use” Was Nowhere to be Found, ARS

TECHNICA (May 25, 2016), http://arstechnica.com/tech-policy/2016/05/how-oracle-made-
its-case-

against-google-in-pictures/ [https://perma.cc/AA5Y-7URS]; Jeff Taylor, Oracle v. Google:

How to Create Beautiful Closing Argument Slides, THE DROID LAWYER (May 26, 2016),
http://thedroidlawyer.com/2016/05/oracle-v-google-how-to-create-beautiful-closing-

argument-slides/ [https://perma.cc/CC77-KCMV].

Special Issue] API Copyright 407

ry Potter metaphor to illustrate the rich, “creative,” integrated design

of the Java APIs, as reflected in Figure 7.

Figure 7. Oracle’s Closing Argument: HARRY POTTER Metaphor

Bicks mocked Google’s opportunistic use of Schwartz’s con-

gratulatory blog post after Android was announced by showing a two-

faced silhouette juxtaposing Sun’s public face with his cynical, inter-

nal face (referring to Google as “Scroogle”), as Figures 8 and 9 show.

He characterized Google as a bully and Oracle as a courageous fighter

standing up to Google’s arrogance.

408 Harvard Journal of Law & Technology [Vol. 31

Figure 8. Oracle Closing Argument: Two Faces of Jonathan Schwartz,

“Public versus Private”

Figure 9. Oracle Closing Argument: Two Faces of Jonathan Schwartz,

“Scroogle”

Special Issue] API Copyright 409

Bicks rebutted Google’s suggestion that Java APIs were free and

open, pointing out that Judge Alsup had instructed the jury that only

the Java language was open and free. The court specifically instructed

the jury that the Java language required only 170 of the 11,500 lines

of API declaring code that Google copied.518

Bicks countered the suggestion that Android makes transforma-

tive use of the Java APIs by emphasizing that Android used the Java

API packages to effectuate the same purposes as the Java platform

(e.g., java.security for security).519 Bicks further noted that Java ME

provided a full-stack solution for smartphones, as reflected in its use

in SavaJe and other functioning, although not commercially success-

ful, smartphones.520 In Oracle’s view, Java ME’s decline was due to

its free availability in a marketplace heavily influenced by network

economics (i.e., tipping point).521

Bicks concluded with the property theft theme: “Imagine, some-

body takes your property and is then competing against you — for

free.”522 Even if Sun and Oracle stumbled in building a smartphone

platform, that did not justify Google taking their property: “Maybe

you have some land and build a barn on it, and it doesn’t stand up that

well. Somebody doesn’t get to come onto your property, and say,

‘You weren’t good at building a barn, so I’m going to build a barn

here.’ The evidence isn’t that Oracle failed. Android took over the

market.”523

Bicks sought to leave the jury with a bitter taste by emphasizing

that fair use presupposes good faith and fair dealing. In Oracle’s view,

Google played by its own self-serving rules.524

In Google’s rebuttal, Van Nest countered that Sun gave away the

Java APIs with the Java language to promote the language.525 He ridi-

culed Oracle’s reliance upon Emails among engineers about the law

and conflation of trademark (scrubbing the J-word) and copyright is-

sues. Van Nest acknowledged that all companies have internal de-

bates, but that Google properly concluded that the API declarations

were not copyrightable and were available to be re-implemented in a

transformative platform.526 Van Nest deflected the stealing and theft

518. Judge’s Instructions/Charge to the Jury at *2209, Oracle Am., Inc. v. Google Inc.,

2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (ECF No. 1973).
519. Plaintiff Oracle America, Inc.’s Closing Statement and Defendant's Rebuttal, Oracle

Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561

WHA) (ECF No. 1973).
520. Id.

521. Id.

522. Id.
523. Id.

524. Id.

525. Defendant Google Inc.’s Closing Statement, Oracle Am., Inc. v. Google Inc., 2016
WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (ECF No. 1973).

526. Id.

410 Harvard Journal of Law & Technology [Vol. 31

arguments as beside the point of a fair use trial.527 He mocked the

“shortcut” argument by pointing out that it took Google five years to

bring Android to market. Van Nest countered Oracle’s moralistic

stealing theme with the argument that widespread and long-standing

industry norms supported independent implementation of APIs.528

Google closed the trial by suggesting that transformativeness pro-

vides the sensible middle ground between stolen and free. “You don’t

have to choose between commercial and transformative

[b]ecause the whole purpose of fair use is to promote innovation.”529

vi. Jury Verdict

Following three days of deliberation, the jury found that Google

had “shown by a preponderance of the evidence that its use in An-

droid of the declaring lines of code and their structure, sequence, and

organization from Java 2 Standard Edition Version 1.4 and Java 2

Standard Edition Version 5.0 constitutes a ‘fair use’ under the Copy-

right Act.”530 The verdict form did not ask the jury to make subsidiary

factual findings.531 With fair use decided in Google’s favor, there was

no need for a further damages phase. Judge Alsup thanked the jury for

their hard work and discharged the ten jurors.532 The jurors departed

without comment, leaving the public and the appellate court without a

clear understanding of how the fair use balance was struck.

6. The Road Ahead

As the Oracle v. Google litigation illustrated, a jury verdict does

not necessarily resolve a dispute, especially where the cost of appeal

is relatively low in comparison with the stakes involved and the par-

ties perceive no advantage to settlement.533 As Google completed its

case in chief, Oracle filed a motion requesting that Judge Alsup render

judgment as a matter law (“JMOL”) in its favor.

527. Id.
528. Id.

529. Id.

530. See Special Verdict Form, Oracle Am., Inc. v. Google Inc., 2016 WL 5393938
(N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA); Joe Mullin, Google Beats Oracle —

Android Makes “Fair Use” of Java APIs, ARS TECHNICA (May 26, 2016),

http://arstechnica.com/tech-
policy/2016/05/google-wins-trial-against-oracle-as-jury-finds-android-is-fair-use/ [https://

perma.cc/J325-V5MS].

531. See Special Verdict Form, supra note 530 .
532. See Mullin, supra note 530.

533. See supra notes 366–75.

http://arstechnica.com/tech-policy/2016/05/google-wins-trial-against-oracle-as-jury-finds-android-is-fair-use/
http://arstechnica.com/tech-policy/2016/05/google-wins-trial-against-oracle-as-jury-finds-android-is-fair-use/

Special Issue] API Copyright 411

Judge Alsup rejected Oracle’s JMOL motion.534 He explained that

he erred on Oracle’s side in allowing an instruction on the propriety of

the defendant’s conduct535 notwithstanding both the Federal Circuit’s

failure to call attention to this consideration in its remand decision and

the Supreme Court’s decision in Campbell v. Acuff-Rose Music, Inc.,

which downplays or jettisons this consideration.536 He further ex-

plained that based on the evidence presented, the jury could well have

determined that it was fair use to maintain the same structure of 37

Java API packages in the Android re-implemented packages so as to

avoid the confusion that would ensue from scrambling the various

functions: “avoiding cross-system babel promoted the progress of

science and useful arts — or so our jury could reasonably have

found.”537

Judge Alsup rejected Oracle’s arguments that Android’s use of

the Java APIs should have been deemed “entirely commercial” and

non-transformative, and that the Java APIs should have been consid-

ered “highly creative” because of the myriad ways in which the func-

tions could have been implemented. With respect to the fourth fair use

factor — the impact on the potential market for the Java platform —

Judge Alsup ruled that the jury “could reasonably have found that use

of the declaring lines of code (including their SSO) in Android caused

no harm to the market for the copyrighted works, which were for

desktop and laptop computers” and that the copying had little effect

on licensing of Java ME beyond “the tailspin already predicted within

Sun.”538 The court concluded its ruling by highlighting the contradic-

tion between Oracle’s pretrial instruction arguments — focusing on

characterizing the fair use test as an equitable rule of reason affording

juries broad discretion based on the contextual facts of the case — and

its JMOL motion urging that the court override the jury’s balancing of

the fact-specific factors:

534. See Order Denying Rule 50 Mots. at 1, Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

535. See Notice of Final Charge to the Jury (Phase One) and Special Verdict Form at 14,

Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-
03561 WHA).

536. See 510 U.S. 569, 585 n.18 (1994) (“Even if good faith were central to fair use, 2

Live Crew’s actions do not necessarily suggest that they believed their version was not fair
use; the offer [to license the plaintiff’s work] may simply have been made in a good-faith

effort to avoid this litigation. If the use is otherwise fair, then no permission need be sought

or granted.”); 2 PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT § 12.2.2, at 12:44.5–12:45
(3d ed. 2016).

537. Order Denying Rule 50 Mots., supra note 534, at 8–10. Judge Alsup further ex-

plained that inter-system consistency “differs from the interoperability point criticized by
the Federal Circuit. 750 F.3d at 1371. The immediate point of cross-system consistency

focuses on avoiding confusion in usage between the two systems, both of which are Java-

based, not on one program written for one system being operable on the other, the point
addressed by the Federal Circuit.” Order Denying Rule 50 Mots., supra note 534, at 10 n.6.

538. See Order Denying Rule 50 Mots., supra note 534, at 17.

412 Harvard Journal of Law & Technology [Vol. 31

In applying an ‘equitable rule of reason,’ our jury

could reasonably have given weight to the fact that

cross-system confusion would have resulted had

Google scrambled the SSO and specifications. Java

programmers and science and the useful arts were

better served by a common set of command-type

statements, just as all typists are better served by a

common QWERTY keyboard.539

That decision did not, however, end even the trial court phase of

the litigation. Oracle filed a new JMOL motion in early July that

largely critiqued Judge Alsup’s rejection of its first JMOL motion.540

More significantly, Oracle filed a motion requesting a new trial based

on Google’s alleged failure to disclose its plan to install Android

Marshmallow on desktop and laptop computers.541 In its reply to

Google’s opposition,542 Oracle contended that the withheld evidence

“directly refutes Google’s argument to the jury that ‘Android is not a

substitute [because] Java SE is on personal computers; Android is on

smartphones.’”543

Judge Alsup rejected these motions but left open the option for

Oracle to file a new copyright infringement complaint based upon

Google’s implementations of Android in devices other than

smartphones and tablets in a separate proceeding and trial.544 Oracle

has appealed the trial court’s verdict and post-trial determinations.

Oracle has reason for optimism about winning a Federal Circuit

appeal.545 Pursuant to the Federal Circuit’s Internal Operating Proce-

539. See Order Denying Rule 50 Mots., supra note 534, at 18.

540. See ORACLE’S RULE 50(b) MOT. FOR JUDGMENT AS A MATTER OF LAW,

Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-
03561 WHA) (ECF No. 1993).

541. See ORACLE’S RULE 59 MOT. FOR A NEW TRIAL, Oracle Am., Inc. v. Google

Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (ECF No.
1995-5).

542. See GOOGLE INC.’S OPP’N TO ORACLE’S RULE 59 MOT. FOR A NEW

TRIAL, Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No.
C 10-03561 WHA) (ECF No. 2012).

543. See ORACLE’S REPLY IN SUPP. OF ITS RULE 59 MOT. FOR A NEW TRIAL,

at 1, Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016) (No. C
10-03561 WHA) (ECF No. 2018-2) (citing Trial Tr. at 2124:6-7 (Google Closing Argu-

ment)).

544. See Order Denying Renewed Mot. For Judgment As A Matter Of Law And Mot. For
A New Trial, Oracle Am., Inc. v. Google Inc., 2016 WL 5393938 (N.D. Cal. Sept. 27, 2016)

(No. C 10-03561 WHA).

545. See Florian Mueller, Oracle v. Google: Jury Finds in Favor of “Fair Use,” As No
Reasonable, Properly-instructed Jury Could Have, FOSS PATENTS (May 26, 2016),

http://www.fosspatents.com/2016/05/oracle-v-google-jury-finds-in-favor-of.html [https://

perma.cc/3N3S-HWV5] (contending that Judge Alsup’s instructions set the fair use bar far
too low). But see Jonathan Band, Sanity Prevails Again, Part II: The District Court Leaves

the Oracle v. Google Fair Use Verdict in Place, DISRUPTIVE COMPETITION PROJECT (Jun.

Special Issue] API Copyright 413

dures, the same panel that reversed Judge Alsup’s copyrightability

ruling and set forth guiding principles for the fair use trial heard the

appeal of the fair use trial.546 Oracle preserved various objections to

Judge Alsup’s jury instructions.547 And since Judge Alsup denied Or-

acle’s new trial motion, Oracle has further grounds for appealing the

fair use verdict. Moreover, the appellate panel has already indicated

that there was much force to Oracle’s position and that many of the

facts relevant to the fair use balance were not in dispute.548

Google also has reason for optimism. First, it won the jury trial

after Judge Alsup modified the jury instructions in light of the parties’

concerns. Second, even if Google were to lose at the Federal Circuit

level a second time, it could petition the Supreme Court to review the

Federal Circuit’s API copyrightability ruling.549

Assuming that the parties don’t reach a settlement, which has

proven especially difficult, the Federal Circuit will review the fair use

trial and post-trial rulings. Should Google prevail, Oracle would likely

take a shot at Supreme Court review. Alternatively, the Federal Cir-

cuit could remand for another fair use trial or resolve the ultimate fair

use question in Oracle’s favor, thereby setting up a Google writ of

certiorari petition raising both API copyrightability and fair use ques-

tions. Under the most optimistic scenario, the case will continue for

several years. Furthermore, all new uses of Android could attract new

claims of copyright infringement.550

10, 2016), http://www.project-disco.org/intellectual-property/061016-sanity-prevails-again-

part-

ii-the-district-court-leaves-the-oracle-v-google-fair-use-verdict-in-place/#.V7sha_krJph
[https://perma.cc/DVW7-AJKC] (contending that “given how the district court meticulously

found evidence in the record supporting the reasonableness of the jury’s fair use finding, it

is hard to imagine that the Federal Circuit will reverse it”).
546. See U.S. Court of Appeals for the Federal Circuit Internal Operating Procedures,

Rule #3 (Merits Panels — Distribution of Briefs, Records, and Files (Nov. 14, 2008)

(“When an appeal is docketed in a case that was previously remanded by this court . . . the
clerk’s office attempts to assign the appeal to the previous panel, to a panel including at

least two members of the previous panel (if one of those members was the authoring judge),

or to a panel that contains the authoring judge, if such a panel is otherwise constituted and
available on a subsequent argument calendar.”),

http://www.cafc.uscourts.gov/sites/default/files

/IOPs122006.pdf [https://perma.cc/ZT93-L52X].
547. See Order Denying Rule 50 Mots., Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA).

548. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1376 (Fed. Cir. 2014).
549. See Google’s Trial Brief at 8 n.12, Oracle Am., Inc. v. Google Inc., 2016 WL

5393938 (N.D. Cal. Sept. 27, 2016) (No. C 10-03561 WHA) (“Google does not waive and

hereby expressly preserves its position that the SSO/declarations are not protected by copy-
right law. See, e.g., Bikram’s Yoga Coll. of India, L.P. v. Evolation Yoga, LLC, 803 F.3d

1032 (9th Cir. 2015).”).

550. See, e.g., Florian Mueller, Three Angles to Look at Google’s Pixel Phone: Design
Patents, Antitrust, Copyright, FOSS PATENTS (Oct. 28, 2016), http://www.fosspatents.com/

2016/10/three-angles-to-look-at-googles-pixel.html [https://perma.cc/W7NL-LKCD] (not-

414 Harvard Journal of Law & Technology [Vol. 31

C. The Current Murky State of API Copyright Protection

The Oracle v. Google fair use jury trial ranks among the most

significant computer software intellectual property trials and copy-

right fair use trials in U.S. history. Yet, it provided little clarity to

what is an especially murky area of intellectual property law. Even

though Google has prevailed thus far, the jury’s fair use decision has

little precedential significance. Even if the higher courts leave this

verdict intact, other technology companies will be left to roll the dice

if they incorporate unlicensed re-implemented APIs in their platform

specification. Furthermore, Google faces exposure for new versions of

Android that implement Java APIs in new products. The jury’s verdict

in Oracle v. Google does not insulate them from the risk of being sued

for copyright infringement. The only secure safe harbors are to devel-

op an independent platform or license the pre-existing APIs.

The Federal Circuit’s decision rejecting Judge Alsup’s API copy-

rightability ruling is the most significant recent federal appellate deci-

sion to confront the copyrightability of APIs. Furthermore, given the

proliferation of software patents, a company with a widely used set of

APIs could very likely pursue both patent and copyright causes of

action in the same litigation,551 thereby bringing the Federal Circuit’s

exclusive jurisdiction over patent cases into play, even where patent

issues are not appealed.

Thus, notwithstanding six years of litigation and two jury trials,

the Oracle v. Google litigation has contributed to, rather than quelled,

confusion surrounding API copyright protection. As courts have not-

ed, fair use is “‘the most troublesome [doctrine] in the whole law of

copyright.’”552 Legal advisors will need to inform their clients that

there is no clear safe harbor for re-implementing APIs short of a li-

cense. Other trial teams will face the same troublesome doctrines in

the context of another set of complex facts.

Furthermore, by resolving the fair use question with a simple jury

verdict form, the Oracle v. Google litigation sheds little light on the

reasoning behind the jury’s decision. There were no formal factual

findings. Therefore, the decision contributes little to our understand-

ing that Oracle could assert a new copyright complaint against Google’s new Pixel
smartphone, which implements Java APIs on Android Nougat).

551. See Scott Graham, Cisco v. Arista IP Battle Starts to Look a Lot Like Oracle v.

Google, THE RECORDER (Aug. 26, 2016), http://www.therecorder.com/
id=1202766017854/Cisco-v-Arista-IP-Battle-Starts-to-Look-a-Lot-Like-Oracle-v-

Google?slreturn=20160905152607 (last visited Jan. 27, 2018).

552. See Oracle, 750 F.3d at 1372 (quoting Monge v. Maya Magazines, Inc., 688 F.3d
1164, 1170 (9th Cir. 2012) (quoting Dellar v. Samuel Goldwyn, Inc., 104 F.2d 661, 662 (2d

Cir. 1939) (per curiam)); see also PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT § 12.1 (3d

ed. 2005) (“No copyright doctrine is less determinate than fair use.”); David Nimmer,
“Fairest of Them All” and Other Fairy Tales of Fair Use, 66 LAW & CONTEMP. PROBS.

263, 263 (2003).

Special Issue] API Copyright 415

ing of the fair use factors — transformativeness, commerciality, na-

ture of the copyrighted work — or how they are balanced in the con-

text of new platforms building on and augmenting prior API

packages. All we know is that Google’s particular re-implementation

for particular products was fair use. But as Judge Alsup’s resolution

of the new trial reveals, further development of the Android platform

could well provide the basis for a new copyright infringement action.

Such uncertainty can be especially problematic for technology

companies. The viability and value of a platform depends critically

upon its ability to leverage consumers’ and programmers’ familiarity

with APIs. Hence, the design of a new platform requires planning and

coordination. Yet the current status of API copyright jurisprudence

hinges liability for copyright infringement on “‘the most troublesome

[doctrine] in the whole law of copyright.’”553

The unusual jurisdictional posture of the Oracle v. Google case

and other API disputes that arguably implicate patent protection fur-

ther complicates the API copyright puzzle. When Congress estab-

lished the Court of Appeals for the Federal Circuit in 1982,554 it did

not provide a procedure for reviewing Federal Circuit interpretations

of regional circuit law short of Supreme Court review. The Federal

Circuit is the only en banc process available to litigants. It would be

more appropriate, however, to present such issues to the regional cir-

cuit, especially in cases such as Oracle v. Google in which patents

play no role in the appellate proceeding.555 Such a review would be

analogous to certification of a state law question to the highest state

court. Yet Congress has not authorized such review. As a result, the

Federal Circuit’s exclusive jurisdiction over federal patent law cases

produces a dual body of regional circuit law. The extent to which such

decisions bind the regional circuit is unclear since there are no struc-

tural means to harmonize divergent appellate interpretations short of

Supreme Court review.

The Oracle v. Google case illustrates the “forking”556 of Ninth

Circuit copyright jurisprudence. Whereas Judge Alsup placed princi-

pal reliance on the Ninth Circuit’s Sega decision, which expressly

rejected the Whelan framework, the Federal Circuit emphasized its

Nintendo v. Atari Games decision, which predates Sega and builds on

an inchoate foundation of the Ninth Circuit’s Johnson Controls deci-

sion. Technology companies are left without a clear line of authority

553. See Oracle, 750 F.3d at 1372.
554. See Federal Courts Improvement Act of 1982, Pub. L. No. 97-164, 96 Stat. 25

(1982).

555. See Peter S. Menell, API Copyrightability Bleak House: Unraveling and Repairing
the Oracle v. Google Jurisdictional Mess, 31 BERKELEY TECH. L.J. 1515 (2016).

556. See supra note 16; see also Appendix A (defining forking).

416 Harvard Journal of Law & Technology [Vol. 31

or a procedure for resolving such differences unless the Supreme

Court intervenes.

The following Part critically analyzes the Oracle v. Google litiga-

tion and constructs a coherent framework for applying copyright law

to APIs.

IV. THE LAW AND ECONOMICS OF API COPYRIGHT

PROTECTION

Congress’s decision to bring computer software within the scope

of copyright protection was never intended to hinder technological

innovation. The legislative history of the 1976 Copyright Act as well

as the CONTU REPORT made clear that copyright law’s limiting prin-

ciples were an essential part of Congress’s calculus in affording com-

puter software copyright protection. In keeping with the long-standing

common law traditions of copyright law, courts would play a critical

role in applying and adapting copyright law’s limiting doctrines to

take account of technological change.

The early history of copyright protection for computer software

technology illustrates the courts’ role in fitting copyright protection

for computer software within the contours of the larger intellectual

property system. It is not surprising that courts struggled with the ear-

ly cases. Few judges were familiar with computer technology and the

software marketplace was developing rapidly. By the early 1990s,

scholarship, experts, and advocates provided judges with a richer un-

derstanding of how copyright protection for software technology fit

within the larger intellectual property system. The proper balance re-

flected the interplay of technological innovation and interoperability

as well as the distinct and complementary roles of copyright and pa-

tent protection.

The Altai case provided a robust framework for limiting copyright

protection to the non-functional elements of computer software. The

Sega case, reinforced by the interoperability provisions of the DMCA,

established that interoperable features of computer technology were

fair game for subsequent software developers so long as they imple-

mented the functional specifications in independently written code.

By the mid-1990s, a coherent body of software copyright law had

emerged.

The network and other functional features of computer software

were not eligible for copyright protection even as the thousands of

lines of implementing code garnered copyright protection against pi-

racy. This balance operationalized the wisdom of the Baker v. Selden

case and the useful article separability doctrine in the software copy-

Special Issue] API Copyright 417

right domain. Litigation subsided, and the software industry moved

forward.557

The Oracle v. Google litigation revived flawed and widely reject-

ed arguments from the first wave of API copyright litigation. The

Federal Circuit’s decision finding that compilations of functions in

API packages as well as the structure, sequence, and organization of

APIs are protectable so long as there are multiple ways of achieving

the high-level purposes of the software returns us to the Apple v.

Franklin and Whelan era. This type of regime effectively protects par-

ticular machines under copyright law so long as there are multiple

methods to implement those machines’ general functions. Such broad

copyright protection intrudes upon the functional realm reserved for

utility patent protection.

Under the Federal Circuit’s Oracle ruling, companies that control

widely adopted platforms can leverage copyright protection to control

the investments of programmers and users of their technology. They

can stand in the way of subsequent innovators that seek to effectuate a

leap to a new functional paradigm. With three decades of experience

in software platform evolution, we have a sounder basis for assessing

the proper balance between promoting network externalities and en-

couraging platform innovation.

This Section reexamines the role of copyright protection for com-

puter software in the current and foreseeable digital age. Section A

critically analyzes the Oracle v. Google decisions and explains that

copyright law’s fundamental exclusion of protection for functional

features dictates that the labeling conventions and packaging of func-

tions within interface specifications generally fall outside of the scope

of copyright protection even as implementing code garners thin copy-

right protection. Section B explains that this interpretation of copy-

right law serves the larger goals of intellectual property law and

competition policy.

A. Legal Analysis

This Section begins by reviewing the foundational principles

guiding copyright protection for computer software. It then assesses

557. See Baker v. Selden, 101 U.S. 99 (1879). Just as copyright protection for computer

software became coherent, patent protection for computer software and business methods

emerged as a major problem for the software industry. See Peter S. Menell, Forty Years of

Wondering in the Wilderness and No Closer to the Promised Land: Bilski’s Superficial
Textualism and the Missed Opportunity to Return Patent Law to its Technology Mooring, 63

STAN. L. REV. 1289 (2011); JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE: HOW

JUDGES, BUREAUCRATS, AND LAWYERS PUT INNOVATORS AT RISK (2009); ADAM B. JAFFE

& JOSH LERNER, INNOVATION AND ITS DISCONTENTS: HOW OUR BROKEN PATENT SYSTEM

IS ENDANGERING INNOVATION AND PROGRESS, AND WHAT TO DO ABOUT IT (2004).

418 Harvard Journal of Law & Technology [Vol. 31

the Federal Circuit’s Oracle decision. It concludes with a comprehen-

sive framework for adjudicating software copyright cases.

1. Overarching Principles

The intellectual property system channels innovative, creative,

and source-identifying works among three distinct modes of protec-

tion: utility patent law protects technological works; copyright law

protects expressive works;558 and trademark law protects source-

identifying symbols. The requirements for eligibility, scope, duration,

and remedies for each of the modes of protection vary significantly

based on the differing underlying purposes and legislative design of

patent, copyright, and trademark protection.

To a first approximation, technological and creative works have

generally fallen into different modes of protection. Machines, tech-

nical processes, and chemical compositions are eligible for utility pa-

tent protection (or trade secret protection if maintained as secrets).559

Literary, pictorial, graphic, sculptural, and musical works are protect-

ed through copyright law. Trade symbols are protected as trademarks,

although a graphic symbol might also garner copyright protection.

The challenge computer software and other useful articles pose is

that they can fall into two or more of the intellectual property modes.

Patent-eligible machines can be characterized as sculptural works or

source-identifying trade dress. Software code for running a machine

can be characterized as literary text. The Supreme Court cogently re-

solved this overlap when it recognized that only utility patent law, the

most restrictive of the intellectual property regimes, protects a work’s

functional features. Otherwise, inventors could effectively extend

their statutory exclusive rights beyond the limited times that Congress

intended for technological innovations and applied scientific discover-

ies. As the Supreme Court explained in Baker v. Selden,

The copyright of the book, if not pirated from other

works, would be valid without regard to the novelty,

or want of novelty, of its subject-matter. The novelty

of the art or thing described or explained has nothing

to do with the validity of the copyright. To give to

the author of the book an exclusive property in the

art described therein, when no examination of its

558. Design patent law can also be used to protect the ornamental (non-functional) as-

pects of useful articles. See 17 U.S.C. § 171 (2012). It co-exists and overlaps with copyright

protection. See Mazer v. Stein, 347 U.S. 201, 217 (1954).

559. Trade secret law protects information that derives value from not being generally
known and is subject to reasonable efforts to maintain secrecy. See Uniform Trade Secrets

Act § 1(4).

Special Issue] API Copyright 419

novelty has ever been officially made, would be a

surprise and a fraud upon the public. That is the

province of letters-patent, not of copyright.560

A book describing a technological method can be the subject of a

copyright without impinging on the public’s use of the method taught

and illustrated in text and pictures. As the Supreme Court summa-

rized, “[t]here is a clear distinction between the book, as such, and the

art which it is intended to illustrate. The mere statement of the propo-

sition is so evident, that it requires hardly any argument to support

it.”561 The Court further explained,

A treatise on the composition and use of medicines,

be they old or new; on the construction and use of

ploughs, or watches, or churns; or on the mixture and

application of colors for painting or dyeing; or on the

mode of drawing lines to produce the effect of per-

spective, — would be the subject of copyright; but

no one would contend that the copyright of the trea-

tise would give the exclusive right to the art or man-

ufacture described therein.562

This foundational channeling principle frames the intellectual

property system. Without this principle, the potential overlaps among

patent, copyright, and trademark protection would topple the edifice.

Any patent-eligible method, machine, article of manufacture, or

chemical composition can be described in a book. Any machine or

article of manufacture can serve as an indicator of source. The long

duration and low threshold requirements of copyright and trademark

protection would displace patent’s primacy in protecting technological

advance or functional features. Inventors could use copyright or

trademark protection to easily secure rights in technological advances

for substantially longer duration than utility patent protection. Thus,

the courts have barred copyright or trademark protection for methods,

machines, and functional elements of sculptural works.563 This same

rationale preempts state laws aimed at directly protecting technolo-

gy.564

560. 101 U.S. 99, 102 (1879).
561. Id.

562. Id.

563. See id.; TrafFix Devices, Inc. v. Mktg. Displays, Inc., 532 U.S. 23 (2001); Inwood
Labs, Inc. v. Ives Labs, Inc., 456 U.S. 844, 863 (1982) (White, J., concurring in result)

(explaining that where an item in general circulation is unprotected by patent,

“[r]eproduction of a functional attribute is legitimate competitive activity.”).
564. See Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 159–64 (1989);

Sears, Roebuck & Co. v. Stiffel Co., 376 U.S. 225, 233 (1964) (barring state law from offer-

420 Harvard Journal of Law & Technology [Vol. 31

Congress expressly codified these doctrines in the 1976 Copy-

right Act. Section 102(b) provides that “[i]n no case does copyright

protection for an original work of authorship extend to any idea, pro-

cedure, process, system, method of operation, concept, principle, or

discovery, regardless of the form in which it is described, explained,

illustrated, or embodied in such work.”565 The Copyright Act excludes

“mechanical or utilitarian aspects” of useful articles from the defini-

tion of “pictorial, graphic, and sculptural works.”566 The statute pro-

vides that “the design of a useful article . . . shall be considered a

pictorial, graphic, or sculptural work only if, and only to the extent

that, such design incorporates pictorial, graphic, or sculptural features

that can be identified separately from, and are capable of existing in-

dependently of, the utilitarian aspects of the article.”567

The legislative history of the 1976 Copyright Act states that Con-

gress’s purpose in enacting § 102(b) was “to restate, in the context of

the new single Federal system of copyright, that the basic dichotomy

between expression and idea remains unchanged.”568 These limita-

tions developed through judicial decisions, such as Baker v. Selden,

and have produced a body of common law doctrines, such as merger,

scènes à faire, and fair use. Congress intended to perpetuate judicial

evolution of these doctrines as a means of adapting copyright law to

technological change.569

Regarding copyright protection for computer software, the legis-

lative history comments that:

Some concern has been expressed lest copyright in

computer programs should extend protection to the

methodology or processes adopted by the program-

ing “the equivalent of a patent monopoly” in the functional aspects of a product which had
been placed in public commerce absent the protection of a valid patent); Compco Corp. v.

Day-Brite Lighting, Inc., 376 U.S. 234 (1964). State trade secret protection does not, in the

Supreme Court’s view, conflict with the federal patent regime. See Kewanee Oil Co. v.
Bicron Corp., 416 U.S. 470 (1974). Rather, trade secret protection focuses on misappropria-

tion of secret information. It does not stand in the way of scientific discovery or technologi-

cal innovation. The public may freely use knowledge that is not protected by patents,
including information gleaned through reverse engineering of publicly available protections.

Id. at 490.

565. 17 U.S.C. § 102(b).
566. 17 U.S.C. § 101 (definition of “pictorial, graphic, and sculptural works”).

567. Id.

568. See H.R. REP. NO. 94-1476, at 57 (1976).
569. See id. at 66 (“The bill endorses the purpose and general scope of the judicial doc-

trine of fair use, but there is no disposition to freeze the doctrine in the statute, especially

during a period of rapid technological change. Beyond a very broad statutory explanation of
what fair use is and some of the criteria applicable to it, the courts must be free to adapt the

doctrine to particular situations on a case-by-case basis.”); see generally, Peter S. Menell,

The Mixed Heritage of Federal Intellectual Property Law and Ramifications for Statutory
Interpretation, in INTELLECTUAL PROPERTY AND THE COMMON LAW 70 (Shyamkrishna

Balganesh ed., 2013).

Special Issue] API Copyright 421

mer, rather than merely to the “writing” expressing

his ideas. Section 102(b) is intended, among other

things, to make clear that the expression adopted by

the programmer is the copyrightable element in a

computer program, and that the actual processes or

methods embodied in the program are not within the

scope of the copyright law.570

The Computer Software Copyright Act of 1980,571 implementing

CONTU’s recommendations, affirmed CONTU’s emphasis on the

importance of applying the judicially-developed idea-expression doc-

trine to ensure that copyright protection did not interfere with techno-

logical progress in computer programming.572

The 1976 Copyright Act, as amended by the 1980 software

amendments, put courts in the critical role of adapting copyright law’s

traditional, judicially-developed standards to the rapidly developing

medium of computer software. Over the course of the next two dec-

ades, the courts rose to the challenge. After some initial missteps,

which threatened to provide undue legal protection to the first entity

to develop computer software for a particular purpose (such as man-

aging a dental laboratory’s records),573 courts came to apply the idea-

expression doctrine and other critical limiting doctrines with fuller

appreciation of the purposes underlying copyright protection and its

interplay with patent protection. The Ninth Circuit was especially

forward-thinking in ensuring a proper balance.574

2. Critique of the Federal Circuit Copyrightability Decision

The Federal Circuit’s Oracle v. Google decision purports to apply

Ninth Circuit jurisprudence to its review of Judge Alsup’s decision

holding that the compilation of functions and the structure, sequence,

and organization of the Java APIs were not copyrightable. This Sec-

tion shows that the Federal Circuit (1) misinterpreted § 102(b) of the

Copyright Act, (2) misconstrued Ninth Circuit software copyright

jurisprudence, (3) conflated technological innovation and expressive

or artistic “creativity,” (4) applied an overly rigid approach to copy-

right law’s limiting doctrines, and (5) treated API design as variable

expression rather than unique function.

570. See H.R. REP. NO. 94-1476, at 57 (1976).
571. Pub. L. No. 96-517, 94 Stat. 3007, 3028 (codified at 17 U.S.C. §§ 101, 117).

572. See supra Section II(B)(1).

573. See supra, text accompanying note 90 (discussing Whelan Assocs., Inc. v. Jaslow
Dental Lab., Inc.).

574. See supra notes 122–42.

422 Harvard Journal of Law & Technology [Vol. 31

i. Misinterpretation of the Copyright Act

The Federal Circuit’s opinion takes a broad view of the scope of

copyright protection for computer software.575 While recognizing the

§ 102(b) limitations, the court did not view those constraints as appli-

cable to copyrightability.576 Rather, the court saw § 102(b) as only

applicable at the infringement and defenses stages of analysis.

The Federal Circuit misread the clear language of the Copyright

Act as well as the legislative history. It also misapprehends the larger

legislative intent and purpose regarding copyright protection for use-

ful articles and other functional subject matter.

a. Misreading Section 102

Section 102 of the Copyright Act addresses “Subject matter of

copyright: In general.” Section 102(a) sets forth a broad list of catego-

ries, such as literary works, musical works, and pictorial, graphic, and

sculptural works, in which copyright protection subsists.577 Section

102(b) sets forth limitations on copyrightable subject matter: “In no

case does copyright protection for an original work of authorship ex-

tend to any idea, procedure, process, system, method of operation,

concept, principle, or discovery, regardless of the form in which it is

described, explained, illustrated, or embodied in such work.”

Google argued that the particular compilation of functions in Java

API packages were uncopyrightable “method[s] of operation.” The

Federal Circuit rejected the proposition that § 102(b) can be invoked

in this way, quoting a comment in the legislative history of the 1976

Act stating that § 102(b) “in no way enlarges or contracts the scope of

copyright protection,” but merely “restates . . . that the basic dichoto-

my between expression and idea remains unchanged.”578 The Federal

Circuit then turned to a Tenth Circuit case, Mitel, Inc. v. Iqtel, Inc.,579

for the proposition that “Section 102(b) does not extinguish the pro-

tection accorded a particular expression of an idea merely because

that expression is embodied in a method of operation.”580 From there,

the Federal Circuit, following Mitel, concluded that § 102(b) only

575. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1356 (quoting Feist Publ’ns,

Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 345, 358 (1991)) (noting that originality “means
only that the work was independently created by the author (as opposed to copied from

other works), and that it possesses at least some minimal degree of creativity” and that “the

originality requirement is not particularly stringent”).
576. Id. at 1354 (finding that the “district court failed to distinguish between the thresh-

old question of what is copyrightable — which presents a low bar — and the scope of con-

duct that constitutes infringing activity.”).
577. 17 U.S.C. § 102(a).

578. Oracle, 750 F.3d at 1356 (quoting Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499

U.S. 340, 356 (1991) (quoting H.R. REP. No. 94-1476)).
579. 124 F.3d 1366 (10th Cir. 1997).

580. Oracle, 750 F.3d at 1356–57 (quoting Mitel, 124 F.3d at 1372).

Special Issue] API Copyright 423

comes into play as part of the abstraction-filtration-comparison analy-

sis.581

The Federal Circuit overrode the plain text of the 1976 Act — “In

no case does copyright protection for an original work of authorship

extend to any . . . method of operation . . . , regardless of the form in

which it is described, explained, illustrated, or embodied in such

work”582 — based on the comment in the legislative history that “Sec-

tion 102(b) in no way enlarges or contracts the scope of copyright

protection.” As the Federal Circuit recognizes, however, Congress

intended § 102(b) to codify the idea-expression dichotomy.583 Under

that doctrine, methods of operation — such as the accounting method

in Baker v. Selden — were categorically excluded from copyright eli-

gibility. The Supreme Court did not inquire into whether there were

other methods that achieved the same purpose (accounting). Rather,

the Court excluded any claim to a method of accounting even as it

ruled that Selden’s accounting book describing the method was copy-

rightable.584

Reinforcing this understanding of the idea-expression dichotomy,

the CONTU REPORT declared that “one is always free to make a ma-

chine perform any conceivable process (in the absence of a patent)” so

long as they don’t “take another’s program.”585 Following this princi-

ple, it is difficult to understand why Google would not be entitled to

make a mobile device (“a machine”) perform the same functions as a

Java API package (a “conceivable process”) with clean-roomed com-

puter code (not “another’s program”). Each Java API package consti-

tuted a particular subsystem within a larger particular computing

environment. Extrapolating one step further, it is difficult to under-

stand why Google would not be entitled to select a set of Java API

packages and implement them with original code to create a new ma-

chine.

Congress directly addressed the interplay of copyright protection

for computer software and the idea-expression dichotomy in the fol-

581. See id. at 1357.
582. 17 U.S.C. § 102(b).

583. See Oracle, 750 F.3d at 1355.

584. The Federal Circuit twisted Baker v. Selden in its atextual reading of § 102:
The [Supreme] Court [in Baker v. Selden] indicated that, if it is nec-

essary to use the forms Selden included in his books to make use of

the accounting system, that use would not amount to copyright in-
fringement. See [Baker v. Selden, 101 U.S. at 104] (noting that the

public has the right to use the account-books and that, ‘in using the

art, the ruled lines and headings of accounts must necessarily be used
as incident to it’).

Oracle v. Google, 750 F.3d at 1355. A faithful reading of Baker v. Selden recognizes that

the Court held that the accounting method was uncopyrightable, not merely not infringed.
That is the essence of the idea-expression dichotomy.

585. See CONTU REPORT at 20.

424 Harvard Journal of Law & Technology [Vol. 31

lowing passage from the House Report: “Section 102(b) is intended,

among other things, to make clear that the expression adopted by the

programmer is the copyrightable element in a computer program, and

that the actual processes or methods embodied in the program are not

within the scope of the copyright law.”586 This language, unlike the

general statement about that “Section 102(b) in no way enlarges or

contracts the scope of copyright protection,” captures the essence of

API design. The implementing code is the protectable computer pro-

gram. The declaring code constitutes “the actual processes or methods

embodied in the program [which] are not within the scope of the cop-

yright law.”587 This construction of § 102(b) is faithful to the text and

specific legislative history of the Copyright Act.

b. Legislative Intent and Purpose

The Copyright Act’s provisions relating to useful articles and

general legislative history reinforce § 102(b)’s role as a threshold doc-

trine, not merely an infringement or fair use consideration.

The definition of “pictorial, graphic, and sculptural works” states

that “the design of a useful article . . . shall be considered a pictorial,

graphic, or sculptural work only if, and only to the extent that, such

design incorporates pictorial, graphic, or sculptural features that can

be identified separately from, and are capable of existing independent-

ly of, the utilitarian aspects of the article.”588 Congress plainly viewed

the separability test as a threshold issue. The legislative history ex-

plains:

[T]he Committee is seeking to draw as clear a line as

possible between copyrightable works of applied art

and uncopyrighted works of industrial design. . . .

[A]lthough the shape of an industrial product may be

aesthetically satisfying and valuable, the Commit-

tee’s intention is not to offer it copyright protection

under the bill. Unless the shape of an automobile,

airplane, ladies’ dress, food processor, television set,

or any other industrial product contains some ele-

ment that, physically or conceptually, can be identi-

fied as separable from the utilitarian aspects of that

article, the design would not be copyrighted under

the bill. The test of separability and independence

from ‘the utilitarian aspects of the article’ does not

depend upon the nature of the design — that is, even

586. See H.R. REP. NO. 94-1476, at 56–57 (1976).
587. Id.

588. 17 U.S.C. § 101 (definition of “pictorial, graphic, and sculptural works”).

Special Issue] API Copyright 425

if the appearance of an article is determined by es-

thetic (as opposed to functional) considerations, only

elements, if any, which can be identified separately

from the useful article as such are copyrightable.589

The functional characteristics of a work come into play in the in-

fringement and fair use analyses if a useful article is physically or

conceptually separable — i.e., if the entirety of the work is not cate-

gorically excluded at the copyrightability stage of analysis.

The 1976 Copyright Act legislative history also excludes typefac-

es from copyright protection out of concern with interfering with utili-

tarian functions:

The Committee has considered, but chosen to defer,

the possibility of protecting the design of typefaces.

A “typeface” can be defined as a set of letters, num-

bers, or other symbolic characters, whose forms are

related by repeating design elements consistently ap-

plied in a notational system and are intended to be

embodied in articles whose intrinsic utilitarian func-

tion is for use in composing text or other cognizable

combinations of characters. The Committee does not

regard the design of typeface, as thus defined, to be a

copyrightable “pictorial, graphic, or sculptural work”

within the meaning of this bill and the application of

the dividing line in section 101.590

Congress intended a similar threshold exclusion for functional el-

ements of architectural works that are not separable from the artistic

features:

A special situation is presented by architectural

works. An architect’s plans and drawings would, of

course, be protected by copyright, but the extent to

which that protection would extend to the structure

depicted would depend on the circumstances. Purely

nonfunctional or monumental structures would be

subject to full copyright protection under the bill,

589. See H.R. REP. NO. 94-1476, at 55 (1976); Jane Ginsburg, “Courts Have Twisted

Themselves into Knots”: US Copyright Protection for Applied Art, 40 COLUM. J.L. & THE

ARTS 1 (2016); Shira Perlmutter, Conceptual Separability and Copyright in the Designs of

Useful Articles, 37 J. COPYRIGHT SOC’Y U.S.A. 339, 351 (1990) (explaining that the House

Judiciary Committee “stressed Congress’s desire to exclude from protection the general
class of industrial products, notwithstanding any ‘aesthetically satisfying’ design”).

590. See H.R. REP. NO. 94-1476, at 55 (1976).

426 Harvard Journal of Law & Technology [Vol. 31

and the same would be true of artistic sculpture or

decorative ornamentation or embellishment added to

a structure. On the other hand, where the only ele-

ments of shape in an architectural design are concep-

tually inseparable from the utilitarian aspects of the

structure, copyright protection for the design would

not be available.591

As part of achieving compliance with the Berne Convention, Con-

gress amended the Copyright Act in 1990 to expand protection for

architectural works and move away from the separability standard for

architectural works.592 Nonetheless, Congress retained non-

functionality as a threshold requirement for copyrightability. The Ar-

chitectural Works Copyright Protection Act defined “architectural

work” to include the “the overall form as well as the arrangement and

composition of spaces and elements in the design, but does not in-

clude individual standard features.”593 Thus, Congress retained a

threshold exclusion for “individual standard features.”594 The legisla-

tive history explains that

The Committee does not suggest . . . that in evaluat-

ing the copyrightability or scope of protection for ar-

chitectural works, the Copyright Office or the courts

should ignore functionality. A two-step analysis is

envisioned. First, an architectural work should be

examined to determine whether there are original de-

sign elements present, including overall shape and

interior architecture. If such design elements are pre-

sent, a second step is reached to examine whether the

design elements are functionally required. If the de-

sign elements are not functionally required, the work

is protectible without regard to physical or conceptu-

al separability.595

591. See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 55.

592. See Architectural Works Copyright Protection Act, Pub. L. No 101-650, 104 Stat.
5089 (1990) (codified at 17 U.S.C. §§ 101, 102(a)(8), 120); H.R. REP. NO. 101-735, as

reprinted in 1990 U.S.C.C.A.N. 6935, 6952.

593. 17 U.S.C. § 101 (defining “architectural work”).
594. See id.; H.R. REP. NO. 101-735, as reprinted in 1990 U.S.C.C.A.N. 6935, 6949 (ex-

plaining that “the definition makes clear that protection does not extend to individual stand-

ard features, such as common windows, doors, and other staple building components”).
595. H.R. REP. NO. 101-735, Copyright Amendments Act of 1990, 1990 U.S.C.C.A.N.

6935, 6951–52 (emphasis added).

Special Issue] API Copyright 427

Thus, Congress plainly intended and envisioned that courts would

consider functionality in evaluating copyrightability and scope of pro-

tection.

Moreover, the text and legislative history of the Copyright Act,

drawing on Baker v. Selden and its progeny, make clear that Congress

intended a parsimonious approach to copyright protection for useful

articles and other functional works.596 The Federal Circuit’s expansive

approach — reviving the discredited Whelan approach and Apple v.

Franklin dicta — contradicts the important channeling function of the

idea-expression dichotomy. By bestowing copyright protection on

functional specifications for a software interface whenever there are

multiple ways of achieving a high-level purpose, the Federal Circuit

allows copyright protection to control access to platforms or any other

particular machine. This undermines the logic of the intellectual prop-

erty system. Only a patented invention — which is subject to the sub-

stantial, innovation-focused threshold requirements of novelty, non-

obviousness, and disclosure and limited duration — can provide such

protection. By contrast, copyright protection for particular implemen-

tations affords platform developers protection against software piracy

while fostering competition within non-patented platforms. Further-

more, by keeping platform specifications proprietary, developers can

gain lead-time due to the difficulty of reverse engineering and hence

limited control over their platform.

ii. Misreading Ninth Circuit Jurisprudence

Beyond misconstruing § 102(b), the Federal Circuit’s opinion di-

verges from the clear language and evolution of the Ninth Circuit’s

software copyright jurisprudence. Judge Alsup drew principally from

the First Circuit’s Lotus decision and the Ninth Circuit’s Sega deci-

sion in framing his analysis. The Federal Circuit held that the Lotus

decision is “inconsistent” with Ninth Circuit precedent597 and that the

Sega decision is inapt.598 Neither of these interpretations, however,

withstands scrutiny. Furthermore, the Federal Circuit applied interpre-

tations and analytical frameworks from Third Circuit decisions (Apple

v. Franklin and Whelan) that the Ninth Circuit rejected.

a. Viability of the Lotus Decision in the Ninth Circuit

The Federal Circuit ruled that “the Ninth Circuit has not adopted

the court’s ‘method of operation’ reasoning in Lotus, and [concluded]

596. See H.R. REP. NO. 94-1476, at 54–55, 56–67 (1976).
597. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1365 (Fed. Cir. 2014).

598. Id. at 1369.

428 Harvard Journal of Law & Technology [Vol. 31

that [Lotus] is inconsistent with binding precedent.”599 While it is true

that the Ninth Circuit has not expressly adopted the First Circuit’s

“method of operation” framework, it has never rejected it. Further-

more, the Ninth Circuit’s Sega decision, which predates the Lotus

decision, is consistent with its analysis.

The Federal Circuit’s ruling that the Lotus framework is “incon-

sistent with binding precedent” extrapolates well beyond the holding

of the Ninth Circuit’s Johnson Controls decision. In that early deci-

sion that focused on copyright protection for computer code as op-

posed to API design, the Ninth Circuit held that “[w]hether the non-

literal components of a program, including the structure, sequence and

organization and user interface, are protected depends on whether, on

the particular facts of each case, the component in question qualifies

as an expression of an idea, or an idea itself.”600 That terse opinion

neither distinguishes between API design and implementing code nor

addresses interoperability.

The Federal Circuit reinforces its strained reading of Ninth Cir-

cuit precedent by reference to Atari Games v. Nintendo,601 its own

early decision applying Ninth Circuit law, that concluded that copy-

right law protects “the expression of [a] process or method.”602 The

Ninth Circuit has never embraced that ruling, and has conclusively

held in Sega and Sony that interface specifications necessary for in-

teroperability are not copyrightable.603 Therefore, at least in that criti-

cal context, “the expression of a process or method” is not
copyrightable under Ninth Circuit law.

Thus, a fairer reading of Ninth Circuit jurisprudence is that alt-

hough the Ninth Circuit has not had occasion to specifically address

the Lotus line of analysis, it holds that software that is necessary for

interoperability is not copyrightable. In Sega v. Accolade, the Ninth

Circuit states that “the functional requirements for compatibility with

the Genesis [video game] console [are] aspects of Sega’s programs

that are not protected by copyright. 17 U.S.C. § 102(b).”604 Such as-

pects of the Genesis video game platform are functional specifications

of the computer system — a relatively simple API. The Ninth Circuit

paralleled the Lotus analysis and unequivocally held that the interface

specification was not copyrightable. But the Ninth Circuit could not

have cited the First Circuit’s Lotus decision because that decision was

599. Id. at 1365 (citing Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d

1173 (9th Cir. 1989); in an accompanying footnote, the Federal Circuit notes that the Ninth

Circuit had only cited the Lotus decision once on a procedural issue.).

600. Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir.
1989).

601. 897 F.2d 1572 (Fed. Cir. 1990).

602. Atari Games Corp. v. Nintendo of Am., 975 F.2d 832, 839 (Fed. Cir. 1992).
603. See infra Section IV(A)(2)(ii)(b).

604. Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992).

Special Issue] API Copyright 429

not handed down until several years later. The Sega case had an addi-

tional alleged infringement: Accolade made hundreds of intermediate

copies to ascertain the unprotectable interface specification. As the

next Section explains, the Federal Circuit erroneously used that entire-

ly separate issue to disregard the Ninth Circuit’s clear statement that

the functional requirements for compatibility — the API specifica-

tions — are uncopyrightable.

b. Disregarding the Sega/Sony Decisions

Judge Alsup properly drew heavily upon the Ninth Circuit’s Sega

decision,605 reaffirmed in Sony v. Connectix,606 for the proposition that

the code required for interoperability of computer systems is uncopy-

rightable.607 The Federal Circuit downplayed the relevance of these

decisions based on its characterization that both “are fair use cases in

which copyrightability was addressed only tangentially.”608 The Fed-

eral Circuit further rejected “Google’s suggestion that Sony and Sega

created an ‘interoperability exception’ to copyrightability.”609

As suggested above, a careful reading of the Sega decision, as

Sony v. Connectix reaffirmed, contradicts the Federal Circuit’s charac-

terization. While it is true that both cases addressed fair use issues, it

was necessary to address fair use only because Sega and Sony had not

made their APIs publicly available. As a result, the defendants (Acco-

lade and Connectix) needed to make numerous copies of the entire

software programs in order to reverse engineer the pertinent APIs.

None of that, however, detracts from or downplays the Ninth Circuit’s

clear antecedent ruling: that the code necessary for interoperability

was uncopyrightable.

The fair use ruling is merely icing on the pro-interoperability/pro-

functionality cake. It expands the safe harbor for using API specifica-

tions necessary for interoperability by authorizing repeated copying of

the entirety of computer programs — including the copyright-

protected aspects — for purposes of determining the unprotectable

elements. The underlying cake (uncopyrightability of interface speci-

fications needed for interoperability or achieving a particular func-

tion) is not the least bit “tangential” to the Ninth Circuit’s rulings. It is

foundational to these decisions. Had Sun not made the Java APIs pub-

licly available, Google could have copied the full Java platform soft-

ware (potentially hundreds of times) to determine the unprotectable

605. See id. at 1510.
606. 203 F.3d 596 (9th Cir. 2000).

607. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 1000 (N.D. Cal. 2012) (char-

acterizing the Sega and Sony cases as “close analogies” to the Oracle v. Google case).
608. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1369 (Fed. Cir. 2014).

609. Id. at 1370.

430 Harvard Journal of Law & Technology [Vol. 31

APIs. But that in no way alters the uncopyrightability of the API ele-

ments necessary for interoperability.

The last point is critical to understanding the importance of the

Ninth Circuit’s Sega and Sony decisions. Both decisions expressly

hold that the software code necessary for interoperability is unprotect-

able by copyright law. These holdings are essential to the Ninth Cir-

cuit analysis. This is entirely consistent with the CONTU Report and

§ 102(b) of the Copyright Act. It also shows that the Ninth Circuit

recognizes an “interoperability exception” to copyrightability so long

as the second-comer independently re-implements the functional spec-

ifications.

The Federal Circuit attempts to rebut this reading by suggesting

that it “contradict[s] Ninth Circuit case law recognizing that both the

literal and non-literal components of a software program are eligible

for copyright protection. And it would ignore the fact that the Ninth

Circuit endorsed the abstraction-filtration-comparison inquiry in Sega

itself.”610 This reasoning misses the mark for several reasons. First,

the Johnson Controls case did not focus on APIs but rather the entire-

ty of a sophisticated computer program.611 Second, the Johnson Con-
trols decision does not delve into the specific program features. The

Ninth Circuit was reviewing the grant of a preliminary injunction un-

der the “limited” abuse of discretion standard.612 The court had sub-

stantial evidence that the defendants copied many elements of the

software program in question.613 Third, the Ninth Circuit use of the

abstraction-filtration-comparison test for analyzing the copyrightabil-

ity of computer code in no way contradicts the uncopyrightability of

functional or network features of computer systems. Furthermore, the

Sega case comes after Johnson Controls and provides a clear, well-

reasoned analysis of why code necessary for interoperability is un-

copyrightable. The CONTU REPORT could not be more clearer on this

point: “In the computer context [the idea-expression dichotomy]

means that when specific instructions, even though previously copy-

righted, are the only and essential means of accomplishing a given

task, their later use by another will not amount to an infringement.”614

To achieve the same particular functionality of the 37 Java API pack-

ages, Google had to copy the precise declarations of those APIs. They

610. Id. at 1370 (citing Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d

1173, 1175 (9th Cir. 1989)).
611. See supra text accompanying notes 91–95.

612. See Johnson Controls, 886 F.2d at 1174 (“Our review of a preliminary injunction is

limited. We will reverse the granting of a preliminary injunction only if the district court
abused its discretion, or based its decision on an erroneous legal standard or clearly errone-

ous findings of fact. Dumas v. Gommerman, 865 F.2d 1093, 1095 (9th Cir. 1989).”).

613. Id. at 1175–76 (“The special master’s report sets forth, in detailed form, the various
similarities between the programs.”).

614. See CONTU REPORT, supra note 47, at 20 (footnote omitted).

Special Issue] API Copyright 431

are the equivalent of the “functional requirements for compatibility

with the Genesis [video game console] — aspects of Sega’s programs

that are not protected by copyright.”615

c. Resurrecting the Third Circuit’s Apple/Whelan Decisions

Not only does the Federal Circuit misread the Ninth Circuit’s

Sega and Sony decisions, it embraces lines of analysis that the Ninth

Circuit rejected. By holding that the code for interoperability may be

protectable, the Federal Circuit resurrects the Third Circuit’s dicta in

Apple v. Franklin: “courts have recognized that, once the plaintiff

creates a copyrightable work, a defendant’s desire ‘to achieve total

compatibility . . . is a commercial and competitive objective which

does not enter into the . . . issue of whether particular ideas and ex-

pressions have merged.’”616 To the contrary, the Ninth Circuit holds

that copyright law does not stand in the way of achieving functional

interoperability. As noted earlier,617 the Third Circuit comment is dic-

ta as Franklin Computer had copied the entirety of Apple’s computer

programs. More importantly, § 102(b), the CONTU REPORT, and the

Sega/Sony decisions directly contradict the Third Circuit’s proposi-

tion.

The Federal Circuit endorses and follows the Third Circuit’s Ap-

ple/Whelan framework, holding that everything not necessary to the

general purpose or function of a work is protectable expression: “We

agree with Oracle that, under Ninth Circuit law, an original work —

even one that serves a function — is entitled to copyright protection

as long as the author had multiple ways to express the underlying

idea.”618 The Federal Circuit credited Oracle’s statement that it only

claimed “its particular way of naming and organizing each of the 37

Java API packages” and that it “‘cannot copyright the idea of pro-

grams that open an internet connection,’ but ‘it can copyright the pre-

cise strings of code used to do so, at least so long as “[another]

language is available” to achieve the same function.’”619 In an accom-

panying footnote, the court noted that Oracle’s counsel explained at

oral argument that Oracle “would never claim that anyone who uses a

615. Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992) (citing 17

U.S.C. § 102(b)).
616. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1357 (Fed. Cir. 2014).

617. See supra notes 83–86.

618. See Oracle v. Google, 750 F.3d at 1371 (quoting Apple Comput., Inc. v. Franklin
Comput. Corp., 714 F.2d 1240, 1253 (3d Cir. 1983)); see also id. at 1366 (noting that the

Third Circuit in Apple v. Franklin “focused ‘on whether the idea is capable of various

modes of expression’ and indicated that, ‘[i]f other programs can be written or created
which perform the same function as [i]n Apple’s operating system program, then that pro-

gram is an expression of the idea and hence copyrightable’” (quoting Apple v. Franklin, 714

F.2d at 1252)).
619. See Oracle v. Google, 750 F.3d at 1367–68 (emphasis in original; internal quota-

tions from Oracle’s Reply Brief).

432 Harvard Journal of Law & Technology [Vol. 31

package-class-method manner of classifying violates our copyright.

We don’t own every conceivable way of organizing, we own only our

specific expression — our specific way of naming each of these 362

methods, putting them into 36 classes, and 20 subclasses.”620 The

Federal Circuit reasoned that if different code could perform the same

general functions, then the first author’s code for such general func-

tions was protectable.621

While this mode of analysis comports with Ninth Circuit juris-

prudence on code implementation, it contradicts copyright law princi-

ples and Ninth Circuit precedent regarding the declarations that are

necessary to operate a particular computing system. Contrary to the

Third Circuit’s dicta in Apple v. Franklin, the Ninth Circuit’s Sega

and Sony decisions hold that the code necessary for interoperability is

uncopyrightable.622 Thus, a defendant’s desire to achieve compatibil-

ity does enter into the issue of whether particular ideas and expres-

sions have merged in the Ninth Circuit. It resolves the issue so long as

the defendant independently writes the code to achieve the particular

functions of the plaintiff’s software. Secondly, the Sega decision une-

quivocally rejects the Whelan framework of simply asking whether

there are multiple ways of programming a particular function: “[t]he

Whelan rule . . . has been widely — and soundly — criticized as sim-

plistic and overbroad.”623

The Federal Circuit elides this issue by emphasizing that the

Ninth Circuit adopted the Altai abstraction-filtration-comparison

framework. But the Ninth Circuit’s endorsement of the Altai frame-

work for cases involving implementing code does not exclude the

620. Id. at 1367 n.13.

621. See id. at 1356 (setting the foundation for its analysis by observing that “the

Sun/Oracle developers had a vast range of options for the structure and organization” of the
Java APIs); id. at 1360 (“We have recognized , . . . applying Ninth Circuit law, that the

‘unique arrangement of computer program expression . . . does not merge with the process

so long as alternate expressions are available.’” (quoting Atari Games Corp. v. Nintendo of
Am. Inc., 975 F.2d 832, 840 (Fed. Cir. 1992))); id. (explaining that “[b]ecause Nintendo

produced expert testimony ‘showing a multitude of different ways to generate a data stream

which unlocks the NES console,’ we concluded that Nintendo’s specific choice of code did
not merge with the process.”); id. at 1360 n.5 (noting that “[i]t is undisputed that Microsoft

and Apple developed mobile operating systems from scratch, using their own array of soft-

ware packages.”); id. at 1368 n.14 (referencing the amicus brief of former Sun executives
explaining that “a quick examination of other programming environments [Apple’s iOS and

Microsoft Windows Phone] shows that creators of other development platforms provide the

same functions with wholly different creative choices.”).
622. See Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1522 (citing 17 U.S.C. § 102(b))

(holding that “the functional requirements for compatibility with [a software platform de-

veloped by another company] are not protected by copyright.”).
623. See Sega, 977 F.2d at 1522 (citing Comput. Assocs. Int’l, Inc. v. Altai, 1992 WL

139364 (2d Cir. June 22, 1992), opinion withdrawn and superseded on rehearing by 982

F.2d 693 (2d Cir. 1992)). It recognized that “the functional requirements for compatibility
with [a software platform developed by another company] are not protected by copyright.”

Id. at 1522 (citing 17 U.S.C. § 102(b))).

Special Issue] API Copyright 433

possibility that the Ninth Circuit would not apply § 102(b) and the

Lotus decision in analyzing copyrightability of API design elements

that are essential to achieving a particular set of functions. In fact, as

Judge Alsup recognized, the Sega ruling supports such as an ap-

proach. In any case, the Federal Circuit contradicted Ninth Circuit

precedent in following the Third Circuit’s Apple v. Franklin and

Whelan decisions.

iii. Conflation of Expressive and Technological “Creativity”

The Federal Circuit embraced Oracle’s argument (and that of

former Sun executives)624 that API design is a “creative,” “noble and

rewarding craft”625 entitled to robust protection. Oracle analogized

API design to the crafting of HARRY POTTER novels.626

Plaintiffs in the first wave of API copyright litigation deployed a

similar strategy,627 but, as the courts came to appreciate, analogizing

software design to classical operas overlooks the fundamental princi-

ples undergirding the intellectual property system. For purposes of

copyright law, technological creativity differs fundamentally from

expressive creativity. Section 102(b) provides the touchstone. Where

the work or element of the work constitutes an “idea, procedure, pro-

cess, system, method of operation, concept, principle, or discovery,”

no amount of artistic or expressive “creativity” will suffice. The work

or element of a work falls outside of copyright protection. That is the

point of Baker v. Selden and the idea-expression dichotomy. “[T]he

actual processes or methods embodied in [a computer] program are

not within the scope of the copyright law.”628 “[O]ne is always free to

make a machine perform any conceivable process (in the absence of a

patent)” so long as they don’t “take another’s program [W]hen

specific instructions . . . are the only and essential means of accom-

plishing a given task, their later use by another will not amount to an

infringement.”629

The Federal Circuit, however, accepted Oracle’s analogy between

complex API design and the crafting of HARRY POTTER novels.630

624. See Corrected Brief of Scott McNealy & Brian Sutphin as Amici Curiae in Support

of Reversal, Oracle Am., Inc. v. Google Inc., No. 2013-1021, -1022 (Fed. Cir. filed Feb. 22,
2013) (characterizing API design as a highly creative process in which programmers select

names from a limitless pallet of choices).

625. See Opening Brief and Addendum of Plaintiff-Appellant, Oracle Am., Inc. v.
Google Inc., No. 2013-1021, -1022, 12-13, 72 (Fed. Cir. Feb. 11, 2013).

626. See supra text accompanying note 436.

627. See supra note 90.
628. H.R. REP. NO. 94-1476, at 66 (1976).

629. See CONTU REPORT at 20.

630. See Oracle v. Google, 750 F.3d at 1356 (citing the district court’s copyrightability
decision for the proposition that “[t]he overall name tree [of the Java API, of course, has

creative elements”).

434 Harvard Journal of Law & Technology [Vol. 31

The court portrays Java’s APIs as highly creative, difficult, and time-

consuming works of authorship:

Scott McNealy and Brian Sutphin — both former

executives at Sun who were involved in the devel-

opment of the Java platform — provide a detailed

example of the creative choices involved in design-

ing a Java package. Looking at the ‘java.text’ pack-

age, they explain that it ‘contains 25 classes, 2

interfaces, and hundreds of methods to handle text,

dates, numbers, and messages in a manner independ-

ent of natural human languages.’ Java’s creators had

to determine whether to include a java.text package

in the first place, how long the package would be,

what elements to include, how to organize that pack-

age, and how it would relate to other packages. This

description of Sun’s creative process is consistent

with the evidence presented at trial. See Appellant

Br. 12–13 (citing testimony that it took years to write

some of the Java packages and that Sun/Oracle de-

velopers had to ‘wrestle with what functions to in-

clude in the package, which to put in other packages,

and which to omit entirely’).631

There is no question that both J.K. Rowling’s novels and sophis-

ticated API designs are “creative” in a dictionary sense of the term.632

The critical distinction, however, relates to the idea-expression di-

chotomy and the channeling of protection among the modes of intel-

lectual property law. Affording robust protection to the characters,

settings, and plot elements of J.K. Rowling’s stories does not mo-

nopolize book technology or literary communication. Furthermore,

subsequent authors remain free to develop their own wizardry stories.

They may freely partake of Rowling’s ideas, just not her expression of

those ideas.

By contrast, APIs function as the levers and gears of particular

digital machines. The declarations must be reproduced to replicate the

particular functionality. As shown in Figure 10, Android program-

mers needed to reproduce the same package name (java.security),

class name (ProtectionDomain), and method name (ClassLoader) to

effectuate a computer program that responds to the same inputs and

produces the same outputs as the java.security machine. As the faded

631. Oracle v. Google, 750 F.3d at 1361 n.6 (some citations omitted).
632. See WEBSTER’S THIRD NEW INTERNATIONAL DICTIONARY 532 (1986) (defining

“creative” as “having the quality of something created rather than imitated or assembled”).

Special Issue] API Copyright 435

background text indicates (and as Oracle acknowledged), Google im-

plemented the declarations using different code.

Figure 10. Oracle’s Closing Argument Slide Deck, Slide 7

(Figure 4 repeated)

To a lay audience, phrases such as “ProtectionDomain” and

“getClassLoader” as well as mingling of traditional parentheses and

curly braces could indicate arbitrary, if not creative, expression. To

the Java API developer and the third-party programmers seeking to

invoke particular Java APIs, the names, along with capitalization, de-

fine the particular methods that the virtual machine runs. The curly

braces signify that source code follows the declarations (definitions).

Their usage follows the syntactical rules of the Java programming

language. Hence, it is no coincidence that Android contains the iden-

tical declarations as the Java APIs.

As reflected in Figure 11, which sets forth the official Java speci-

fication of the ProtectionDomain class,633 a component of the ja-

va.security API, Android programmers copied the method names

necessary to effectuate the java.security functionality. The particular

633. See java.security, Class ProtectionDomain, JAVA™ PLATFORM, STANDARD

EDITION 7 API SPECIFICATION, ORACLE,

https://docs.oracle.com/javase/7/docs/api/java/security/

ProtectionDomain.html [https://perma.cc/8CVR-SK9S]; API Specification, JAVA™

PLATFORM, STANDARD EDITION 7 API SPECIFICATION, ORACLE, https://docs.oracle.com/

javase/7/docs/api/overview-summary.html [https://perma.cc/9CER-VV7T].

436 Harvard Journal of Law & Technology [Vol. 31

combination of methods and constructors defines the ProtectionDo-

main sub-machine. Diverging from a single character (or capitaliza-

tion) within a declaration renders the particular machine inoperable.

This is no different from having the wrong activation code for the

Sega Genesis platform or using the wrong letters in a Lotus macro, or

the wrong PIN for an ATM.

Figure 11. Java Platform Standard Edition 7: Package java.security,

Class ProtectionDomain

Affording copyright protection for a combination of methods and

constructors monopolizes that particular machine or sub-machine. It is

for this reason that Congress, through § 102(b), and the Supreme

Court, through Baker v. Selden,634 require inventors to meet utility

patent law’s higher thresholds of novelty, non-obviousness, and dis-

closure to garner protection for technological innovation. Further-

more, that protection is limited to 20 years from the filing of the

application. Such limitations promote competition and innovation.

Consumers do not become locked into arbitrary and only minimally

innovative platforms and competitors have greater freedom to expand

and improve platforms.

The Federal Circuit’s decision misses the profound wisdom of

Baker v. Selden and § 102(b). The panel’s conflation of expressive

and technological creativity allows Oracle and other platform spon-

sors to control access to technological platforms for what is effective-

ly eternity (95 years for corporate authors) merely by satisfying

copyright law’s low originality threshold for protection so long as

634. 101 U.S. 99 (1879).

Special Issue] API Copyright 437

there are multiple ways of achieving the same general functionality of

the platform (which there usually is). To the ten million Java pro-

grammers, having to learn a new programming platform is a substan-

tial impediment to making the switch to what may be a better

platform. It destroys their substantial investment in human capital and

code development. It was that same consideration that made it com-

mercially important for Borland to implement a feature that would

enable macros designed to run on Lotus 1-2-3 to operate on Borland’s

Quattro.

The Federal Circuit’s analysis is internally inconsistent. In distin-

guishing the Lotus case, the Federal Circuit explains that “the Lotus
court found that the commands at issue there (copy, print, etc.) were

not creative, but it is undisputed [in Oracle v. Google] that the declar-

ing code and the structure and organization of the API packages are

both creative and original.”635 Yet earlier in its opinion, the Federal

Circuit explained that the Lotus “menu command hierarchy referred to

a series of commands — such as ‘Copy,’ ‘Print,’ and ‘Quit’ — which

were arranged into more than 50 menus and submenus.”636 If, as the

Federal Circuit recognized, the creativity threshold for copyright pro-

tection is “not particularly stringent,”637 then the unique selection and

arrangement of hundreds of labels easily clears copyright’s creativity

threshold.638 Furthermore, there are many alternative labels that could

be selected, such as “Reproduce” for “Copy” and “End” for “Quit.”

The difference between the First Circuit’s and the Federal Circuit’s

analyses is that the First Circuit recognized that the technological cre-

ativity involved in API design is not of the type that copyright pro-

tects and only utility patent law can protect machine functionality.

Proper application of the idea-expression dichotomy solves the

creativity conundrum. Menu command hierarchies and API designs

are technological and hence uncopyrightable — they are ideas, pro-

cesses, systems, and methods of operation. They might also be math-

ematical discoveries, which fall within the constitutional schema for

utility patent protection. The implementing code for these designs,

however, is copyrightable. Java API declarations are functional speci-

fications that are necessary to achieve particular functionality. Hence,

they fall outside of copyright protection. Only those particular seg-

ments of implementing code that are necessary to accomplish a par-

635. Oracle v. Google, 750 F.3d at 1365.
636. Id.

637. See id. at 1354 (quoting Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340,

358 (1991)); see also Feist, 499 U.S. at 354 (characterizing copyright’s creativity threshold
as “low”).

638. See 17 U.S.C. § 103(a) (extending copyright protection to “compilations”); id. at

101 (defining a “compilation” as “a work formed by the collection and assembling of preex-
isting materials or of data that are selected, coordinated, or arranged in such a way that the

resulting work as a whole constitutes an original work of authorship”).

438 Harvard Journal of Law & Technology [Vol. 31

ticular function (i.e., merger) as well as those structural features that

are unoriginal (e.g., copied from others, standard programming tech-

niques (scènes à faire)) or functionally-based (e.g., the most efficient

means of coding) are free for others to use.

Thus, for purposes of copyright law, technological creativity dif-

fers fundamentally from expressive creativity. Where a work or ele-

ment of a work constitutes an “idea, procedure, process, system,

method of operation, concept, principle, or discovery,”639 no amount

of creativity will suffice to attract copyright protection. That work or

element of that work still falls outside of copyright protection.

iv. Overly Rigid Approach to Limiting Doctrines

The Federal Circuit errs by shoehorning analysis of API design

into a framework designed for analyzing copying of software code. As

the Lotus court and Judge Alsup recognized, copyright law does not

dictate a monolithic approach. Copyright law has long relied upon a

common-law approach for adapting the law to deal with new technol-

ogies and other dynamic considerations.640 The idea-expression di-

chotomy provides flexibility in the domain of functional works.

Courts need to be sensitive to the technological nuance in applying

§ 102(b) and evolving the family of doctrines (idea-expression di-

chotomy, merger, scènes à faire, Baker v. Selden, and fair use) on

which it is based.

I confronted a similar challenge two decades ago. As I noted ear-

lier,641 I co-organized an effort in the late 1980s to identify consensus

regarding how copyright law should treat computer software. My col-

leagues and I were concerned that several of the early software copy-

right decisions misunderstood the nature of computer programming

and the economics of software markets. We convened leading copy-

right authorities to discuss how traditional copyright principles, most

notably the idea-expression dichotomy and fair use, should apply to

computer software. Our consensus report articulated several principles

and ways of addressing particular issues. Among our recommenda-

tions was that the fair use doctrine provided a pathway for software

developers to reverse engineer computer programs to determine how

they worked. We also believed that programmers should be free to

develop interoperable computer programs so long as they wrote their

own implementations.

639. 17 U.S.C. § 102(b).
640. See Menell, supra note 569, at 70.

641. See supra note 5.

Special Issue] API Copyright 439

Our work was cited in the parties’ and amici briefs filed in the Al-

tai case.642 That litigation produced a watershed in the evolution of

software copyright doctrine.643 When the Sega case emerged, we saw

an opportunity to bring our insights to the attention of the Ninth Cir-

cuit. Our amicus brief articulated the framework that the court adopt-

ed.644

As the Lotus case headed for appeal, a group of copyright law

professors circulated a brief arguing that the Altai framework provid-

ed the key to correcting Judge Keeton’s district court decision.645

While I applauded the abstraction-filtration-comparison framework as

a sound basis for analyzing the alleged infringement of computer

code, I did not feel that this approach fit the Lotus case. Borland had

not copied the Lotus code but rather had independently implemented

the menu command hierarchy — an API design. The particular struc-

ture and function names were required to run macros written for the

Lotus platform. Professor Dennis Karjala and I saw copyrightability,

as opposed to infringement analysis, to be the proper framework for

addressing the Lotus case.646 We emphasized the underlying principle

642. See, e.g., Brief Amicus Curiae of American Committee for Interoperable Systems,

Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 696 (2d Cir. 1992) (No. 91-7893)

(1991 WL 11010231).
643. While the district court and Second Circuit were receptive to our work, advocates

for broad copyright protection for computer software were critical. See Anthony L. Clapes,

Confessions of an Amicus Curiae: Technophobia, Law and Creativity in the Digital Arts, 19
U. DAYTON L. REV. 903, 923 (1994). Mr. Clapes, then-Assistant General Counsel at IBM,

which had acquired Lotus Corporation, noted that “[t]he [Altai] court cited only one law
review article and one academic text as sources of criticism of the Third Circuit rule that a

program’s structure, sequence, and organization may be protectable expression. The law

review article was written by a well-known antiprotectionist law professor.” The accompa-
nying footnote states: “In addition to being a member of the widely criticized LaST Frontier

conference steering committee, Professor Menell is a member of the ‘gang of ten’ law pro-

fessors who filed amicus briefs in support of copyright defendants in software copyright
cases.” See id. at 923 n.81; see also id. at 913 n.23 (“Perhaps unaware of the peculiar Lud-

dist filter through which Professor Menell looks at the art of programming, the [Altai] court

adopted his views as to the nature of computer programs in whole cloth.”). As the LaST
Frontier Conference explains, we sought to achieve balance among the law professors at the

conference and included a wide range of perspectives. See LaST Frontier Software Report,

supra note 5, at 15. Mr. Clapes co-authored the highly imaginative and misleading article
analogizing computer programs to literature and opera. See Anthony L. Clapes, Patrick

Lynch & Mark R. Steinberg, Silicon Epics and Binary Bards: Determining the Proper

Scope of Copyright Protection for Computer Programs, 34 UCLA L. REV. 1493 (1987)
(authored by in-house and outside counsel for IBM). I did not represent parties in any of this

work and was not compensated for submitting any of these briefs.

644. See Brief Amicus Curiae of Copyright Law Professors, Sega Enters. v. Accolade,
Inc., 977 F.2d 1510 (9th Cir. 1992).

645. See generally Brief Amicus Curiae of Copyright Law Professors at 33, Lotus Dev.

Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st Cir. 1995) (No. 93-2214) (1993 WL 13624511)
(arguing that “The Successive Filtering Test for Infringement Endorsed in Altai Is More

Consistent With Traditional Principles of Copyright Law Than Is The Paperback/Borland

Test”).
646. See Brief Amicus Curiae of Professor Dennis S. Karjala & Professor Peter S. Men-

ell, Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st Cir. 1995) (No. 93-2214) (1993

440 Harvard Journal of Law & Technology [Vol. 31

of Baker v. Selden as well as the language of § 102(b) categorically

excluding menu command hierarchies from copyright protection.

Similarly, the First Circuit properly distinguished the Altai case as

dealing with software code as opposed to API design.647

Oracle v. Google is the first litigated copyright case since Lotus

to focus specifically on copyright protection for API design.648 Judge

Alsup saw that although the Ninth Circuit had endorsed the Altai

framework for cases involving implementing code, the Oracle v.

Google case required an alternative framework to address API design.

He recognized that the Lotus case provided pertinent analysis and that

the Sega case addressed the uncopyrightability of code necessary for

interoperability. His decision thoughtfully combined these elements to

produce a sound framework.649

Beyond the misreading of copyright law and Ninth Circuit juris-

prudence, the Federal Circuit’s decision elevates wooden rules over

WL 13624512), reprinted in Dennis S. Karjala & Peter S. Menell, Applying Fundamental
Copyright Principles to Lotus Development Corp. v. Borland International, Inc., 10 HIGH

TECH. L.J. 177 (1995).

647. See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir. 1995) (recog-
nizing that:

While the Altai test may provide a useful framework for assessing the

alleged nonliteral copying of computer code, we find it to be of little
help in assessing whether the literal copying of a menu command hi-

erarchy constitutes copyright infringement. In fact, we think that the

Altai test in this context may actually be misleading because, in in-
structing courts to abstract the various levels, it seems to encourage

them to find a base level that includes copyrightable subject matter
that, if literally copied, would make the copier liable for copyright in-

fringement. While that base (or literal) level would not be at issue in a

nonliteral-copying case like Altai, it is precisely what is at issue in
this appeal. We think that abstracting menu command hierarchies

down to their individual word and menu levels and then filtering idea

from expression at that stage, as both the Altai and the district court
tests require, obscures the more fundamental question of whether a

menu command hierarchy can be copyrighted at all. The initial in-

quiry should not be whether individual components of a menu com-
mand hierarchy are expressive, but rather whether the menu

command hierarchy as a whole can be copyrighted.

(footnote and citation omitted)).
648. As noted above, the Sega case addressed this issue as part of a fair use analysis of

intermediate copying of software code. See supra notes 122–34. This API design issue has,

however, arisen in other litigation contexts, but was not resolved by judicial decisions. As
noted earlier, see supra note 17, I advised Sun Microsystems about these issues during their

Java-related breach of contract and copyright infringement litigation with Microsoft in the

late 1990s. I also testified about these issues in an arbitration proceeding applying Ninth
Circuit law in 2007. See supra note 20. The arbitration panel interpreted Ninth Circuit law

very similarly to Judge Alsup and found the declaring code (header files) at issue in that

case to be uncopyrightable. (I served as a consultant in the Sun matter and as an expert
witness in the Green Hills matter. In contrast to my work on amicus briefs, I was compen-

sated by the parties that retained me in these matters. My testimony reflected my writings on

legal protection for computer software.)
649. See Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 984–97 (N.D. Cal. 2012),

rev’d and remanded, 750 F.3d 1339 (Fed. Cir. 2014).

Special Issue] API Copyright 441

the underlying logic of copyright law. The Federal Circuit builds

much of its copyrightability analysis on the notion that merger analy-

sis must be evaluated at the time that the plaintiff’s work is created,

not at the time that the defendant prepares its allegedly infringing

work. It also brings copyright’s limiting doctrines into play as part of

a fair use defense.650 The Federal Circuit supports this proposition by

noting that the CONTU REPORT recognized that the Copyright Act

was designed “to protect all works of authorship from the moment of

their fixation in any tangible medium of expression.”651 While accu-

rate in describing § 102(a), the statement ignores the comparably im-

portant limiting doctrines of § 102(b). As the CONTU REPORT

recognized later in that same paragraph, the Copyright Act leaves ap-

plication of the idea-expression doctrine to the judgment of the

courts.652

The Federal Circuit’s decision misses a fundamental difference

between conventional literary works that serve to engage, amuse, and

entertain readers and computer code that serves to operate particular

computer devices. When Sega developed its lock-out code for the

Genesis game console, there were no constraints on the arbitrary

string characters that it designated for the key. Just as bank customers

are unconstrained in choosing their PIN codes (within the field con-

straint of four numbers), Sega was free to choose an arbitrary string of

letters, numbers, and symbols to lock and unlock its platform. Yet the

Ninth Circuit determined that the lock-out code was unprotectable

under § 102(b) because once it was “created” for use as lock-out code,

it became functional.

The First Circuit reached a similar conclusion in the Lotus case.

At the time that Lotus designed its menu command hierarchy for the

Lotus 1-2-3 program, there were numerous options for labeling the

functions and countless compilations of function names. Once pro-

grammers learned these function names, however, they become im-

portant to the user community. To bestow copyright protection on

such a system would potentially confer tremendous market power

over the particular method of operating a spreadsheet due to users’

high switching costs — many had developed sophisticated macros for

automating their accounting and other record keeping. The First Cir-

cuit recognized that this issue was best addressed at the copyrightabil-

ity stage. Like Selden’s accounting book, Lotus’s spreadsheet

program was entitled to copyright protection at the moment it was

created (or in the case of Selden’s book, when the applicable formali-

650. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1361 (Fed Cir. 2014).
651. See id. (quoting CONTU REPORT at 21).

652. See CONTU REPORT at 21.

442 Harvard Journal of Law & Technology [Vol. 31

ties at the time were met) but the method of operation (like Selden’s

accounting system) remained outside of copyright protection.

Although far more sophisticated than an ATM PIN code, the

Genesis lock-out code, or even Lotus’s multi-level menu command

hierarchy, the declarations of the Java APIs similarly functioned as

methods of operating particular digital machine — packages of func-

tions. Judge Alsup’s focus on § 102(b) and the Lotus court’s frame-

work better addresses the copyright issues in Oracle v. Google than

the Altai framework, which was developed for analyzing copyright

code.

By rigidly focusing on Ninth Circuit cases that treat the merger

and scènes à faire doctrines as defenses to infringement rather than

copyrightability doctrines,653 the Federal Circuit missed the forest for

the trees. Section 102(b) can operate as both a threshold doctrine and

as part of the filtration step of infringement analysis. In fact, in the

Ets-Hokin case, on which the Federal Circuit bases its analysis, the

Ninth Circuit treats the bottle that is the object of the photograph in

question as uncopyrightable under the useful article doctrine, at a

threshold copyrightability level.654 Copyright law, like patent law’s

non-obviousness doctrine, does not fit a rigid mold.655

v. Treating API Design as Variable Expression Rather than Unique

Function

The root cause of the Federal Circuit’s flawed analysis is its

treatment of the set of thirty-seven Java API declarations — what it

confusingly called declaring “code” — as software code rather than as

the essential functional specifications for a computer system.656 Such

653. The Federal Circuit cites to Ets-Hokin v. Skyy Spirits, Inc., 225 F.3d 1068, 1073,

1082 (9th Cir. 2000) (involving photography) and Satava v. Lowry, 323 F.3d 805, 810 n.3

(9th Cir. 2003) (involving glass-encased jellyfish sculptures; holding that “[t]he Ninth Cir-

cuit treats scènes à faire as a defense to infringement rather than as a barrier to copyrighta-
bility”).

654. See Ets-Hokin v. Skyy Spirits, Inc., 225 F.3d 1068, 1073, 1080 (9th Cir.2000).

655. Cf. KSR Int’l. Co. v. Teleflex Inc., 550 U.S. 398 (2007) (reversing the Federal Cir-
cuit for applying too rigid a test (the teaching-suggestion-motivation requirement) for ana-

lyzing patent law’s non-obviousness doctrine); see generally Rochelle Cooper Dreyfuss, In

Search of Institutional Identity: The Federal Circuit Comes of Age, 23 BERKELEY TECH.
L.J. 787, 802–04 (2008) (observing that “[i]nstead of scrutinizing substantive outcomes, [the

Federal Circuit] began to insist on particular analytical approaches — for example, for non-

obviousness, on the use of the “teaching, suggestion or motivation” test in addition to man-
datory attention to secondary considerations (such as commercial success); for claim

construction, it has experimented with rigid interpretative methodologies and specific forms

of evidence”); John R. Thomas, Formalism at the Federal Circuit, 52 AM. U. L. REV. 771,
773 (2003) (noting the Federal Circuit’s growing inclination toward bright line as opposed

to balancing tests)).

656. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1368 (Fed Cir. 2014) (“Given
the [district] court’s findings that the SSO is original and creative, and that the declaring

code could have been written and organized in any number of ways and still have achieved

Special Issue] API Copyright 443

API design defines the particular data processing capabilities of a par-

ticular computing machine and is necessary for another virtual ma-

chine to perform the same processes.

From a copyright standpoint, the critical question is whether a

particular set of instructions, expressed in a particular way, is “the

only and essential means of accomplishing a given task.”657 Alterna-

tively, are these particular instructions, expressed in this particular

way, the only way to effectuate “the actual processes or methods em-

bodied in the program”?658 As CONTU explained, “one is always free

to make a machine perform any conceivable process (in the absence

of a patent)” so long as they don’t “take another’s program.”659 The

test is not whether there are multiple ways of writing code to perform

a general purpose. Congress viewed the idea-expression dichotomy as

enabling anyone to build a machine capable of performing any partic-
ular function, including those for which others had written computer

code. Under the idea-expression dichotomy, copyright protection must

not lock competitors out of a particular platform; only utility patent

protection can. Copyright protection can only require that competitors

write their own implementing code. If the only way to achieve such

“certain result”660 includes literally copying even detailed textual-

represented information — such as declarations — then copyright law

does not stand in the way.

Google followed this path. It sought to achieve the particular

functionalities of thirty-seven Java API packages. After negotiations

to license the Java APIs reached an impasse, Google independently

wrote its own implementing code. Oracle does not dispute that Google

needed to include the particular declarations to make its Android plat-

form perform the particular functions of the thirty-seven Java APIs.

Thus, the Federal Circuit should have affirmed Judge Alsup’s copy-

rightability ruling and the case should have ended at that stage.

3. Proper Legal Frameworks for Analyzing Copyright Protection for

Computer Software

“Computer software, by its very nature as written work intended

to serve utilitarian purposes, defies easy categorization within our

the same functions, we conclude that Section 102(b) does not bar the packages from copy-

right protection just because they also perform functions.”).

657. See CONTU REPORT at 20.
658. See H.R. REP. No. 94-1476, at 57 (1976).

659. See CONTU REPORT at 20.

660. As added in the 1980 amendments, the Copyright Act defines a “computer program”
as “set of statements or instructions to be used directly or indirectly in a computer in order

to bring about a certain result.” 17 U.S.C. § 101.

444 Harvard Journal of Law & Technology [Vol. 31

intellectual property system.”661 Like other useful articles, computer

software combines expressive and functional elements in complex

ways.

The nature of computer programming and the economics of soft-

ware markets were relatively primitive when Congress brought com-

puter software into copyright law in the mid-1970s. Congress and the

CONTU Commissioners articulated general principles for ensuring

that copyright protection would not trench on utility patent law’s do-

main in protecting procedures, processes, systems, methods of opera-

tion, and discoveries. Congress tasked the courts with applying and

evolving the idea-expression dichotomy to protect against unwarrant-

ed market power over advances that are subject to utility patent law’s

more stringent requirements and shorter duration.

Computer software comprises distinct elements or components.

The idea-expression dichotomy provides the principle for distinguish-

ing between unprotectable processes and protectable expression. After

some early missteps, the courts developed a variety of effective ap-

proaches for dealing with a range of software features. The Altai ab-

straction-filtration-comparison test provides an effective framework

for analyzing copying of software code. The Sega, Apple v. Microsoft,

and Lotus cases provide valuable frameworks for dealing with soft-

ware components: code segments necessary for interoperability,

graphical user interface features, and menu command hierarchies.

A key issue is whether to apply the idea-expression dichotomy at

the threshold copyrightability stage, as part of the infringement analy-

sis, or as part of the fair use defense. The following Sections present

an overarching framework for applying copyright law to API design

elements, computer code, and other software elements.

i. API Design

The declarations of an API package serve as the functional speci-

fications of the computer program or computer program module. They

specify the function prototypes662 of the computer program, including

the function names and signature arity663 (number of independent var-

iables), parameter types, and return types. This information defines

function names, the format and number of inputs and outputs, and

syntax. If this precise textual information is essential to a machine

performing specific processes or methods, then they fall outside of the

661. See Menell, An Analysis of the Scope of Copyright Protection for Application Pro-

grams, supra note 4, at 1046.

662. See Function Prototype, WIKIPEDIA (Sept. 12, 2017), https://en.wikipedia.org/

wiki/Function prototype [https://perma.cc/263M-ULPQ].
663. See Arity, WIKIPEDIA (Aug. 3, 2017), https://en.wikipedia.org/wiki/Arity [https://

perma.cc/Y3HD-9HUG].

Special Issue] API Copyright 445

scope of copyright protection.664 This is not a question of merger. It is

a question of whether the subject matter is categorically excluded as a

process or method of operation.

The separability doctrine used to analyze copyright protection for

pictorial, graphic, and sculptural (“PGS”) works provides a useful

model for applying the idea-expression dichotomy to API declara-

tions. Courts must determine whether the expressive features of a PGS

work — such as a ribbon-shaped bicycle rack665 — “can be identified

separately from, and are capable of existing independently of, the util-

itarian aspects of the article.”666 As the House Judiciary Committee

explained:

[A]lthough the shape of an industrial product may be

aesthetically satisfying and valuable, the Commit-

tee’s intention is not to offer it copyright protection

under the bill The test of separability and inde-

pendence from ‘the utilitarian aspects of the article’

does not depend upon the nature of the design — that

is, even if the appearance of an article is determined

by esthetic (as opposed to functional) considerations,

only elements, if any, which can be identified sepa-

rately from the useful article as such are copyrighta-

ble.667

Courts determine separability at the copyrightability stage of analy-

sis.668 Only if there are expressive elements that are separable from

the utilitarian attributes of the useful article does the court proceed to

the infringement stage of analysis.

API declarations entail the same basic inquiry — can the textual

information in an API header be distinguished from the utilitarian

aspects of the API package? The idea-expression dichotomy means

that “the actual processes or methods embodied in the program are not

within the scope of the copyright law.”669 If the declarations of an

independently written program must contain the precise textual for-

mation in the plaintiff’s program, then those features of the program

664. See H.R. REP. NO. 94-1476, at 57 (1976) (“Section 102(b) is intended, among other

things, to make clear that the expression adopted by the programmer is the copyrightable

element in a computer program, and that the actual processes or methods embodied in the
program are not within the scope of the copyright law.”).

665. See Brandir Int’l, Inc. v. Cascade Pac. Lumber Co., 834 F.2d 1142 (2d Cir. 1987);

see also Star Athletica, L.L.C. v. Varsity Brands, Inc., 137 S. Ct. 1002, 1008 (2017) (treat-
ing the useful article doctrine as a threshold inquiry).

666. See 17 U.S.C. § 101 (definition of “pictorial, graphic, and sculptural” works).

667. See H.R. REP. NO. 94-1476, at 55 (1976).
668. See Brandir, 834 F.2d at 1143–48.

669. See H.R. REP. NO. 94-1476, at 57 (1976).

446 Harvard Journal of Law & Technology [Vol. 31

are excluded from copyright protection. It does not matter that the

declarations may be compiled or structured in a “creative” manner or

in a variety of ways. Other programmers are free to copy them if they

are needed to effectuate particular processes or methods, just as sculp-

tors are free to create ribbon-shaped bicycle racks if the utilitarian

features are inseparable from the expressive design elements. There is

no need to engage in infringement analysis in such cases.

Oracle’s comparison of API declarations to chapters in HARRY

POTTER novels670 fundamentally misapprehends the idea-expression

dichotomy. The book chapter titles and topic sentences do not operate

a machine. By contrast, the Java API declarations define the gears and

levers of a virtual machine. Without them, no one else can create a

machine that performs the same processes or methods. Oracle’s sug-

gestion that “tapp[ing] into the Harry Potter fan base” by copying

book chapter titles and topic sentences671 is analogous to copying API

design misses this key point. The chapter titles and topic sentences of

a novel do not control any particular machine or impinge upon tech-

nological freedom. Section 102(b) excludes processes and methods of

operating machines from copyright protection, not detailed plot out-

lines and non-functional expressive text.

Nonetheless, § 102(b) does not categorically exclude the code

implementing API declarations, although it limits some elements and

affects the scope of protection for such code. The next Section ex-

plores those issues.

ii. Computer Code

The code implementing the Java APIs is copyrightable. To pre-

vail in an infringement action, the copyright owner must prove both

factual and legal copying. The requirement that the plaintiff prove that

the defendant actually copied the protected work allows a defendant

to avoid infringement by independently writing a computer program

that will accomplish the same functions as the plaintiff’s copyrighted

implementation code. If, however, the defendant copies some of the

plaintiff’s implementing code, a court must evaluate whether the de-

fendant’s program is substantially similar to the plaintiff’s protected

expression.

670. See supra note 436.
671. See Opening Brief and Addendum of Plaintiff-Appellant at 12–13, Oracle Am., Inc.

v. Google Inc., 750 F.3d 1339 (Fed. Cir. Feb. 11, 2013) (No. 13-01021).

Special Issue] API Copyright 447

a. Independent Creation

Unlike patent law, which does not require any proof that a de-

fendant knew of or copied the patentee’s invention,672 copyright law

requires either direct or inferential evidence from which the court can

find that actual copying occurred.673 Thus, a defendant can successful-

ly defend a copyright lawsuit by proving that the author of the de-

fendant’s work had no knowledge of the plaintiff’s work —

essentially, that the defendant’s work was independently created.

The notion that a sophisticated expressive work could be inde-

pendently created seems fanciful in many fields of creative endeavor.

As Learned Hand whimsically posited to illustrate the doctrine, “if by

some magic a man who had never known it were to compose anew

Keats’s Ode on a Grecian Urn, he would be an ‘author,’ and, if he

copyrighted it, others might not copy that poem, though they might of

course copy Keats’s.”674

In the realm of computer programming, however, no magic is re-

quired — just time-consuming and painstaking work. Skilled pro-

grammers with no knowledge of the implementing code of a

preexisting (and copyright-protected) computer program can inde-

pendently develop a computer program with the same functionality if

they have the proper functional specifications. As § 102(b) and the

Sega case hold, copyright law does not protect these functional speci-

fications, nor any code required to accomplish a particular task. Con-

sequently, independent developers can use the same functions and

essential code. In this way, competitors can implement these function-

al elements independently without infringing copyright protection.

As noted earlier,675 it was through such a process that IBM lost its

hold on the early microcomputer industry. Phoenix Technologies suc-

cessfully implemented an IBM-compatible Basic Input Output System

(BIOS) using a “clean room” process.

Phoenix’s clean room approach consisted of an engi-

neering team in Texas that examined the BIOS soft-

ware documented in IBM’s Technical Reference

manual, and wrote a set of specifications that de-

scribed how the program functioned, without includ-

ing any actual examples of IBM code. These

672. See Jurgens v. CBK, Ltd., 80 F.3d 1566, 1570 n.2 (Fed. Cir. 1996) (characterizing

patent infringement as a strict liability tort); Robert P. Merges, A Few Kind Words for Abso-

lute Infringement Liability in Patent Law, 31 BERKELEY TECH. L.J. 1, 3 (2016) (explaining
that “[i]t is irrelevant under current [patent] law whether the defendant actually copied the

patentee’s technology”).

673. See Arnstein v. Porter, 154 F.2d 464 (2d Cir. 1946).
674. See Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 54 (1936).

675. See supra note 34.

448 Harvard Journal of Law & Technology [Vol. 31

specifications were given to a single programmer in

Massachusetts who had no experience with the

IBM’s microprocessor. Another Phoenix employee

acted as a gatekeeper to route formal questions so as

to ensure that the engineers in Texas did not give the

programmer in Massachusetts any material that

might infringe IBM copyrights. ‘A third group tested

the Phoenix software against a variety of programs

that ran on IBM's computer.’ Phoenix engineers cre-

ated an evidentiary audit trail nearly five thousand

pages long to document the process in the event that

they were challenged in an infringement suit. Phoe-

nix also took sworn affidavits that its programmer

had never seen the source code for IBM BIOS and

even offered IBM a chance to examine their code.

Phoenix had been so thorough that IBM has never

challenged them in court.676

The “clean room” process was formalized during the first wave of

copyright litigation as a means of developing interoperable software.

The network effects driving software users and programmers made

interoperability critical to competition in the software industry. Nearly

every major litigation from Apple v. Franklin in 1983 through the Or-
acle v. Google litigation involves interoperability issues.

As illustrated in Phoenix Technologies’ successful emulation of

the IBM PC BIOS,677 enterprises during the first API copyright wave

faced two challenges in developing interoperable software: (1) dis-

cerning the functional specifications of the target computer program

or system; and (2) independently developing interoperable soft-

ware.678

The clean room process typically involves three teams of engi-

neers and legal specialists. The first team — referred to as the “speci-

fication” or “dirty room” team — works with the target software to

676. See Russell Moy, A Case Against Software Patents, 17 SANTA CLARA COMPUTER &

HIGH TECH. L.J. 67, 72–73 (2000) (footnotes and citations omitted).

677. See Phoenix Technologies, WIKIPEDIA (Sept. 8, 2017), https://en.wikipedia.org/

wiki/Phoenix_Technologies [https://perma.cc/4T5A-9KNL] (discussing cloning of the IBM
PC BIOS).

678. See generally P. Anthony Sammi, Christopher A. Lisy & Andrew Gish, Good Clean

Fun: Using Clean Room Procedures in Intellectual Property Litigation, 25 INTELL. PROP. &

TECH. L.J. 3 (2013); Jorge Contreras, Laura Handley & Terrence Yang, NEC v. Intel:

Breaking New Ground in the Law of Copyright, 3 HARV. J.L. & TECH. 209 (1990); G. Ger-

vaise Davis III, Scope of Protection of Computer-Based Works: Reverse Engineering, Clean
Rooms and Decompilation, 370 COMPUTER L. INST., 115 (PLI Patents, Copyrights, Trade-

marks, and Literary Property Practice Course Handbook Series No. G-370, 1993).

Special Issue] API Copyright 449

determine the functional specifications.679 It was initially unclear

whether these programmers could make copies of target program code

to decipher its functional specifications. Sega targeted that intermedi-

ate copying in its litigation strategy because the software that Acco-

lade ultimately manufactured and distributed in its video games only

copied unprotectable code elements required for interoperating with

Sega’s console. The Ninth Circuit’s decision in the Sega case estab-

lished that the intermediate copying by the “dirty room” team consti-

tuted fair use.

A second “coordination” or “audit” team, comprised of attorneys

and engineers, establishes clear ground rules for managing the clean

room process, screens programmers for the “clean room” team so as

to ensure they have never seen the copyright-protected code, docu-

ments the activities and communication of the “dirty room” and

“clean room” teams, oversees the process, and advises on what consti-

tutes functional specifications and how to determine code segments

that are unprotectable — segments that are unoriginal, standard pro-

gramming practices, and necessary for interoperability or to accom-

plish specific processes or methods.680 The coordination team seeks to

ensure that no copyright-protected expression or misappropriated

trade secrets get communicated to the clean room team.681 It is only

after those checks are completed that the process of independently

coding an interoperable program commences.

The functional specifications detailing the particular processes or

results that the target program accomplishes is then passed to the

“clean room” team of programmers. This team remains shielded from

the copyright-protected code. It designs, writes, and tests code aimed

at accomplishing the target functional specifications.

In the second API copyright wave, the first stage of the process is

not required because platform companies like Sun and Cisco publish

679. See Duncan M. Davidson, Reverse-Engineering of Software, in COMPUTER

SOFTWARE 1989: PROTECTION AND MARKETING, 95–114 (1989).

680. See Marc Visnick, Forensic Code Audits: Sometimes GPL Can Be A Four-Letter

Word, in OPEN SOURCE SOFTWARE, 2005: CRITICAL ISSUES IN TODAY’S CORPORATE

ENVIRONMENT, at 354–55 (PLI Intellectual Property, Course Handbook Ser. No. G-846,

2005); Norm Alster, New Profits from Patents, FORTUNE, Apr. 25, 1988, at 185, 190; Ste-

ven Burke, Court Support of ‘Clean Room’ Cloning May Legalize Intel ‘386 Chip Work-
Alikes, P.C. WEEK, February 27, 1989, at 63; Douglas K. Derwin, Licensing Software Cre-

ated Under ‘Clean Room’ Conditions, in COMPUTER SOFTWARE 1989: PROTECTION AND

MARKETING 439, 448–49 (1989).
681. Clean room processes are also increasingly used to ensure that open source code

subject to viral licensing requirements — most notably, the GNU General Public License —

does not infect software. See HEATHER MEEKER, OPEN SOURCE FOR BUSINESS: A

PRACTICAL GUIDE TO OPEN SOURCE LICENSING, chs. 8–10, 12 (2015); David A. Wormser,

Open-Source Software: The Value of ‘Free’, 22 INTELL. PROP. & TECH. L.J. 22 (2010);

Ryan Paul, Surveys Show Open Source Popularity on the Rise in Industry, ARS TECHNICA
(Jan. 20, 2006), http://arstechnica.com/uncategorized/2006/01/6017-2 [https://perma.cc/

PM8J-U8US].

450 Harvard Journal of Law & Technology [Vol. 31

their interface specifications — API declarations — in an effort to

encourage widespread learning and use of their programming lan-

guage and platforms. Hence, Google could go directly to the second

stage. But even that was costly and time consuming.682

Oracle challenged the authenticity of Google’s clean room pro-

cess during the first trial, but their evidence of cheating was weak.683

Thus, since Google succeeded in its independent creation defense re-

garding the implementing code, the litigation should have ended

without any need for a fair use defense.

b. Abstraction-Filtration-Comparison

Even if factual copying is conceded or proved, the copyright

owner must further establish that the amount and significance of

copying exceeds copyright law’s infringement threshold. This stand-

ard is typically stated as substantial similarity of protected expres-

sion,684 although some courts apply a higher “virtual identity” or

“bodily appropriation” standard where the plaintiff’s work is very

simple and hence only narrowly protected.685

Even without using a formal clean room process, software devel-

opers often integrate pre-existing pieces of software code — both in-

tentionally and unintentionally. Companies often hire programmers

682. See supra notes 322–26.

683. Oracle sought to show that a consulting firm (Noser Engineering) to which Google
had outsourced some of the clean room effort had cut corners. See Closing Argument of

Michael Jacobs, Trial Tr. at 207, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974
(N.D. Cal. 2012) (No. C 10-03561 WHA) (“The Google developers tried to claim that An-

droid was developed in a clean room. But you know the clean room is dirty. There’s copied

code. There’s decompiled code. You heard that the contractors that they used at Noser were
super shady.”) The principal source of evidence was an ambiguous Email communication.

See Email from Bob Lee to Hiroshi Lockheiner and Dan Bornstein (Jan. 7, 2009), Trial Ex.

281, Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. C 10-
03561 WHA) (reproducing Jan. 6, 2009 Email from Hiroshi Lockheimer stating: “I’m a

little nervous about signing Noser up to do any more work for us — but that’s from a purely

business perspective. Those guys (their management team) are super shady. (I know the
engineers are great and I get that sense too from my limited interactions with them.)”).

Oracle was unable, however, to prove direct copying of Java API source code beyond a few

minor occurrences. See Oracle v. Google, 872 F. Supp. 2d at 982–83 (concluding that “Ora-
cle has made much of nine lines of code that crept into both Android and Java. This circum-

stance is [] innocuous and overblown by Oracle . . .”).

684. See NIMMER ON COPYRIGHT, supra note 96, at § 13.03[A].
685. See Harper House, Inc. v. Thomas Nelson, Inc., 889 F.2d 197 (9th Cir. 1989) (visual

layout of a day planner comprised of a calendar and ruled lines); see also Mattel, Inc. v.

MGA Entm’t, Inc., 616 F.3d 904 (9th Cir. 2010) (“sculpt” for human-based dolls); Charles
W. Ross Builder, Inc. v. Olsen Fine Home Bldg., LLC, 827 F. Supp. 2d 607, 611–12 (E.D.

Va. 2011) (architectural works in which “nearly every design element of the two houses at

issue” was dictated by external constraints for Colonial Williamsburg), vacated, 496 Fed.
App’x. 314 (4th Cir. 2012); Incredible Techs., Inc. v. Virtual Techs., Inc., 400 F.3d 1007

(7th Cir. 2005) (visual elements of a golf video game); Apple Comput., Inc. v. Microsoft

Corp., 35 F.3d 1435 (9th Cir. 1994) (largely unoriginal (and licensed) graphical office
icons); Satava v. Lowry, 323 F.3d 805 (9th Cir. 2003) (a jellyfish sculpture encased in a

domed glass cylinder).

Special Issue] API Copyright 451

from other companies who bring code with them.686 Programmers

often find useful code through Internet searches and integrate that

code into their projects. In addition, programmers use standard coding

techniques and logical structures that can produce similarities.

The Altai court developed a principled, systematic framework for

determining copyright infringement of computer software code.687 It

adapted Judge Learned Hand’s classic levels of abstraction/limiting

doctrines framework688 to the computer software medium. Applying

this test often requires expert witnesses to explain computer pro-

gramming design, languages, standard practices, and the various con-

straints.

The abstraction-filtration-comparison framework can come into

play where the alleged infringer has used a clean room. Like a court

deciding copyright infringement of software code, the coordination

team of a clean room process must make calls about which elements

of a target program are unprotected. As the Altai court noted,

“[d]rawing the line between idea and expression is a tricky busi-

ness.”689 The coordination team must apply various complex copy-

right doctrines, such as originality, merger, scènes à faire, and the

§ 102(b) exclusions. Thus, as in the Altai case, the plaintiff may chal-

lenge the legitimacy of the independent creation defense by alleging

that protected literal code or non-functional SSO made it across the

transom to the clean room and into the final product.

iii. Other Software Elements

Computer software can involve a variety of other potentially cop-

yrightable elements. Many software programs include textual ele-

ments, including programmer comments, and audio-visual elements.

Web sites feature expressive design elements and compilations of el-

ements, some of which are functional. Most forms of conventional

copyrightable works — books, pictorial and graphic images, music,

motions pictures — are distributed through digital media and websites

and hence are embedded within software. Graphical user interfaces,

such as desktop icons, have compilations of pictorial elements.690

Sculptural works can be represented as three-dimensional computer-

aided design files.691

686. See, e.g., supra text accompanying notes 87–88, 91–92, and 101–04.

687. See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).

688. See Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930).
689. See Comput. Assocs., 982 F.2d at 704.

690. See Apple Comput., Inc. v. Microsoft Corp., 799 F. Supp. 1006 (N.D. Cal. 1992),

aff’d in part, rev’d in part, 35 F.2d 1435 (9th Cir. 1994).
691. See Haritha Dasari, Note, Assessing Copyright Protection and Infringement Issues

Involved with 3D Printing and Scanning, 41 AIPLA Q.J. 279 (2013).

452 Harvard Journal of Law & Technology [Vol. 31

Copyright applies to the literary, PGS, musical, and other works

embedded in software to the same extent and in the same manner that

it would apply to these works in analog form. The software encoding

of the works may create derivative work to the extent that it translates,

recasts, or transforms the preexisting underlying work.

The Oracle v. Google litigation highlights the pitfalls of a mono-

lithic, one-size-fits-all approach to copyright protection of computer

software. Many of the problems with the Federal Circuit’s analysis

trace to its treating declaring code as protectable expression as op-

posed to the functional specifications for a particular machine. By re-

implementing that code in a clean room — that is without copying,

but rather independently producing a code set that achieves the same

functions as the Java APIs — Google steered clear of infringing copy-

right in the Java API components.

B. Policy Analysis

This Section assesses the extent to which the proper legal frame-

work for copyright protection for computer software, as articulated in

Section IV.A.3, comports with policy analysis. Section 1 presents an

economic framework for analyzing legal protection for computer

software. Section 2 traces the evolution of software markets. Section 3

explains that the proper legal framework for copyright protection for

computer software best promotes software innovation and competi-

tion. Section 4 discusses the problems that the Oracle v. Google deci-

sion poses for achieving the proper copyright balance.

1. Economic Analysis of Legal Protection for Computer Software

Economic analysis of legal protection for computer software ad-

dresses two market failures: (1) the public problem associated with

technological innovation; and (2) network effects associated with

network technologies.692

i. The Public Goods Problem

Competitive markets generally provide an efficient allocation of

resources when all of the costs and benefits of producing and distrib-

uting goods and services are reflected in market prices.693 The gov-

ernment need only secure economic exchange through protection of

private property and effective contract enforcement to promote eco-

nomic efficiency. It is only when costs or benefits of producing and

692. See Menell, Tailoring Legal Protection for Computer Software, supra note 4.
693. See generally PAUL A. SAMUELSON & WILLIAM D. NORDHAUS, ECONOMICS (12th

ed. 1985).

Special Issue] API Copyright 453

distributing goods are not fully reflected in market prices, such as

when factories emit pollution without bearing the full social cost, that

additional government intervention may be necessary to better pro-

mote economic efficiency.

Markets for many basic commodities, such as wheat, function rel-

atively well without significant government intervention.694 By con-

trast, markets for goods embodying intellectual work exhibit a

significant market failure commonly referred to as the “public goods”

problem.695 Economists use the term “public goods” to describe goods

that confer benefits upon the general public without individual mem-

bers of the public having to pay for the goods. Classic examples in-

clude national defense and lighthouses. Public goods have two

distinguishing features: (1) nonexcludability — it is difficult to ex-

clude those who do not pay for the good from consuming it; and (2)

nonrivalrous competition — additional consumers of the good do not

deplete the quantity of the good available to others. A lighthouse

warns all ships of rocky shoals whether or not they have paid for the

service; and one ship’s “enjoyment” of the lighthouse beacon does not

diminish other ships’ benefit of the warning. Although the private

market can generate some investment in building warning beacons,696

it is likely to be less than the optimal level.697

The research and development involved in technological innova-

tion or the words of a novel falls within the public goods domain.

Without some special form of legal protection, such intellectual work

is nonexcludable — competitors can copy the innovation (a better

mouse trap) or literary work (a HARRY POTTER novel) without bearing

the costs of research and development. Furthermore, knowledge is

nonrivalrous — an individual’s enjoyment of the innovation or liter-

ary work does not reduce the availability of the good to others. Free

markets will compete the price of the good to the marginal cost of

production and distribution without taking into consideration the costs

of research and development. As a result, the private market will tend

694. Even wheat markets, however, may require some government intervention. For ex-

ample, there may be concerns about food safety.

695. See Peter S. Menell & Suzanne Scotchmer, Intellectual Property Law, in 2

HANDBOOK OF LAW AND ECONOMICS 1474 (A. Mitchell Polinsky & Steven Shavell eds.,
2007). Even wheat markets may be affected by innovation. For example, scientists might be

able to improve wheat crops through plant breeding.

696. See Ronald H. Coase, The Lighthouse in Economics, 17 J.L. & ECON. 357 (1974)
(challenging the traditional view that lighthouses are examples of public goods by showing

that privately owned lighthouses existed in England); see also William Barnett & Walter

Block, Coase and Van Zandt on Lighthouses, 35 PUB. FIN. REV. 710 (2007) (contending
that private lighthouses are possible and could obtain fees through voluntary clubs and

turning off the light to free riders).

697. See Elodie Bertrand, The Coasean Analysis of Lighthouse Financing: Myths and
Realities, 30 CAMBRIDGE J. ECON. 389 (2006); David E. Van Zandt, The Lessons of the

Lighthouse: ‘Government’ or ‘Private’ Provision of Goods, 22 J. LEG. STUD. 47 (1993).

454 Harvard Journal of Law & Technology [Vol. 31

to undersupply these goods because producers cannot reap the mar-

ginal (incremental) value of their investment in providing such

goods.698

The provision of intellectual property protection can address the

public goods problem associated with innovation and expressive crea-

tivity. By affording exclusive rights to inventions and writings, the

government enables inventors and authors to appropriate a return on

the investments in research and development.

Such protection, however, imposes several social costs upon con-

sumers, competitors, and other inventors. Intellectual property enables

inventors and authors to charge more than the marginal cost of sup-

plying goods, thereby raising prices and resulting in what economists

refer to as “deadweight loss” — an equilibrium in which some con-

sumers who are willing to pay more than the marginal cost of a prod-

uct are priced out of the market.

Monopolistic exploitation distorts market pricing in the short run

and can significantly affect entry and cumulative innovation over

longer time horizons. Exclusive use of patented technology can inhibit

cumulative inventors who seek to improve upon patented technology.

Historical and industry studies of the innovation process find that in-

ventions are highly interdependent: “Technologies . . . undergo a

gradual, evolutionary development which is intimately bound up with

the course of their diffusion.”699 In fact, “secondary inventions” —

including essential design improvements, refinements, and adapta-

tions to a variety of uses — are often as crucial to the generation of

social benefits as the initial discovery.700 Although licensing can alle-

viate this concern, it can also entail significant transaction costs.

Furthermore, the costs of determining the existence and scope of

intellectual property rights can hinder competition and cumulative

innovation.701 In addition, administering intellectual property regimes

and adjudicating disputes further contributes to social cost. Thus, the

desirability and contours of intellectual property protection depend

upon a balancing of social benefits and costs as well as consideration

of alternative ways of promoting innovation and creativity.

Where the innovative aspect of a product can be hidden from pub-

lic view — for example, through encryption or contractual re-

strictions — the innovators can appropriate a direct return for research

698. See Menell & Scotchmer, supra note 695, at 1477.
699. See Menell, Challenges, supra note 4, at 2645; see generally Nathan Rosenberg,

Factors Affecting the Diffusion of Technology, 10 EXPLORATIONS ECON. HIST. 3 (1972).

700. See, e.g., John L. Enos, A Measure of the Rate of Technological Progress in the Pe-
troleum Refining Industry, 6 J. INDUS. ECON. 180, 189 (1958); James Mak & Gary M. Wal-

ton, Steamboats and the Great Productivity Surge in River Transportation, 32 J. ECON.

HIST. 619, 625 (1972).
701. See Peter S. Menell & Michael J. Meurer, Notice Failure and Notice Externalities,

2013 J. LEG. ANAL. 1.

Special Issue] API Copyright 455

and development from direct consumers. Trade secret protection

complements and reinforces this appropriation strategy. While secrecy

will not work for book authors who must expose their creative product

to the public for consumers to enjoy their works, secrecy has been

successfully used in various sectors of the software where the source

code can be hidden from view. For example, Google protects its core

search technology by only returning search results to users.

Software producers can use technological means for preventing

those who do not pay for the good from enjoying the benefits. For

example, anti-copying devices can impede reproduction and disclo-

sure of intellectual work embodied in products. World of Warcraft

uses encryption to regulate access to its online multi-player platforms

and charges consumers a subscription fee for access. That access can

be disabled if the user violates platform rules or if their credit card

does not process the subscription fee.

Beyond secrecy and technical protection measures, the first to in-

troduce a product into the marketplace can in some contexts earn sub-

stantial and long-lived advantages in the market. Competitors in many

product and service areas will need some time to ramp up their sup-

ply, thereby enabling first-movers to front-run competition and charge

above marginal cost until the competition catches up and possibly

longer. Moreover, innovative companies can develop a strong reputa-

tion for innovation, which can translate into loyal customers who are

willing to pay premium prices. In this way, trademark protection rein-

forces the economic return of innovative first-movers.

First-movers can capitalize on their market-leading position by

continuing to upgrade their products. This is a common strategy in the

software marketplace. First-movers can also develop long-term rela-

tionships with customers, thereby ensuring a steady revenue flow.

They can also deepen these relationships through service contracts

and by customizing products and services for particular customers.

Companies can also subsidize their research and development by

developing ancillary means of appropriation for research and devel-

opment. Television and radio networks funded development of con-

tent by interleaving commercial advertisements. Such multi-sided

market strategies have proven especially effective in many software

industries. Sun Microsystems, for example, used Java to support its

hardware business and licensing platform products that build on the

Java language. Google successfully underwrote its search engine by

developing a successful and innovative advertising business.

Government research and development subsidies have been ex-

tremely important in the development of computer technology. More-

over, universities, whose work product is often in the public domain,

have played an important role in the development of computer tech-

nology.

456 Harvard Journal of Law & Technology [Vol. 31

The linkage between intellectual property protection and social

welfare is greatly complicated in markets for products in which inno-

vation occurs at many stages. What ultimately determines the social

value of technological progress is the speed at and extent to which

new, improved, and less expensive products are available. The num-

ber and type of individual technological innovations at particular in-

termediate stages are important, but no more important than the

pattern of adoption and diffusion of these innovations.702

These interactions have been and continue to be particularly im-

portant in the evolution of computer technology. Advances in com-

puter technology are made at many interrelated levels — basic

research, hardware and devices, operating systems, program lan-

guages, APIs, application programming, network design, security —

by diverse individuals, firms, and research institutions. It cannot be

assumed automatically, therefore, that expansive legal protection for

intellectual property at any one level will generate both the optimal

amount of innovation and the optimal diffusion path.

ii. Network Externalities

The second principal market failure in the computer software

market arises from the presence of network externalities. Network

externalities exist in markets for products for which the utility or satis-

faction that a consumer derives from the product increases with the

number of other consumers of the product.703 Telephone networks

illustrate the phenomenon. The benefits to a person of a particular

network depend on the number of other people connected to that same

telephone network; the more people on the network, the more people

each person can call and receive calls from. Robert Metcalfe, one of

the inventors of Ethernet technology,704 estimated that the value of a

telecommunications network is proportional to the square of the num-

ber of connected users of the system.705

702. See Paul A. David, Technology Diffusion, Public Policy, and Industrial Competi-

tiveness, in THE POSITIVE SUM STRATEGY: HARNESSING TECHNOLOGY FOR ECONOMIC

GROWTH 373–92 (Ralph Landau and Nathan Rosenberg eds.,1986).
703. See Michael Katz & Carl Shapiro, Network Externalities, Competition, and Compat-

ibility, 75 AM. ECON. REV. 424 (1985); DAVID HEMENWAY, INDUSTRYWIDE VOLUNTARY

PRODUCT STANDARDS (1975).
704. Ethernet technology connects computers into a network. Its cables and software

were standardized in the 1980s and became the foundation for many important advances in

network technologies, including the Internet.
705. See Metcalfe’s Law, WIKIPEDIA (Sept. 4, 2017), https://en.wikipedia.org/wiki/

Metcalfe%27s_law [https://perma.cc/Z9HL-U9MW].

Special Issue] API Copyright 457

Another classic network externality flows from the prevalence of

a standard typewriter keyboard.706 Because almost all English lan-

guage typewriters feature the same keyboard configuration, common-

ly referred to as “QWERTY,” typists need learn only one keyboard

system. Languages — from human to programming — also generate

network effects. They enable communication, expression, and accom-

plishment of tasks.

Network externalities also inhere in product standards that allow

for the interchangeability of complementary products and communi-

cation among devices.707 Computer operating systems provide a com-

patibility nexus for interaction between the components of a computer

system. The IBM BIOS, for example, established the protocols for

using the IBM personal computer system. Sega programmed its Gene-

sis video game console to run only those video game disks with a key

for the lock-out code. Macros written for the Lotus 1-2-3 spreadsheet

will only run on computer systems that recognize Lotus’s menu com-

mand hierarchy. The declarations of the Java API packages enable

particular API functionality. These codes and functional specifications

control interoperability and particular functionality.

Consumers benefit when they and their devices, systems, and

programs “speak” the most widely adopted platform — the lingua

franca — or can translate that code into language that their devices

understand. This often provides for greater functionality, such as more

software that will run on their platform, and larger communication

networks. At the same time, widely adopted product standards can

strand the industry on an obsolete platform.708 Consumers dislike the

switching costs of learning new tools and languages. We often need

strong reasons to jettison our well-worn devices and software tools for

the less familiar. But occasionally, break-through products and soft-

ware, such as versatile smartphones, can win us over.

Thus, reflecting durable good investments and human capital

(training) specific to the old standard, the installed base built upon the

dominant platform can create an inertia that makes it much more dif-

ficult for any single producer to break away from the old standard by

introducing an incompatible product, even if the new standard offers

significant technological improvement over the current standard.709 In

706. See Paul A. David, Clio and the Economics of QWERTY, 75 AM. ECON. REV. 332

(1985) (in Vol. 75, No. 2, Papers and Proceedings of the 97th Annual Meeting of the Amer-

ican Economic Association).

707. See HEMENWAY, supra note 703.
708. See Joseph Farrell & Garth Saloner, Standardization, Compatibility, and Innovation,

16 RAND J. ECON. 70 (1985).

709. See HEMENWAY, supra note 703, at 30, 39; Joseph Farrell & Garth Saloner, In-
stalled Base and Compatibility: Innovation, Product Preannouncements, and Predation, 76

AM. ECON. REV. 940, 940 (1986); Farrell & Saloner, supra note 708, at 71–72, 75–79.

458 Harvard Journal of Law & Technology [Vol. 31

this way, network externalities can retard innovation and slow or pre-

vent adoption of improved product standards.710

Thus, companies seeking to leapfrog a widely adopted standard

face substantial risk. They not only must invent an improved platform

but they must also devise and execute a successful strategy to migrate

consumers from the dominant platform. They also face the challenge

of encouraging other software and complementary product developers

to build for the new platform. One strategy is to steeply discount the

costs of the new platform or to give access away for free. This is not a

sustainable strategy unless the platform developer has ancillary reve-

nue streams to cover their research, development, product, and sup-

port costs.

Another strategy is to build a convenient bridge over which con-

sumers can easily migrate to and become accustomed to a new plat-

form. Borland’s motivation for building the Lotus 1-2-3 emulation

mode was to support such migration. Similarly, Java’s “Write Once,

Run Anywhere” approach provided programmers with the ability to

write web applications that could run on multiple hardware platforms.

A third strategy is to coordinate with other companies to jointly

develop and market a new platform.711 Standard setting organizations

play an important role in overcoming bandwagon effects. They also

facilitate cross-licensing and fair licensing of intellectual property

rights.712

Intellectual property protection both contributes to and alleviates

the network externality dilemma. On the one hand, intellectual proper-

ty protection for the network features of computer technology can

discourage realization of positive network externalities by limiting

access to network technologies. The intellectual property owner can

exclude competitors or charge a licensing fee for access, thereby rais-

ing costs. The intellectual property owner can also limit innovation.

On the other hand, intellectual property protection can provide valua-

ble incentives for overcoming bandwagon effects that entrench obso-

lete platforms.713 Without the potential for a large reward, the

platform innovator might not be able to surmount the technological

and marketing challenging of leapfrogging the dominant platform.

710. See Farrell & Saloner, supra note 708, at 75–79.

711. See Timothy Simcoe, Standard Setting Committees: Consensus Governance for

Shared Technology Platforms, 102 AM. ECON. REV. 305 (2012); Joseph Farrell & Timothy
Simcoe, Choosing the Rules for Consensus Standardization, 43 RAND J. ECON. 235 (2012);

Stanley Besen & Joseph Farrell, Choosing How to Compete: Strategy and Tactics in Stand-

ardization, 8 J. ECON. PERSP. 117 (1994); Joseph Farrell & Garth Saloner, Coordination
Through Committees and Markets, 19 RAND J. ECON. 235 (1988).

712. See Contreras, Patents, Technical Standards and Standard-Setting Organizations,

supra note 19; Contreras, A Brief History of FRAND, supra note 21; Lemley, supra note 19.
713. See Menell, Tailoring Legal Protection for Computer Software, supra note 4, at

1343.

Special Issue] API Copyright 459

As I explored in my early scholarship, the optimal design of intel-

lectual property protection for addressing the network externality

challenge is to protect the functional features of computer software

under a limited utility patent-type regime, although with shorter dura-

tion and more flexibility to gain access to platforms that become

widely adopted.714 I advocated a genericide-type doctrine715 which

could protect emerging platforms but give way to broader access

when a platform becomes dominant and risks affording the proprietor

the ability to leverage that control to hinder cumulative innovators.

This analysis anticipated Microsoft’s rise and its abusive market tac-

tics in undermining Netscape and Sun.716 At the same time, I opposed

copyright protection for the functional and interoperable aspects of

computer technology to avoid large returns to first movers that win a

standards battle without offering significant technological innovation

and to afford competitors to use and build on unpatented methods of

operation.

These ideas were referenced in the Apple v. Microsoft litiga-

tion,717 where Apple sought to leverage its early lead in graphical user

interface to control valuable, but largely unoriginal, interface features.

The Altai court drew on analogous considerations in developing the

abstraction-filtration-comparison framework for ensuring that copy-

right protection does not extend to the functional features of computer

software.718 Similarly, the Lotus court recognized the importance for

competition and innovation of original developers and competitors

being able to use and build upon unpatented methods of operation.719

The next Section explores how the evolution of software markets

over the past two decades has added to our understanding of the prop-

er role for intellectual property protection of network and functional

features of computer software.

714. See id. at 1364–66.

715. See Menell, An Analysis of the Scope of Copyright Protection for Application Pro-
grams, supra note 4, at 1101. Under trademark law, a trademark can lose protection if it

becomes associated in the public’s mind with a category of product rather than the source of

a particular brand of the product. See, e.g., The Murphy Door Bed Co. v. Interior Sleep Sys.,
Inc., 874 F.2d 95 (2d Cir. 1989) (“Murphy bed” for a bed that folds up into a wall cabinet);

Miller Brewing Co. v. Falstaff Brewing Corp., 655 F.2d 5 (1st Cir. 1981) (“Lite” beer);

King-Seely Thermos Co. v. Aladdin Indus., Inc., 321 F.2d 577 (2d Cir. 1963) (“Thermos”
vacuum insulated bottle).

716. See supra notes 227–48.

717. See Apple Comput., Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1025 (N.D. Cal.
1992), aff’d in part, rev’d in part, 35 F.2d 1435 (9th Cir. 1994).

718. See Comput. Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 697–98, 705, 708, 712 (2d

Cir. 1992).
719. See Lotus Dev. Corp. v. Borland Int’l, Inc.., 49 F.3d 807, 818 (1st Cir. 1995); see al-

so id. at 819–21 (Boudin, J., concurring).

460 Harvard Journal of Law & Technology [Vol. 31

2. The Evolution of Software Markets

The first API copyright wave developed during a formative stage

of the software industry during which the scope of copyright protec-

tion was uncertain, the programmer-driven open source movement

was in its infancy, and the Internet had not yet emerged. Established

companies, venture capitalists, and entrepreneurs looked primarily to

proprietary strategies to appropriate a return on their investments in

research and development. They saw strong legal, technological, and

contractual protection for APIs — which control the network features

of products — as critical to building their software kingdoms.720 One

entrepreneur from this era analogized creating an API to building a

city:

First you try to persuade applications program-

mers to come and build their businesses on [your

tract of land]. This attracts users, who want to live

there because of all the wonderful services and shops

the programmers have built. This in turn causes more

programmers to want to rent space for their busi-

nesses, to be near the customers. When this process

gathers momentum, it’s impossible to stop.

Once your city is established, owning the API is

like being the king of the city. The king gets to make

the rules: collecting tolls for entering the city, setting

the taxes that the programmers and users have to

pay, and taking first dibs on any prime locations (by

keeping some APIs confidential for personal use).721

Many of the first API copyright wave involved proprietary appro-

priation strategies — such as the use of lock-out codes. The Microsoft

antitrust case litigated the extent to which a dominant player could

leverage its intellectual property rights to control the Internet.

The rise of the Internet and advances in information storage and

communication technologies in the late 1990s and early 2000 period

significantly shifted software development strategies away from the

proprietary model. Following the early success of Netscape’s open

strategy for distributing its Navigator browser,722 Sun chose an even

720. See JERRY KAPLAN, STARTUP 49–50 (1995) (explaining that “‘our value is the

APIs”’ and “[t]he real wars [in the computer industry] are over control of APIs” (quoting an
industry remark)).

721. Id. at 150.

722. Microsoft would do Netscape one better by integrating its browser, Explorer, into its
Windows operating system, making the marginal cost for Explorer essentially zero. This

became one of the central issues in the government’s antitrust enforcement action against

Special Issue] API Copyright 461

more permissive strategy for Java. Sun promoted widespread adoption

through community outreach. It invited companies and programmers

to collaborate in evolving the platform. Sun benefitted in a variety of

ways from Java’s rapid adoption and widespread use. Java’s success

modestly complemented its hardware business and maintained Sun’s

reputation and salience even as its core hardware business declined.

More importantly, Sun blunted Microsoft’s efforts to pull web devel-

opment into its desktop monopoly.

In the wake of Sun’s bold strategy of encouraging widespread use

of Java through free and open access, other major platform developers

followed similar strategies. Google successfully popularized its search

engine by offering free search results. Its multi-sided market strate-

gy — whereby advertisers would bid for keyword-triggered adver-

tisements — revolutionized software economics. The power of

network economics proved especially robust in the Internet age. In-

teroperability was only a part of the story. A variety of breakthrough

software entrepreneurs found they could succeed by giving away

software services in exchange for user data.

As the Internet took root as a prime economic driver for software

and e-commerce, many companies (and their programmers) came to

see open source software as an effective way of reducing software

development costs and pre-committing to collaborative, non-predatory

business practices. The open source movement transitioned from a

quirky programmer protest movement to a mainstream business strat-

egy.723 Companies could ensure that their products and services would

remain competitive, drawing in critical mass for establishing sustaina-

ble platforms. Open source infrastructure companies, such as Apache

Software Foundation724 and Mozilla,725 displaced proprietary software

providers. Even IBM, a staunch advocate for robust intellectual prop-

erty protection, embraced open source as a competitive alternative to

Microsoft’s market power.726

Moreover, Google, Facebook, and other software companies suc-

cessfully deployed advertising and other ancillary appropriability

strategies to dominate some of the most important software markets.

Network effects and multi-sided markets enabled these companies to

Microsoft. But in the end, Google did Microsoft one better by developing a better browser,

giving it away, and using keywords to trigger advertisements.

723. See Robert P. Merges, A New Dynamism in the Public Domain, 183 U. CHI. L. REV.
183 (2004); Josh Lerner & Jean Tirole, Some Simple Economics of Open Source, 50 J.

INDUS. ECON. 197 (2002); Josh Lerner & Jean Tirole, The Economics of Technology Shar-

ing: Open Source and Beyond, 19 J. ECON. PERSP. 99 (2005).
724. See Apache Software Foundation, WIKIPEDIA (June 18, 2017), https://

en.wikipedia.org/wiki/Apache_Software_Foundation [https://perma.cc/K6G3-H7VY].

725. See Mozilla, WIKIPEDIA (June 18, 2017), https://en.wikipedia.org/wiki/Mozilla
[https://perma.cc/5JW4-2RUX].

726. See Merges, supra note 723.

462 Harvard Journal of Law & Technology [Vol. 31

make “free” an attractive price727 and “open” an attractive strategy728

for software development. The more “free” services they provided,

the more dominant their platforms became.

Unfortunately for Sun, it lacked a robust ancillary revenue stream

to support the Java platform. Sun had used an open source philosophy

to build its model. Although it had amassed some utility patents, the

validity and scope of those patents were open to question, and Sun

had not enforced them, raising questions about equitable defenses.

Google’s Android project married various Internet business strat-

egies to maintain and extend the success of its search and related ser-

vices while ensuring a prominent role in the mobile Internet economy.

Google combined a familiar programming environment with a free

and open strategy to attract handset manufacturers, telcos, and app

developers. It piggybacked on programmers’ familiarity with the Java

programming language and APIs. Its model motivated telcos, handset

makers, and app developers to innovate and compete in the mobile

field, enabling Android to blow past Sun, Microsoft, RIM, and Sym-

bian and, eventually, to surpass Apple in the mobile platform market-

place. The telcos gained a competitive alternative to Apple’s

restrictive iOS platform. And the less restrictive open source license

enabled handset makers and telcos to innovate and compete without

losing control of their software innovations through GPL licensing.

Google profited indirectly by ensuring that its ad-based services were

central to the Android mobile platform and through new mobile-based

opportunities.

This is not to suggest that the Internet has fully driven out propri-

etary software models. Many sectors, including relational databases,

customer relationship management, social networks, and multi-player

online video games, continue to rely upon proprietary software strate-

gies. Further advances in bandwidth, speed, and storage capacity have

pushed software business into Internet-based clouds.729 Oracle has

long used cloud-based business models to run its core relational data-

base business. Like Google’s search engine, a growing number of

software businesses are able to protect their code through Software as

a Service (SaaS) cloud platforms. Nonetheless, many of the sectors

that rely upon interoperability and coordination have shifted to open

and collaborative development models.

727. See CHRIS ANDERSON, FREE: THE FUTURE OF A RADICAL PRICE (2009).

728. See Tim O’Reilly, Open Source Paradigm Shift, O’REILLY (June 2004),

http://archive.oreilly.com/pub/a/oreilly/tim/articles/paradigmshift_0504.html [https://
perma.cc/62A4-2XTB]; ERIC S. RAYMOND, THE CATHEDRAL & THE BAZAAR: MUSINGS ON

LINUX AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY (2001).

729. See Lothar Determann & David Nimmer, Software Copyright’s Oracle from the
Cloud, 30 BERKELEY TECH. L.J. 161 (2015); Lothar Determann, What Happens in the

Cloud: Software as a Service and Copyrights, 29 BERKELEY TECH. L.J. 1095 (2014).

Special Issue] API Copyright 463

To a significant extent, platform developers have partially ad-

dressed the appropriability problem associated with software devel-

opment through the formation of collaborative clubs. 730 Compared to

the early development of software markets in the 1980s and early

1990s, the contemporary and foreseeable future software marketplace

reflects a zoned landscape featuring different governance structures.

Much of web infrastructure is governed through standard setting bod-

ies and open source communities run by nonprofit organizations, such

as the Linux Foundation, the Apache Foundation, and Mozilla.org.

These enterprises develop and update core software platforms through

collaborative processes. The cloud provides software vendors with a

variety of appropriability options, ranging from open to closed. The

ability to maintain software in the cloud, through SaaS models, af-

fords complete control over software through trade secrecy. Yet de-

velopers of complementary products, such as smartphones, have a

need to make their platforms available to handset makers, telcos, and

app developers.

The major “open” platforms largely operate as communities,

whether or not they are sponsored by a single company or organiza-

tion. Some rely on formal standards bodies; other use informal alli-

ances. We have moved past the stage where one major player, such as

IBM in the mainframe and early microcomputer era or Microsoft in

the microcomputer and early Internet era,731 can exercise dictatorial

control over a widely adopted platform governing many inter-related

products and services. We have instead seen the triumph of open,

community-based platforms in critical Internet infrastructure markets.

The mobile phone marketplace illustrates this evolution. Early en-

trants — ranging from Sun’s open Java ME platform to Microsoft’s

proprietary approach for feature phones — gave way to Apple’s iOS

and Google’s Android platforms for smartphones. Apple provides a

closed platform whereas Android provides a relatively open platform

that evolves through a community process. Given the importance of

widespread adoption of such technology, it is difficult to imagine a

new entrant being able to make significant inroads without a relatively

open, community-based process.

730. See Suzanne Scotchmer, Clubs, in THE NEW PALGRAVE DICTIONARY OF

ECONOMICS (Steven N. Durlauf & Lawrence E. Blume eds., 2d ed. 2008) (discussing the
economics of clubs, whereby individuals or groups share an activity so as to achieve com-

mon benefits).

731. See Thomas A. Piraino, Identifying Monopolists’ Illegal Conduct Under the Sher-
man Act, 75 N.Y.U. L. REV. 809, 888–89 (2000) (quoting a Microsoft manager’s internal e-

mail stating that “to control the APIs is to control the industry”).

464 Harvard Journal of Law & Technology [Vol. 31

3. The Optimality of Limited Copyright Protection for Computer

Software

As Section IV.B.1 explained, intellectual property policy aims to

address two inter-related market failures: (1) the public goods prob-

lem — enabling innovators to appropriate sufficient return on their

investment in research and development; and (2) the network exter-

nalities problem — encouraging realization of network externalities

while avoiding excess inertia. Intellectual property protection is not a

panacea. It entails administrative and monopoly costs and can hamper

cumulative creativity. Other government policies and private ordering

(such as formal and informal standard setting) may be able to address

aspects of the market failures more effectively.

Furthermore, the design of copyright protection for computer

software depends critically on the larger intellectual property land-

scape. It was evident by the mid-1970s that computer software did not

fit neatly within the traditional forms of legal protection for intellectu-

al property.732 By its inherent nature as written work intended to serve

utilitarian purposes, software straddles the line between patent protec-

tion and copyright protection. The functional features of computer

software and machines fall within the patent system’s domain. The

importance of interoperability and compatibility bring trademark pro-

tection into play. In addition, software can often be protected through

trade secret law. Developers can hide their programming by only re-

leasing object code versions to the public. They can also employ

password-protections and contractual limitations. Furthermore, soft-

ware can be entirely shielded from users through cloud services which

provide users with only the results of software processes.

The potential anti-competitive effects of intellectual property pro-

tection also come into play. Intellectual property protection and anti-

trust law interact in complex ways. Antitrust law aims to promote free

competition. It recognizes, however, that patent and copyright protec-

tion can promote dynamic competition. Major technological advances

can improve product quality and drive down costs. For example, Intel

Corporation, relying on patent protection, has been able to enhance

the performance of microprocessor chips by a factor of 3,500 while

improving energy efficiency by a factor of 90,000 and reducing cost

by a factor 60,000 over the past fifty years.733 Because of its inherent

732. See Menell, Tailoring Legal Protection for Computer Software, supra note 4, at

1329 (citing CONTU REPORT, supra note 47, at 3).
733. See Thomas Friedman, Moore’s Law Turns 50, N.Y. TIMES, May 13, 2015, at A27;

Moore’s law, WIKIPEDIA (June 18, 2017), https://en.wikipedia.org/wiki/Moore%27s_law

 [https://perma.cc/7BRH-2UQ6]; Gordon E. Moore, Cramming More Components onto
Integrated Circuits, 38 ELECTRONICS 114 (1965) (predicting that the number of transistors

in an integrated circuit would double approximately every two years).

Special Issue] API Copyright 465

limitations — barring protection for ideas, processes, systems, meth-

ods of operation, and discoveries — copyright protection, properly

interpreted, posed little threat to competition.

Yet with intellectual property protection comes the potential for

abuse. As the Microsoft antitrust litigation illustrated, network indus-

tries are especially prone to leveraging market power in one software

field to hamper innovation and competition in other sectors. The anti-

trust doctrines seeking to resolve this tension are difficult to apply,

especially in network industries, which are naturally prone to high

concentration.

When I first wrote about legal protection for computer software

three decades ago, the economic theory was relatively clear but the

technological and market contexts were evolving rapidly. The experi-

ence of the past several decades have reinforced the insights of that

earlier research. Although copyright law has a valuable role to play in

protecting computer software, that role must be limited, especially

with regard to network and other functional features of computer

software.

As explicated in Section IV.A.3, the proper legal contours of

copyright for protection for computer software — based on the semi-

nal Baker v. Selden decision, the 1976 Act, the CONTU REPORT, and

the nature of computer technology — distinguish between the func-

tional specifications and the implementing code. The functional speci-

fications fall outside of copyright protection regardless of their

“creativity” and the difficulty of designing and coding them. Thus, the

declarations of an API are unprotectable (under copyright law) as they

are necessary to build a particular machine. Such features might be

eligible for utility patent protection, but they would have to meet pa-

tent law’s higher threshold requirements and the duration of such pro-

tection would be shorter than copyright protection.734 By contrast, the

implementing code is protectable, although particular code, such as

bits required for interoperability, and particular design elements, such

as standard programming techniques, might be filtered out as func-

tional or unoriginal. Furthermore, copyright’s fair use doctrine author-

izes competitors to reverse engineer protected code to determine the

unprotected elements.

734. Patent law has long provided protection for innovative interfaces. For example,

Samuel F.B. Morse patented not only the machinery for telegraphic communication, but

also the system of dots and dashes that came to be known as Morse Code. See O’Reilly v.

Morse, 56 U.S. 62, 86 (1853) (“Fifth. I claim, as my invention, the system of signs, consist-
ing of dots and spaces, and of dots, spaces, and horizontal lines, for numerals, letters, words,

or sentences, substantially as herein set forth and illustrated, for telegraphic purposes.”).

Under Baker v. Selden, such a system is ineligible for copyright protection, even though a
book explaining its use would garner thin copyright protection. Others could not reproduce

the book, although they could write their own guide to the use of Morse Code.

466 Harvard Journal of Law & Technology [Vol. 31

This regime provides an effective tool for combating unauthor-

ized distribution of software programs while affording competitors

and other innovators freedom to use functional features and to devel-

op interoperable products. At the same time, it ensures that utility pa-

tent law serves as the principal means for protecting functional

software elements. This combination provides balanced incentives for

promoting progress in software platforms while supporting the reali-

zation of network externalities. In the absence of patent protections

for interface specifications, competitors can emulate the interface

specifications in developing interoperable products or adapting plat-

forms. Companies seeking to establish proprietary platforms can look

to utility patent law.

Even though copyright law does not directly protect functional

features of computer software, the thin layer of copyright protection

for implementing code provides developers with valuable lead-time.

By employing technological protection measures or distributing soft-

ware products solely in object code form, software developers can

slow development of interoperable products. Reverse engineering

computer programs can be time-consuming and expensive.735 Even

when the functional specifications are publicly disclosed so as to rap-

idly expand the platform, as was the case with the Java APIs, re-

implementing that functionality in a clean room can be time-

consuming. It is often more efficient to write a program from scratch.

But because of interoperability concerns or user and programmer fa-

miliarity with a software product, reverse engineering and re-

implementing the precise functionality can be necessary to introduce a

new or complementary product. Thus, copyright protection in con-

junction with trade secret protection provides software developers

with a first-mover advantage.

This interpretation of copyright protection for computer software

provides a sound regime for promoting software innovation and com-

petition. Thus, the software industry today can be analogized to a zon-

ing map. It comprises distinct sectors with varying approaches for

addressing the appropriability and network externality concerns.

The core Internet technologies and other high-level platforms de-

velop almost exclusively through open source projects and standard

setting processes. Many different constituencies — ranging from ma-

jor corporations to governmental and non-governmental organiza-

735. See Sammi, Lisy & Gish, supra note 56, at 10 (discussing the high costs and risks

associated with reverse engineering); Contreras, Handley & Yang, supra note 678, at 214
(same); Davis III, supra note 678, at 151 (noting that “it would be easier and far less expen-

sive to develop entirely new software, were it not for the need in most such cases to have a

functional equivalent, compatible program that cannot be obtained in any other way”);
Burke, supra note 680, at 63 (noting that reverse engineering the IBM BIOS doubled Phoe-

nix’s cost of developing a functioning BIOS).

Special Issue] API Copyright 467

tions — have come to see that such platforms are too important to be

owned by any one enterprise. Moreover, the open source community

has proven especially effective at generating innovative research and

development through collaborative processes that do not rely on cor-

porate ownership or direct remuneration. Thus, this critically im-

portant area of software development has solved the public

goods/network externalities problem without substantial reliance on

exclusive intellectual property rights. Affording copyright protection

to API design for this sector is neither needed nor desirable.

For entrepreneurs and companies operating within these high-

level platforms, the Internet itself has largely solved the appropriabil-

ity problem. The ability to operate software services in the cloud ob-

viates distribution of software products. The proprietors of cloud

services can largely protect their software through trade secret law,

technological protection measures, and contractual provisions.

Google’s search engine, Facebook’s social network, and countless

other software-based companies secure much of their software with-

out copyright protection.

Companies that choose to distribute their software products have

clear protection against piracy of their software. They also can garner

lead-time through technological protection measures and not distrib-

uting their source code. They cannot, however, protect the functional

features of their product beyond the period necessary to reverse engi-

neer and re-implement the uncopyrightable functional features. This

comports with a proper channeling of protection between utility patent

and copyright law.

We are left with the question of whether the lack of direct copy-
right protection for API design — whose interface must be exposed to

the public in most commercial circumstances to be effective — cre-

ates an undesirable lacuna in intellectual property protection. Are in-

centives to innovate platforms inadequate without copyright

protection for API design?

Utility patent law provides protection for novel, non-obvious, and

adequately disclosed advances in computer systems, processes, and

interface design. It arguably overprotects interface specifications for

an excessive duration.736 Thus, adding robust copyright protection for

API design would further undermine realization of network externali-

ties and hamper cumulative innovation. In the past three decades, the

software industry has demonstrated that API design projects typically

require large community-building efforts to overcome the inertia of

widely adopted standards. Whereas pre-Internet enterprises looked to

proprietary models to justify the research and development effort

736. See Menell, Tailoring Legal Protection for Computer Software, supra note 4, at

1364–65.

468 Harvard Journal of Law & Technology [Vol. 31

needed to surmount this inertia, modern software markets demand

more open, collaborative approaches. As with core Internet technolo-

gies, this approach has largely surmounted the public goods/network

externalities challenge. In this sector, ancillary appropriability means,

such as advertising, have proven especially important.

API design innovation solves the network effects problem

through community organization, formal and informal standard set-

ting processes, and open licensing. It is nearly impossible to compete

or supplant a widely adopted platform without the target audience

buying in. Successful ventures are able to pair such community organ-

ization with indirect appropriability strategies. Leaving API design

specifications outside of copyright protection enables entrepreneurs

seeking to improve on successful platforms to build bridges for users

and programmers. This avoids excess inertia and accommodates crea-

tive destruction and evolution737 in those areas where the proprietor of

the standard platform lacks patent protection.

Thus, looking back over the past three decades, the need for copy-

right protection to address the dual public goods/network externality

problem face by software developers has substantially waned due to

several factors. The emergence and development of the Internet has

enabled software developers to distribute software and services at

very low cost. Furthermore, developers can protect their code through

cloud service models. The Internet has also opened up and expanded

the effectiveness of e-commerce and advertising-based business mod-

els. More robust copyright protection for API design would likely

have stifled platform innovation and competition. Thus, a parsimoni-

ous approach to copyright protection of computer software remains

the best policy choice.

The evolution of the mobile platform illustrates the wisdom of

excluding API specifications from copyright protection while afford-

ing the API implementing code limited protection. Sun built the Java

programming language and API platforms on the C programming lan-

guage. It successfully promoted Java through free and open licensing

as well as through its establishment of the Java Community Pro-

cess.738 This strategy enabled Sun to thwart Microsoft’s effort to mo-

nopolize web programming.

By the early 2000 period, Sun was well-positioned to lead the

shift to mobile technology. Its Micro Edition gained a strong position

in the feature phone marketplace. It failed, however, to recognize the

potential for more versatile mobile devices. To some extent, it was

737. See JOSEPH A. SCHUMPETER, CAPITALISM, SOCIALISM AND DEMOCRACY 82–83

(1942) (describing economic evolution as driven by the “gale of creative destruction,” a

“process of industrial mutation that incessantly revolutionizes the economic structure from
within, incessantly destroying the old one, incessantly creating a new one”).

738. See supra notes 250–53.

Special Issue] API Copyright 469

held back by its focus on backward compatibility with the WORA

principle and its restrictive licensing philosophy.

Google was able to leverage its highly profitable advertising

business to support the development of Android — a mobile platform

that provided full browser functionality as well as other mobile func-

tionality. The Android team recognized that this operating system

would need to fit on the small chips in handsets and accommodate

some other capabilities, such as users’ locations and preferences. They

also saw the advantages of a more permissive licensing model.

Rather than build the platform entirely from scratch, the Android

team sought to use the well-known Java programming language and

some of the Java API packages. The Java programming language was

freely available. The APIs, however, were protected by copyright law.

Hence, Android developers reached out to Sun to negotiate a license.

While desperate to generate more licensing revenue for the Java unit,

Sun was reluctant to license a platform that did not have the full range

of APIs necessary to extend “Write Once, Run Anywhere” interoper-

ability. In addition, Sun opposed the more permissive license that

Google sought to afford Android licensees.

Although Sun and Google came close to agreement in the spring

of 2006, the negotiations reached an impasse. In order to avoid in-

fringement of Sun’s implementing code, Google undertook the costly

and time-consuming process of re-implementing thirty-seven of the

Java API packages in a clean room. The Google vision succeeded for

many of the reasons that Java succeeded. Android enabled the target

audience — handset manufacturers, telcos, and app developers — to

quickly learn the platform and to compete. The Android platform pro-

vided a viable alternative to Apple’s iOS platform.

This resulted in robust innovation and competition. Apple was not

able to dominate the mobile platform in the manner that Microsoft

monopolized the desktop. Google’s power is checked in part by the

need to work within the open handset alliance. Moreover, Google

ceded substantial power to its partners. The smartphone ecosystem

has been remarkably dynamic and competitive.

The critical question is whether the lack of strong copyright pro-

tection for API design stands in the way of the next great software

platforms. The experience of the past several decades suggest that

strong copyright protection for API design would more likely hinder

rather than promote technological progress. Had Sun been able to

stand in Google’s way based solely on API design, we would never

have gotten a bold new platform and the permissive licensing struc-

ture that has ignited competition and innovation among downstream

handset manufacturers, telcos, and app developers. Apple’s iOS

would likely have dominated the mobile platform for a long time.

470 Harvard Journal of Law & Technology [Vol. 31

A subsidiary question is whether Android’s forking of Sun’s Java

platform into an implementation that is not compatible with Java’s

WORA principle undermines network externalities. Oracle contends

that copyright protection for API functional specifications is critical to

enforcement of the GPL.739 The Free Software Foundation (“FSF”),740

which established and maintains the GPL, disagrees. In its amicus

brief opposing Google’s petition for certiorari following the Federal

Circuit’s 2014 decision, the FSF stated that it “strongly rejects the use

of copyright law to prevent implementation of interoperable free

software by inappropriately applying copyright principles to ideas

instantiated in the rules of inter-program communication called ‘ap-

plication program interfaces.’”741

The fact that Android does not afford complete end user compati-

bility with Java does not necessarily lead to the conclusion that con-

sumer or programmers will be harmed. Even Sun’s Java Micro

Edition was not fully interoperable with the Java Standard Edition.742

More importantly, interoperability is but one of many functional con-

siderations. Although complete interoperability can be an important

programming goal, it can also stand in the way of technological pro-

gress. Google sought to draw on the Java APIs as part of its plan to

develop a more versatile and compact platform optimized for a new

generation of mobile devices. Woodenly adhering to the WORA prin-

ciple would have compromised these important design objectives and

forced desirable cumulative innovation onto a risky path. Forking of

code is an essential part of creative destruction.

Furthermore, Google did not seek, as Microsoft did in the late

1990s, to undermine the Java platform in violation of a contractual

agreement.743 Nor did Google claim that Android was compatible

with Java. Rather, it sought to implement particular function packages

in a new, familiar, and partially interoperable mobile platform. Using

some of the Java APIs provided a bridge for the millions of Java pro-

grammers. But by independently implementing the packages, Google

sought to work around copyright protection in the implementing code.

It avoided trademark liability by not using the Java trademark in a

manner that created a likelihood of confusion. Google risked patent

infringement, but ultimately fended off Oracle’s patent assertions.

739. See Hurst, supra note 428.

740. See Free Software Foundation, WIKIPEDIA (June 18, 2017), https://
en.wikipedia.org/wiki/Free_Software_Foundation [https://perma.cc/YXJ4-E843].

741. See Brief of Software Freedom Law Center and Free Software Foundation as Amici

Curiae Supporting Respondent, Google Inc. v. Oracle Am., Inc., 135 S. Ct. 2887 (2015),
memorandum op., (No. 14-410) (2014 WL 6967821). Somewhat confusingly, FSF support-

ed Oracle in opposing the Supreme Court granting certiorari, although on entirely different

grounds.
742. See supra notes 505–06.

743. See supra text accompanying notes 236–48.

Special Issue] API Copyright 471

More importantly, protecting API design through copyright law

poses a much greater risk to interoperability than the parsimonious

approach that predated the Federal Circuit’s Oracle v. Google deci-

sion. The many companies that build products that connect with estab-

lished platforms would risk copyright infringement by building

interoperable features. If they did not obtain licenses, they would po-

tentially have to prove that their independently developed interface

code was fair use.744

4. Impediments to Achieving the Proper Copyright Balance Posed by

the Oracle v. Google Litigation

This analysis shows that the fair use trial was a massive waste of

time, party resources, and judicial resources. The litigation has al-

ready established that Google independently implemented the func-

tional specifications for thirty-seven “machines.” As a result, it cannot

be held liable for copyright infringement.

More importantly, even if Google ultimately prevails in this liti-

gation under the fair use doctrine, the Federal Circuit’s holding that

API functional specifications are copyrightable will hamper software

innovation and competition. Its 2014 decision revives long dormant

fears about the scope of copyright protection for computer software.

The Federal Circuit has opened a Pandora’s Box that will lead le-

gal advisors to caution against independently implementing APIs

without obtaining licenses. They will need to advise their clients that

so long as there is the potential for a patent infringement allegation —

which is likely in view of the proliferation and availability of software

patents — then a company seeking to control access to its platform

can likely file a lawsuit outside of the First Circuit alleging both pa-

tent and copyright infringement that would fall within the Federal

Circuit’s exclusive appellate jurisdiction.745 As such, the district court

would be on notice that the appellate court considers the functional

specifications of APIs to be copyrightable. The defendant’s principal

hope will be to mount a fair use defense, which is notoriously unpre-

dictable and costly. The range of factors applicable to fair use opens

up a broad range of discovery.

The fair use doctrine is an especially poor vehicle for resolving

API copyright disputes. As Judge Boudin recognized in his thoughtful

concurrence in Lotus v. Borland, a “privileged use” doctrine, akin to

744. See Julie Samuels, Oracle v. Google and the Dangerous Implications of Treating

APIs as Copyrightable, ELEC. FRONTIER FOUND. (May 7, 2012), https://www.eff.org/

deeplinks/2012/05/oracle-v-google-and-dangerous-implications-treating-apis-copyrightable

[https://perma.cc/D65R-G44D].
745. I exclude the First Circuit because the Federal Circuit would be bound by the First

Circuit’s Lotus v. Borland decision.

472 Harvard Journal of Law & Technology [Vol. 31

the fair use doctrine that he considered as an alternative to the “meth-

od of operation” exclusion, “would cause cost and delay, and would

also reduce the ability of the industry to predict outcomes.”746

Furthermore, it is possible that other circuits could follow the

Federal Circuit. The Third Circuit likely already does.747 The unusual

posture of the Oracle v. Google litigation creates the risk that the Fed-

eral Circuit’s copyrightability decision will go without review.748 The

Supreme Court has already declined one opportunity to review the

matter.

Software developers and investors greatly value clarity in making

the difficult, time-sensitive decisions involved in designing products

and platforms. Yet the fair use defense is fact-dependent and case-

specific. It is a classic example of a legal standard for which dispute

resolution is costly and time-consuming.749 The Android team strug-

gled with these issues and ultimately chose what it thought would be a

safe harbor: re-implementing the code. While the fair use trial partial-

ly vindicated its decision, the uncertainty imposed tremendous cost

and ultimately took nearly a decade for resolution. And even that

resolution remains in question as the appeal looms. For a fast-moving

industry like software, this regime for determining freedom to operate

is highly inefficient. It distorts and slows innovation activities.

Judge Boudin concluded his concurrence with this sage summary

and observation:

[T]he majority’s result [based on § 102(b)’s exclu-

sion of methods of operation from the scope of copy-

rightable subject matter] persuades me and its

formulation is as good, if not better, than any other

that occurs to me now as within the reach of courts.

Some solutions (e.g., a very short copyright period

for menus) are not options at all for courts but might

be for Congress. In all events, the choices are im-

portant ones of policy, not linguistics, and they

should be made with the underlying considerations

in view.750

I would add only that Baker v. Selden and full consideration of

the legislative history of the Copyright Act of 1976 support the First

746. See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 821–22 (1st Cir. 1995)

(Boudin, J., concurring), aff’d by an equally divided court, 516 U.S. 233 (1996) (per curi-

am).
747. See Section IV(A)(2)(ii)(c).

748. See supra Section III(C).

749. See Louis Kaplow, Rules Versus Standards: An Economic Analysis, 42 DUKE L.J.
557, 563 (1992).

750. 49 F.3d at 822.

Special Issue] API Copyright 473

Circuit’s approach. That approach properly immunizes Android’s use

of the functional specifications for Java APIs, although Google could

nonetheless infringe by failing to re-implement those specifications

independently.

V. CONCLUSION

As we know from popular books and films, zombies (or vampires

for pre-Millennials) tend to awaken at inopportune times and wreak

havoc. Eventually some suitable leading actor re-inters the zombies or

impales the vampire through the heart. We are not there yet. The Fed-

eral Circuit’s flawed analysis brings the Apple v. Franklin/Whelan

API copyright zombies back to life. The district court’s fair use deci-

sion suggests that it will be difficult for copyrightable API zombies to

proliferate, but it does not resolve the issues beyond the particular

case and thus is of little to no precedential value. Furthermore, Oracle

has appealed the jury’s fair use ruling. Thus, API copyright zombies

still roam Silicon Valley and other innovation centers.

This Article chronicles the API copyright battles. It shows that af-

ter some early missteps, the courts surmounted the copyright chal-

lenges posed by network and functional features of computer software

by the mid 1990s. But the Oracle v. Google litigation threatens to set

copyright law back to the misguided analyses of the 1980s. Part IV

explains that copyright law’s fundamental exclusion of protection for

functional features dictates that the labeling conventions and packag-

ing of functions within interface specifications generally fall outside

of the scope of copyright protection even as implementing code gar-

ners thin copyright protection. This interpretation of copyright law

comports with fundamental principles channeling protection among

the modes of intellectual property protection. It also serves the larger

goals of intellectual property law and competition policy.

Zombies thrive on the flesh and lifeblood of the living and are

difficult to subdue. In the software community, confusion over copy-

right treatment of APIs has exposed developers and investors to

chilling uncertainty that restrains and distorts the creative destruction

that is critical to advancing computer technology and software indus-

tries. This Article has explained computer programming, legislative

and jurisprudential history, the evolution of the software industry, and

economic analysis in an effort to return the API copyright zombies to

their rightful and hopefully final resting place.751

751. Software innovation and progress can also be advanced through patent reforms. I

continue to believe that a sui generis regime would be the best approach. See Menell, Tai-

loring Legal Protection for Computer Software, supra note 4, at 1371. Nonetheless, reinter-
ring the API copyright zombies is an important step that can be accomplished without

legislation.

474 Harvard Journal of Law & Technology [Vol. 31

APPENDIX A: GLOSSARY

American Committee for Interoperable Systems (“ACIS”): A

group of technology companies formed ACIS in the early 1990s to

advocate for less protectionist intellectual property policies for com-

puter software. As the name emphasized, ACIS focused on promoting

interoperability. Sun Microsystems and Oracle were among ACIS’s

founding members.

Android SDK: The Android Software Development Kit is a compre-

hensive set of development tools for creating programs that will run

on the Android platform.

Apache Harmony: Announced in May 2005, the Apache Harmony

Project sought to develop an open source, free Java implementation. It

sought a license from Sun, with mixed success. The Android operat-

ing system used this platform. The Apache Harmony project was re-

tired in late 2011.

Application Programming Interface (API): An API is a set of sub-

routine definitions, protocols, and tools for building application soft-

ware that functions as a clearly defined method of communication

between various software components. APIs can be used for web-

based systems, operating systems, database systems, computer hard-

ware, or software libraries. (Wikipedia)

Berkeley Software Distribution (BSD): Berkeley Software Distribu-

tion is a UNIX operating system produced by the Computer Research

Group at the University of California, Berkeley from 1977 to 1995.

(Wikipedia)

Clean Room: A clean room process insulates programmers from

copyright-protected code in producing code that accomplishes the

same functions as a target program based solely on the functional

specifications. Such a process ensures a program is independently

written and hence not copied except with regard to unprotectable ele-

ments.

Code Forking: Forking of software code refers to the creation of an

independent branch of a computer program. This split from the origi-

nal program typically spawns competing projects that are not interop-

erable, resulting in a split in the software developer community.

Special Issue] API Copyright 475

CONTU: Congress established the National Commission on New

Technological Uses of Copyrighted Works (“CONTU”) in 1974 to

study the implications of new technologies and recommend revisions

to federal intellectual property law. Its 1978 Report recommended

statutory changes to accommodate computer software within copy-

right law, which Congress implemented in 1980. The 1978 Report is

treated by courts as legislative history and guidance for interpreting

copyright protection for computer software.

Dalvik: Google’s Android team developed Dalvik as an independent

Java Virtual Machine for use with the Android platform. Dalvik was

created using a clean room process.

Declarations/Declaring Code: “In computer programming, a decla-

ration is a language construct that specifies properties of an identifier:

it declares what a word (identifier) ‘means.’ Declarations are most

commonly used for functions, variables, constants, and classes, but

can also be used for other entities such as enumerations and type defi-

nitions. Beyond the name (the identifier itself) and the kind of entity

(function, variable, etc.), declarations typically specify the data type

(for variables and constants), or the type signature (for functions);

types may also include dimensions, such as for arrays. A declaration

is used to announce the existence of the entity to the compiler; this is

important in those strongly typed languages that require functions,

variables, and constants, and their types to be specified with a declara-

tion before use, and is used in forward declaration.”

https://en.wikipedia.org/wiki/Declaration_(computer_programming)

DMCA: The Digital Millennium Copyright Act of 1998 amends the

Copyright Act to address key challenges introduced by the Internet

among other issues. The key Internet-related provisions are prohibi-

tions on circumvention of technological protection measures and the

establishment of online service provider safe harbors. The DMCA

exempts decryption of technological protection measures for purposes

of developing interoperable systems.

Free Software Foundation (FSF): The Free Software Foundation,

established by Richard Stallman, seeks to promote users’ rights to use,

study, copy, modify, and redistribute computer programs.

Forking: See Code Forking.

GNU: “GNU’s Not Unix!” is an operating and extensive collection of

computer software developed by the FSF. GNU is composed wholly

476 Harvard Journal of Law & Technology [Vol. 31

of free software, most of which is licensed under the GNU Project’s

General Public License. (Wikipedia)

Green Project/Team: Code name for the Sun Microsystem team in

charge of inventing Java, originally called Oak, developed starting in

1990.

General Public License (GPL): The Free Software Foundation es-

tablishes the General Public License, sometimes referred to as a

“copyleft” license, to prevent programmers from building proprietary

limitations into “free” software. GPL guarantees end users the free-

doms to run, study, share (copy), and modify the software so long as

the users permit use of any derivative works on the same terms.

Interoperability: Interoperability refers to the capability of hardware

devices or software programs to interact. Interaction can occur from

hardware devices to hardware devices (e.g., a printer connecting to a

computer), from software to software (e.g., an application program

running on a particular operating system, two application programs

exchanging data), and software to hardware (e.g., a video game run-

ning on a game console, an app running on a particular mobile de-

vice). Interoperability can refer to the capability to communicate,

execute programs, or transfer data among functional components of

computer systems. Interoperability can be a question of degree, rang-

ing from full interoperability in which all features of a system work

seamlessly to partial interoperability in which some of features func-

tion together.

Java: Sun Microsystems developed the Java programming language

and API platform for use in webpage programming. It implements a

“Write Once, Run Anywhere” (“WORA”) principle to facilitate ease

of use of web pages across the full range of computer systems. Java is

an object-oriented language.

Java Community Process (“JCP”): Sun Microsystems established

the Java Community Process as a formal process for developing

standard technical specifications for Java technology. The JCP is open

to the public, including organizations and commercial entities.

Java Micro Edition (“Java ME”): A Java platform designed for

embedded and mobile devices.

Java Standard Edition (“Java SE”): A Java platform designed for

desktop or laptop computers.

Special Issue] API Copyright 477

Java Standard Edition API: Sun Microsystems organized sets of

pre-written programs (methods, which are grouped in classes) into

API packages (or class libraries). Each API package reflects a set of

declarations or functional specifications needed to invoke the func-

tions. It is executed through detailed implementing code. Although a

Java programmer can write new code (methods) from scratch, the pre-

written methods within the Java API packages provide convenient,

efficient, reliable, standardized building blocks, thereby saving Java

programmers tremendous tedious effort.

Java Specification Requests (“JSRs”): Java community members

may propose Java Specification Requests for expanding and updating

the Java platform. These are reviewed by the JCP through a public

process akin to administrative rulemaking. The JCP Executive Com-

mittee, comprised of major stakeholders, decides whether to approve

JSRs.

Java Virtual Machine (“JVM”): A Java Virtual Machine is an ab-

stract computing machine that enables a computer to run Java pro-

grams.

Linux: A UNIX-compatible kernel developed by Linus Torvalds in

1991, licensed on the GNU GPL “open source” model.

Object Code: Computers manipulate data according to a set of in-

structions called a computer program. At their most basic level, com-

puter programs represent information and instruct computer devices

through binary information (“0” (usually connoting “off”) and “1”

(usually connoting “on”)). Strings of binary information can represent

alphanumerical symbols, words, and images. Programs written in high

level, human-readable computer languages (“source code”) must be

compiled into computer-readable “object code.” Object code is typi-

cally platform-specific — i.e., adapted to a particular computing sys-

tem.

Object-Oriented Programming (“OOP”): The OOP paradigm

structures software development around “objects,” containing data

and methods, that interact with each other. An object’s procedures can

access and modify data fields with which they are associated. This

paradigm is more efficient and more easily modifiable and maintaina-

ble than more conventional procedural programming languages like

C.

Original Equipment Manufacturer (“OEM”): The computer and

telecommunications industries make extensive use of OEMs to supply

478 Harvard Journal of Law & Technology [Vol. 31

components, parts, and equipment marketed by other companies.

(Wikipedia)

Source Code: Computer programs are typically written in high level,

human-readable languages such as Fortran, C, and Java. Such “source

code” programs are compiled using particular lexical, syntactic, and

semantic rules into computer-readable “object code” for execution on

a particular computer operating system. Source code is platform-

independent and thus can be compiled for different computer operat-

ing systems.

Technology Compatibility Kit (“TCK”): A Technology Compati-

bility Kit is a suite of tests that checks an implementation of a Java

Specification Request (JSR) for compliance with a Java Platform.

(Wikipedia)

Telcos: Telecommunication companies.

Write Once, Run Anywhere (“WORA”): Sun Microsystems coined

the term “Write Once, Run Anywhere” to characterize the interopera-

ble software design philosophy underlying the Java language and plat-

form. Programs written in Java can run on any chip, device, or

software package equipped with a Java virtual machine. The Java

TCK ensures that a product complies with Java compatibility.

Special Issue] API Copyright 479

APPENDIX B: PRINCIPAL PARTICIPANTS

Android: Software company founded in October 2003, acquired by

Google in July 2005.

- Andy Rubin, former Apple engineer, founder of Android

and later head of Google’s Android division

Apple: Technology company founded in April 1976.

- Steve Jobs, founder and late CEO

- Apple’s introduction of the iPhone in 2007 transformed the

smart phone marketplace. Google played a role in develop-

ing iPhone applications. Apple’s patent, design patent, and

trade dress litigation complicated Google’s efforts to estab-

lish the Android platform.

Federal Judiciary

- Judge William H. Alsup, judge assigned to Oracle v.
Google’s district court trials

- U.S. Court of Appeals for the Federal Circuit, appellate

court reviewing Oracle v. Google trial court decisions.

Google: Technology company founded in September 1998, which

went public in 2004.

- Sergey Brin, co-founder of Google and current president of

parent company Alphabet

- Larry Page, co-founder of Google and current CEO of par-

ent company Alphabet

- Eric Schmidt, former CTO of Sun Microsystems, then CEO

of Google from 2001–2011, currently executive chairman

of Alphabet. Served on Apple’s Board of Directors from

2006 to 2009

- Robert Van Nest, lead counsel in Oracle v. Google trials

Microsoft: Technology company founded in April 1975 by Bill Gates

and Paul Allen. Microsoft’s efforts to leverage its successful Win-

dows platform to control the Internet browser technology and web

programming pushed Sun toward an open development strategy for

the Java language and platforms. Sun successfully sued Microsoft for

breach of its Java license agreement and antitrust violations.

Oracle Corporation: Technology company founded in June 1977,

which acquired Sun Microsystems in January 2010.

480 Harvard Journal of Law & Technology [Vol. 31

- Larry Ellison, co-founder, former CEO, and current Execu-

tive Chairman and CTO since September 2014

- Safra Catz, current co-CEO

- Peter Bicks, co-lead counsel in Oracle v. Google trials

- Annette Hurst, co-lead counsel in Oracle v. Google trials

Sun Microsystems: Technology company founded in February 1982,

acquired by Oracle in January 2010. Created networked computer

engineering workstations and the Java (previously Oak) programming

language.

- Vinod Khosla, co-founder

- Andy Bechtolsheim, co-founder

- Scott McNealy, co-founder

- Bill Joy, co-founder, participant in Berkeley Software Distri-

bution creation

- Scott McNealy, CEO until 2006

- Jonathan Schwartz, CEO from 2006 to 2010 (acquisition by

Oracle)

- Eric Schmidt, CTO, later CEO of Google in 2001.

- Tim Lindholm, former Sun Microsystems engineer who was

involved with Java. His Emails to Andy Rubin about Java

were important exhibits in the trial.

Trial Witnesses for Google

- Eric Schmidt, Google CEO

- Jonathan Schwartz, former Sun Microsystems CEO (at time

that Android was developed)

- Andy Rubin, head of Android team

- Larry Ellison, Oracle co-founder

- Joshua Bloch, former Sun employee who became Google’s

“Java guru”

- Donald Smith, designated Oracle representative

- Simon Phipps, Sun Microsystem’s former Chief Open

Source Officer and former President of the Open Source In-

itiative

- Daniel Bornstein, key member of the Android development

team

- Professor Owen Astrachan, Professor of the Practice of

Computer Science at Duke University

- Larry Page, Google co-founder, Executive Chairman

- Dr. Greg Leonard, economics expert

Trial Witnesses for Oracle

- Safra Catz, Oracle co-CEO

- Edward Screven, Oracle chief corporate architect

Special Issue] API Copyright 481

- Mark Reinhold, Oracle’s chief architect for Java SE

- Professor Douglas Schmidt, Professor of Computer Science

at Vanderbilt University

- Neil Civjan, Sun Microsystem’s former head of global sales

- Alan Brenner, Sun Microsystem’s Senior Vice President of

client systems from 1997 until 2007

- Stefano Mazzocchi, Google engineer who was one of the

original Apache Harmony developers

- Professor Adam Jaffe, economics expert

482 Harvard Journal of Law & Technology [Vol. 31

APPENDIX C: TIMELINE

1982: Sun Microsystems founded.

1990: Sun Microsystems begins working on a new programming lan-

guage to replace C++ and C. Team is code-named “Green Project”

and isolated from the rest of the company to develop the product.

Originally named Oak, product is later renamed Java, after it is re-

purposed for Web-page programming.

December 1994: Sun Microsystems secretly invites a select group of

programmers to test Java.

January 1995: Sun Microsystems launches Java.

March 1995: Microsoft announces “Blackbird,” a new web develop-

ment package.

May 1995: Netscape (computer services company started by Marc

Andreessen in 1994, later acquired by AOL) licenses Java for the

Navigator browser.

March 1996: Sun Microsystems enters into Technology License and

Distribution Agreement (“TLDA”) with Microsoft allowing them to

use, modify and adapt Java technology in developing MS Internet

Explorer 4.0, and other software products. Microsoft agrees not to

fork the code.

1996: Sun Microsystems rolls out first Java Development Kit.

1997: Sun Microsystems approaches International Organization for

Standardization (ISO)/International Electrotechnical Commission

(IEC) to establish Java platform as a formal international standard.

Sun ultimately withdraws its application.

October 1997: Microsoft introduces a Microsoft-specific version of

Java. Sun sues Microsoft for breach of contract, trademark infringe-

ment, copyright infringement, false advertising, and unfair competi-

tion. Microsoft threat pushes Sun to pursue an open Java development

strategy which encourages widespread adoption as well as adherence

to the WORA principle.

Special Issue] API Copyright 483

1998: Sun Microsystems releases the Java 2 Standard Edition Plat-

form, and gradually expands the number of API packages, classes,

and methods over the following years.

1998: Sun Microsystems establishes Java Community Process to al-

low users to participate in development of Java.

September 1998: Google is founded.

1999: Sun Microsystems develops Java 2 Micro Edition (J2ME) for

cell phones.

2000: Dot com bubble bursts.

October 2000: Google launches its AdWords program.

2001: Sun Microsystems and Microsoft settle their litigation. Mi-

crosoft agrees to pay Sun $20 million and is permanently barred using

“Java compatible” trademarks on its products.

2001: Google names Eric Schmidt, Sun Microsystem’s former CTO,

as its CEO.

October 2003: Andy Rubin, former Apple engineer and designer of

the T-Mobile Sidekick, co-founds Android.

2004: Silicon Valley recovers from Dot Com bubble burst, but Sun

Microsystems’ hardware business continues to languish. Sun cancels

major processor projects, closes one of its two major factories, and

initiate a series of layoffs.

2004: Google goes public.

2005: Google acquires Android for $50 million and puts Rubin in

charge of mobile platform development project.

2005: Google seeks a permissive (non-GPL) open source Java 2 Plat-

form, Micro Edition JVM license with Sun Microsystems.

2006: To expand Java’s reach, Sun licenses Java, including its Stand-

ard Edition, Enterprise Edition, and Micro Edition, under the GNU

GPLv2.

2006: Jonathan Schwartz takes over Sun Microsystems CEO position

from co-founder McNealy.

484 Harvard Journal of Law & Technology [Vol. 31

2006: Google-Sun Java licensing negotiations break down and Google

decides to develop a clean room version of Java APIs.

2007: Java is used in 5.5 billion devices, and there are 6 million Java

developers. In order to reflect this growing focus on Java, Sun Mi-

crosystems changes its Nasdaq Stock Market ticker from SUNW to

JAVA.

January 2007: Steve Jobs releases Apple’s iPhone.

November 2007: Rollout of Android platform begins.

2008: Sun Microsystems’ market value falls 80% between November

2007 and November 2008.

2008–2009: Android products move onto the market, but the iPhone

remains dominant.

April 2009: Oracle successfully bids $7.4 billion to purchase Sun Mi-

crosystems.

August 2010: Oracle sues Google in Northern District of California

alleging that Android infringed seven utility patents and copyrights in

the code, documentation, specifications, libraries, and other materials

that comprise the Java platform. Oracle seeks a permanent injunction

and damages.

September 2011: Judge Alsup rejects Google’s motion for summary

judgement on copyright cause of action.

April 2012: First district court trial begins with copyright phase. Jury

deliberations end with finding that Android infringes Java copyright,

but jury hangs on fair use.

May 2012: First district court trial continues with patent phase. Jury

rules that Google did not infringe the seven asserted claims of the two

patents at issue. Judge Alsup rules on post-trial motions that Java API

declarations are uncopyrightable and dismisses case.

October 2012: Oracle and Google appeal district court decisions to

the U.S. Court of Appeals for the Federal Circuit.

May 2014: U.S. Court of Appeals for the Federal Circuit reverses

district court’s determination that the structure, sequence, and organi-

Special Issue] API Copyright 485

zation of the 37 Java APIs were not copyrightable and remands the

fair use issue for retrial with revised jury instructions.

October 2014: Google seeks to challenge the Federal Circuit’s rever-

sal by filing a petition for a writ of certiorari with the U.S. Supreme

Court.

June 2015: After consulting the Solicitor General, who recommends

against granting review on prudential grounds, and also sides with

Oracle on substantive grounds, the Supreme Court denies review.

May 2016: Judge Alsup conducts fair use re-trial. Jury rules for

Google.

October 2016: Oracle appeals second trial verdict.

486 Harvard Journal of Law & Technology [Vol. 31

APPENDIX D: THE 37 JAVA API PACKAGES IMPLEMENTED IN

ANDROID

37 Java API Packages Implemented in Android

Java API
Packages

 Description

java.awt.font Provides classes and interface relating to fonts.

java.beans
 Contains classes related to developing beans —

components based on the JavaBeans™ architec-
ture.

java.io
 Provides for system input and output through data

streams, serialization and the file system.

java.lang
 Provides classes that are fundamental to the design

of the Java programming language.

java.
lang.annotation

 Provides library support for the Java programming
language annotation facility.

java.lang.ref
 Provides reference-object classes, which support a

limited degree of interaction with the garbage col-
lector.

java.
lang.reflect

 Provides classes and interfaces for obtaining reflec-
tive information about classes and objects.

java.net
 Provides the classes for implementing networking

applications.

java.nio
 Defines buffers, which are containers for data, and

provides an overview of the other NIO (Non-
blocking I/O) packages. Non-blocking I/O is a col-
lection of Java programming language APIs that
offer features for intensive I/O operations.
https://en.wikipedia.org/wiki/
Non-blocking_I/O_(Java).

java.
nio.channels

 Defines channels, which represent connections to
entities that are capable of performing I/O opera-
tions, such as files and sockets; defines selectors,
for multiplexed, non-blocking I/O operations.

java.
nio.channels.
spi

 Service-provider classes for the java.nio.channels
package.

java.nio.charset
 Defines charsets, decoders, and encoders, for trans-

lating between bytes and Unicode characters.

java.
nio.charset.spi

 Service-provider classes for the java.nio.charset
package.

Special Issue] API Copyright 487

37 Java API Packages Implemented in Android

Java API
Packages

 Description

java.security
 Provides the classes and interfaces for the security

framework.

java.
security.acl

 The classes and interfaces in this package have
been superseded by classes in the java.security
package.

java.
security.cert

 Provides classes and interfaces for parsing and
managing certificates, certificate revocation lists
(CRLs), and certification paths.

java.
security.
interfaces

 Provides interfaces for generating RSA (Rivest,
Shamir and Adleman Asymmetric Cipher algo-
rithm) keys as defined in the RSA Laboratory
Technical Note PKCS#1, and DSA (Digital Signa-
ture Algorithm) keys as defined in NIST’s FIPS-
186.

java.
security.spec

 Provides classes and interfaces for key specifica-
tions and algorithm parameter specifications.

java.sql
 Provides the API for accessing and processing data

stored in a data source (usually a relational data-
base) using the JavaTM programming language.

java.text
 Provides classes and interfaces for handling text,

dates, numbers, and messages in a manner inde-
pendent of natural languages.

java.util
 Contains the collections framework, legacy collec-

tion classes, event model, date and time facilities,
internationalization, and miscellaneous utility clas-
ses (a string tokenizer, a random-number generator,
and a bit array).

java.util.jar
 Provides classes for reading and writing the JAR

(Java ARchive) file format, which is based on the
standard ZIP file format with an optional manifest
file.

java.
util.logging

 Provides the classes and interfaces of the JavaTM 2
platform's core logging facilities.

java.util.prefs
 This package allows applications to store and re-

trieve user and system preference and configura-
tion data.

java.util.regex
 Classes for matching character sequences against

patterns specified by regular expressions.

java.util.zip
 Provides classes for reading and writing the stand-

ard ZIP and GZIP file formats.

488 Harvard Journal of Law & Technology [Vol. 31

37 Java API Packages Implemented in Android

Java API
Packages

 Description

javax.crypto

Provides the classes and interfaces for cryptograph-
ic operations.
The javax prefix is used by the Java programming
language for a package of standard Java exten-
sions. These include extensions such as ja-
vax.servlet, which deals with running servlets, and
javax.jcr, which deals with the Java Content Li-
brary.

javax.
cryp-
to.interfaces

 Provides interfaces for Diffie-Hellman keys as de-
fined in RSA Laboratories’ PKCS #3.

javax.
crypto.spec

 Provides classes and interfaces for key specifica-
tions and algorithm parameter specifications.

javax.net Provides classes for networking applications.

javax.net.ssl Provides classes for the secure socket package.

javax.
security.auth

 This package provides a framework for authentica-
tion and authorization.

javax.
security.
auth.callback

 This package provides the classes necessary for
services to interact with applications in order to
retrieve information (authentication data including
usernames or passwords, for example) or to display
information (error and warning messages, for ex-
ample).

javax.
security.
auth.login

 This package provides a pluggable authentication
framework.

javax.
security.
auth.x500

 This package contains the classes that should be
used to store X500 Principal and X500 Private
Credentials in a Subject.

javax.
security.cert

 Provides classes for public key certificates.

javax.sql
 Provides the API for server side data source access

and processing from the Java™ programming lan-
guage.

Source: Java™ Platform, Standard Edition 7 API Specification:
https://docs.oracle.com/javase/7/docs/api/

Special Issue] API Copyright 489

APPENDIX E: 2016 FAIR USE TRIAL SUMMARY
(listed in presentation order)

May 9, 2016: Second district court trial begins under Judge Alsup.

Google’s Case

- Eric Schmidt discusses Sun’s encouragement of Java adop-

tion as well as his understanding that Google was free to

use the Java APIs without a license.

- Jonathan Schwartz explains that Java had always been free

and open. Java APIs are free for others to use and inde-

pendently implement.

- Andy Rubin explains his understanding that Android could

not use the Java trademarks without a license, but admits

that his team could independently implement the Java APIs.

- Larry Ellison (via video deposition) denies saying he found

Android’s use of Java flattering.

- Joshua Bloch, a former Sun employee who became Google’s

“Java guru,” explains that the goals of API design are to

make them concise and difficult to misuse, and that Sun de-

sired to make the Java APIs widely available.

- Donald Smith (via video deposition), a designated Oracle

representative, waffles on whether the Java language and

APIs are inseparable.

- Simon Phipps, Sun’s former Chief Open Source Officer and

former President of the Open Source Initiative, testifies that

Sun had not taken actions to stop other projects that used

Java APIs.

- Daniel Bornstein, a key member of the Android develop-

ment team, explains that Java declarations “A-OK to use.”

- Professor Owen Astrachan, Professor of the Practice of

Computer Science at Duke University, instructs the court on

API design, the distinction between declaring and imple-

menting code, and the importance of consistent functional

labels in programming.

Oracle’s Case

- Safra Catz, Oracle co-CEO, explains the importance of intel-

lectual property protection to support Oracle’s $5.5 billion

annual investment in research and development, and dis-

cusses how Android’s forking of Java code had undermined

Oracle’s licensing strategy.

490 Harvard Journal of Law & Technology [Vol. 31

- Edward Screven, Oracle’s Chief Corporate Architect, testi-

fies that Android was the only unlicensed use of Apache

Harmony.

- Mark Reinhold, Oracle’s Chief Architect for Java SE, ex-

plains that APIs for Java ME (for feature phones) contain

the same structure, sequence, and organization as those for

Java SE (for desktop computers).

- Douglas Schmidt, Professor of Computer Science at Van-

derbilt University, puts into context Google’s claim that the

Java declaratory code represented less than one-tenth of one

percent of Android’s fifteen million lines of code by illus-

trating that more than sixty percent of the Android code was

copied from third parties.

- Neil Civjan, Sun’s head of global sales, characterizes the ef-

fect of Android’s release on Sun’s licensing business as

“devastating.”

- Alan Brenner, Sun’s Senior Vice President of client systems

from 1997 until 2007, corroborates Civjan’s testimony.

- Stefano Mazzocchi, Google engineer who was one of the

original Apache Harmony developers, rebuts Google’s ar-

gument that Sun acceded to others’ use of the Java APIs.

- Professor Adam Jaffe, an economics expert, explains net-

work effects and his conclusion that Android was not trans-

formative from an economic perspective.

Google’s Rebuttal

- Larry Page, Google’s co-founder and CEO, testifies that

Google never believed that it needed a license for the Java

APIs because they were “free and open.”

- Dr. Greg Leonard, an economics expert, responds to Profes-

sor Jaffe’s testimony. Dr. Leonard concludes that Android

did not have any impact on licensing Java ME because fea-

ture phones were not substitutes for smartphones.

- Professor Owen Astrachan, is not surprised at Android’s

failure to operate with the Java declaring code removed and

summarizes Google’s approach to designing Android.

May 9, 2016: Jury finds that Google’s use of Java was fair use.

June 8, 2016: Judge Alsup denies Oracle’s two Rule 50 motions for

judgment as a matter of law.

September 20, 2016: Judge Alsup denies Oracle’s motion for a new

trial.

October 26, 2016: Oracle files appeal with U.S. Court of Appeals for

the Federal Circuit. The appeal is pending.

