
Volume 3, Spring Issue, 1990

NEC v. INTEL : B R E A K I N G N E W G R O U N D
IN T H E L A W OF C O P Y R I G H T

Jorge Contreras,* Laura Handley,* and Terrence Yang*

INTRODUCTION

The status of copyright protection for computer programs has long
been in a state of confusion. In NEC Corp. v. Intel Corp., 1 the U.S. Dis-
trict Court for the Northern District of California shed some light on
three previously unresolved issues in this murky and continually evolv-
ing area of copyright. The court ruled that: (1) microcode embedded in
certain Intel microprocessors constituted copyrightable material;
(2) reverse engineering of the microcode did not infringe the microcode
copyright; and (3)independent "clean room" development of similar
microcode was persuasive evidence of non-infringement.

The execution of a computer program within a computer involves a
number of different, operational levels. 2 An applications programmer
may write a program to'solve a problem in a high-level.problem-oriented
language containing familiar words, variables, and operators. Examples
of high-level languages include BASIC, C, FORTRAN, COBOL, and
Pascal. However, high-level languages cannot be implemented as such
by a computer, which is controlled by the operation of digital circuits.
Before instructions can be executed, a program must undergo a series of
transformations that enable it-to operate the computer 's digital circuitry.
The first step in this transformation may involve translation of the pro-
gram by a compiler into an assembly-level program. Assembly
languages generally reflect the internal organization and operation of the
computer more than higher-level languages do, but are still incapable of

directly controlling the computer.
The assembly-level program is then translated into long strings of

binary numbers known as machine language, or object code, which is in
turn manipulated by the computer's microcode. The microcode is a
body of binary instructions that breaks higher-level instructions down to

* Harvard Law School Class of 1991. The authors wish to thank Douglas Derwin of
Skjerven, Morrill, MacPherson, Franklin & Friel for providing valuable assistance.

1. No. C-84-20799, slip op. (N.D. Cal. 1989) (1989 WL 67434). An earlier decision
was vacated when the District Judge recused himself after it was shown that he held shares
of Intel stock. NEC Corp. v. Intel Corp., 645 F. Supp. 590 (N.D. Cal. 1986), vacated sub
nom. NEC Corp. v. U.S. Dist. forN. Dist. Cal., 835 F.2d 1546 (9th Cir. 1988).

2. For a discussion of contemporary multilevel machines, see A. TANNENBAUM,
STRUCTURED COMPUTER ORGANIZATION (2d ed. 1984).

210 Harvard Journal o f Law & Technology [Vol. 3

the fundamental series of signals necessary to control the computer 's cir-

cuits. Digital circuits, which are activated by high or low voltages,

respond to the ones and zeros of the microcode. These microcode

instructions move data in specific memory registers as dictated by the

object code program.

Each microprocessor has its own set of microcode instructions kept in

an area of memory called the "control store. ''3 Unlike high-level

languageinstruct ions,which are written anew for each applications pro-

gram, microcode instructions reside permanently or semi-permanently

within the microprocessor. Although each line of microcode generally

comprises nothing more than a string of thirty-two zeros and ones,

microcode designers often represent microcode functions using notation

resembling assembly language notation (and called Micro Assembly

Language or "MAL") . 4 Therefore, microcode designers, cla!ming an

analogy to higher-level programs, have registered their microprograms

as "computer programs" with the Copyright Office.

I. N E C v. I N T E L

A. Facts

The dispute in NEC v. Intel concerned NEC's alleged infringement of

Intel 's 8086 and 8088 microprocessor copyrights. On April 28, 1976,

NEC entered into a patent cross-license agreement with Intel. 5 The

license entitled either company to ' ,make, use or sell" products based on

the other 's semiconductor patents. In 1979, NEC began to produce and

sell Intel ' s 8086/88 series microprocessors. 6 While it manufactured the

Intel chips, NEC used the 8086/88 designs to create a set of its own

Intel-compatible microprocessors, the NEC V20 and V30 microproces-

sors. Such "hardware copying" was implicitly allowed under the license.

However, a software engineer at NEC (Hiroaki Kaneko) involved in

developing the V20 and V30 microprograms studied not only the

3. Id. at 126--34. The Intel microcode was stored in Read-Only Memory ("ROM") on
the 8086 and 8088 microprocessors. NEC's Supplemented and Annotated Findings of Fact
and Conclusions of Law (Copyrightability, Infringement, License, and Misuse) at 11, NEC
v. Intel (No. C-84-20799) [hereinafter NEC Findings of Fact].

4. For example, the microcode instruction needed to add a number stored in register A to
a number stored in the accumulator register ("AC") and to store the result in AC might be
1000 0000 0001 0001 0001 0010 0000 0000 or, in MAL, AC = A + AC. See
A. TANNENBAUM, supra note 2, at 142-43.

5. See NEC Findings of Fact, supra note 3, at 3.
6. Id. at 4.

Spring, 1990] N E C v. In te l 211

licensed hardware designs, but also the disassembled and listed 7 Intel

8086/88 microcode, s

The resulting V20/30 microcode bore a number of similarities to the

Intel code. Both sets of microcode used the same "patch" to overcome a

hardware "bug, ''9 both used the same memory registers in the same order

in their RESET sequences, t° and both handled internal errors in the same

idiosyncratic way. H The presence of these and other similarities in the

two microcodes prompted Intel to charge NEC with violation of its

8086/88 microcode copyrights. NEC brought suit seeking a declaratory

judgment that the Intel microcode was either invalid or not infringed by

NEC. Intel counterclaimed, alleging copyright infringement.

B. Copyr igh tab i l i t y , No t i ce , a n d F o r f e i t u r e

In an opinion delivered by Senior District Judge Gray, the court first

found that Intel 's microcode was proper subject matter for copyright

protection. The court interpreted the microcode as "a series of instruc-

tions," bringing it under the definition of "computer program" estab-

lished, by the Copyright Act Revision of 1980.12 Thus, the microcode

could merit copyright protection as a literary work. The court then

found that the Intel microcode satisfied the two requirements for copy-

rightability of a literary work: that the micrecode be fixed in a tangible

medium of expression and that it contain at least a modicum of

creativity, t3

In the next section of the opinion, however, the court found that Intel

had forfeited its initially valid copyrights by failing to place copyright

notification on the distributed chips, t4 Collectively, NEC and other

7. Disassembly is the process of translating low-level machine language code into a
higher-level form. Listing is the process of displaying such code in a medium readable by a
human, such as a paper printout or computer display.

8. NEC v. lntel, slip op. at 24. This method of product development, whereby employ-
ees of one company determine how another company's product works in order to develop a
compatible product of their own, is called "reverse engineering." See C. SHERMAN,
H. SANDISON, M. GUREN. COMPUTER SOFTWARE PROTECTION LAW, 206-14 (1989)
[hereinafter C. SHERMAN].

9. NEC v. lntel, slip op. at 25.
10. /d. at 28.
11. ld. at 33.
12. See 17 U.S.C. § 101 (1988).
13. NEC v. lntel, slip op. at 3. See 17 U.S.C. § 102 (a) (1988).
14. The relevant portion of 17 U.S.C. § 401(a) was amended by the Berne Convention

Implementation Act of 1988 to read: "a notice of copyright . . . may be placed on publicly
distributed copies." Berne Convention Implementation Act of 1988, Pub. L. No. 100-568,
§ 7(a), 102 Stat. 2853, 2857 (1988) (emphasis added). The Berne convention, ratified in the
United states on March 19, 1989, eliminated notice requirements for copyrighted material.

Judge Gray, writing in 1989, did not mention the pending Berne Amendments to the

212 Harvard Journal of Law & Technology [Vol. 3

manufacturers of the 8086 and 8088 neglected to mark nearly three mil-

lion of the twenty eight million distributed microprocessors (representing

10.6% of the total chips produced). Although Intel marked all of the

chips it manufactured, the court determined that its failure to add notice

to the chips made by NEC and others demonstrated a lack of concern for

the copyrights. Thus, the court found that Intel had forfeited its once-
valid copyrights.15

C. Infringement

The court went on to find that NEC's actions did not constitute

infr ingement of the Intel microcode copyrights, independent of their

validity or forfeiture. The court divided its infringement analysis into

four parts: substantial similarity, copying, constraints, and idea versus

expression. First, emphasizing the importance of " n o t . . . los[ing] sight

of the forest for the trees, ''L6 the court determined that the V20/30 micro-

code "as a whole" was not substantially similar to the Intel 8086/88

microcode. 17 Although some of the shorter NEC microroutines (seg-

ments of microcode) were quite similar to their Intel counterparts, those

microroutines involved "simple, straightforward operations in which

close similarity in approach [was] not surprising. ''18 Further, none of the

ninety microroutines were identical to the Intel version, and many were

substantially different. Thus, the V20/30 microcode would not be recog-

nized by an "ordinary observer" as having been taken from the 8086/88

microcode. Judge Gray found this conclusion nearly dispositive of the
infringement issue.19

Second, the court determined that none of the NEC microroutines had

been directly copied from Intel 's microcode. Intel identified several

compelling similarities between its microcode and the V20/30 micro-

code, and argued that these similarities constituted evidence of "slavish

copying." The court, however, proposed two rationales for not viewing

copyright act. His strict adherence to the language of the pre-Berne § 401 seems harsh in
light of Congressional intent to repeal this provision. However, it is possible that Judge
Gray chose to rely strictly on the language of the 1976 Copyright Act, in order to avoid the
possibility of reversal on this ground and to ensure the permanence of his other holdings.
Although Judge Gray's holdings on reverse engineering, infringement, and clean rooms
may be widely debated, the alternative finding of forfeiture made the prospect of ruling for
Intel on appeal unlikely. Ultimately no appeal was filed.

15. NEC v. Intel, slip op. at 18.
16. ld. at 20.
17. Id. at 21.
18. ld.
19. Id. at 22.

Spring, 1990] NEC v. lntel 213

these similarities as evidence of copying: (1) even if the first version of
the V20/30 microcode ("Rev. 0") resembled Intel's microcode very
closely, the only version of NEC's code which should have been com-
pared to Intel's was the final "Rev. 2" version; and (2) reverse engineer-
ing of the 8086/88 microcode was permissible so long as the final
V20/30 microcode was not otherwise copied from, or substantially simi-
lar to, the 8086/88 code. NEC's reverse engineering included conver-
sion of Intel's microcode on the chip into a form easily read by humans.
In contrast to prior decisions, 2° the court ruled that such unauthorized
use of copyrighted material does not constitute infringement. 21

The court approached the infringement issue in a third way through
an analysis of the constraints placed on the NEC microcode by its
hardware, the chip architecture, and the need for compatibility. 22 In
order for NEC's hardware license from Intel to be of value, NEC had to
develop microcode specifically tailored to the Intel 8086/88 hardware.
The court relied heavily on evidence NEC presented that compared a
"clean room ''23 program with both the V20/30 and Intel 8086/88 micro-
code. NEC hired an independent engineer (Gary Davidian) to develop a
set of microcode for the V20/30 without access to any other microcode.
Because Davidian's version of the microcode was similar in many
regards to both the Intel and NEC microcodes, the court found it likely
that those similarities were dictated not by copying of Intel's microcode,
but rather by functional constraints of the hardware, the architecture, and
the need for 8086/88 compatibility. 24

Fourth, the court classified a number of Intel's shorter, simpler micro-
routines as unprotectable "ideas" rather than protectable "expressions"
because of the limited number of ways those microroutines could be

20. See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir.
1983) (holding that defendant Franklin's desire to achieve total compatibility, i.e. func-
tionality, is irrelevant in determining whether the copyright on plaintiff's operating system
has been infringed).

21. The court's permissive approach to reverse engineering may, in fact, be an unspoken
or indirect admission that reverse engineering constitutes a "fair" and thus permissible
"use" of copyrighted material.

22. Aspects of the V20/30 microprocessor dictated certain requirements for any micro-
code implemented thereon. For example, any microcode for the V20/30 required a "patch"
to overcome the hardware bug the V20/30 inherited from the 8086/88. N E C v. lntel, slip
op. at 25.

23. A "clean room" program is software developed by programmers who do not have
access to the software they are trying to imitate. If programmers have no access to a copy-
righted work, they cannot copy it.

24. N E C v. lntel, slip op. at 36.

214 Harvard Journal of Law & Technology [Vol. 3

expressed. 25 However, Judge Gray never stated precisely which aspects
of the microcode were idea and which were expression. Thus, he failed
to define the critical distinction between idea and expression which
determines infringement.

II . A N A L Y S I S O F T H E C O U R T ' S D E C I S I O N

Copyright law is designed to protect only expression and not the
underlying idea of a program. 26 Indeed, the Constitution mandates that
the author's or inventor's proprietary interests are secondary to the
benefit which society derives from "progress of science and the useful
arts. ''27 Therefore, Congress allows authors limited monopolies through
copyright in order to make their ideas free to the public.

Since an idea embedded in microcode is inaccessible, Judge Gray
correctly concluded that re~;erse,engineering must be permitted in order
to fulfill the Congressional and Constitutional mandates. Yet, the per-
missibility of reverse engineering creates a need for clean room evi-
dence, which Judge Gray admitted. However, clean rooms are generally
inefficient and burdensome to the industry: they are expensive, require
extensive documentation, and cause unnecessary creative redundancy.
Therefore, one must re-examine the propriety of the initial premise that
microcode should receive copyright protection in order to guarantee the
Constitutionally mandated societal benefit. 28

A. Breakdown of ldea and Expression

NEC attempted to direct the court's attention to fundamental func-
tional differences between microcode and higher-level computer pro-
grams. The court dismissed these considerations as "semi-semantical. ''29

As set forth in section 102(a) of Title 17 of the U.S. Code, copyright
protects "original works of authorship. ''3° The scope of protection incor-
porates both a functional element (in "authorship") and a creative

25. ld. at 37.
26. 17 U.S.C. § 102(b) (1988).
27. U.S. CONST. art. I, § 8.
28. The protection of object code may present similar difficulties. Although this discus-

sion focuses on microcode, the debate over copyrightability of computer technology has a
broader context.

29. NEC v. lntel, slip op. at 5. Judge Gray dismissed NEC's argument that the micro-
code comprised "part of the computer" and was therefore not a program and not copyright-
able. He reasoned somewhat circularly that because the mierocode fell within the statutory
definition of a computer program, it should not be considered part of the computer.

30. 17 U.S.C. § 102(a) (1988).

Spring, 1990] N E C v. Inte l 215

e lement (in "or iginal works"), Thus, copyright protect ion may be dis-

cussed using ei ther "crea t iv i ty" or " funct ional i ty" language. 31 The "func-

t ional i ty" perspect ive seems to be the more desirable one.

Focus on the creat ivi ty o f computer "wri t ings ," whether sof tware or

microcode , is consistent with copyr ight t reatment o f traditional copyr ight

subject mat ter such as books. Compute r " languages ," whether readable

by humans or only by machines , involve just as much creat ivi ty as tradi-

tional copyright subject matter. 32 However , sof tware may be both sym-

bolic and mechanical . 33 Software is created through the "engineer ing

process o f problem or project definition, fo l lowed by designing the pro-

duct (the program), creat ing a prototype (writ ing the source code), test-

ing the prototype (debugging), and ul t imately real iz ing the marketable
product. ''34

The "crea t iv i ty" analysis of sof tware is consistent with the principle

that copyr ight does not extend to expressions solely dictated by external

constraints. I f a g iven technology imposes such str ingent l imitat ions as

to a l low only one means o f expression, there is no creat ivi ty invo lved in

the use o f that expression. Several commenta tors assert that the range o f

31 Lack of clarity on this point has led to sharp disagreement amonst commentators.
For example, Samuelson, CONTU Revisited: The Case against Copyright Protection for
Computer Programs in Machine-Readable Form, 1984 DUKE L. J. 663, emphasizes the
functional aspects of machine-readable programs and is critical of the method of copyright
protection suggested by the Commission on New Technological Uses of Copyrighted
Works ("CONTU"), which discourages disclosure of underlying ideas. See also OFFICE
OF TECHNOLOGY ASSESSMENT, INTELLECTUAL PROPERTY PROTECTION IN AN AGE
OF ELECTRONICS AND INFORMATION 78-85 (1986) [hereinafter OTA STUDY].

The functional approach, which emphasizes the importance of "idea" and acknowledges
the applicability of patent protection for software, is explicitly condemned by Clapes,
Lynch & Steinberg, Silicon Epics and Binary Bards, 34 UCLA L. REV. 1493, 1541--43
(1985) [hereinafter Clapes]. They find the views of the OTA STUDY, supra, and Samuel-
son, supra, to be out of step with the perceptiol~ of both computer experts and the courts.
Clapes, supra, at 1536--41. Their lyric, celebratory view of computer creativity and expres-
sion is cited by Judge Gray in NEC v. Intel, slip op. at 20.

32. See, e.g., Clapes, supra note 31, at 1536-38. Another commentator states: "IT]he
software writer, like any writer, could intellectually move in a fantasy world of his own
creating; one that operated according to a metaphysic known (possibly) only to him and
limited only by the constraints of the language he worked in." J. LAUTSCH, STANDARD
HANDBOOK OF SOFTWARE LAW 45 (1985). Lautsch argues that an inability to under-
stand the software writer's symbolic virtuosity is characteristic of the "typographical
mind." However, in emphasizing creativity, he ignores the "functionality" quest/on; many
things which involve creativity, such as mechanical inventions, are not proper subjects of
copyright.

33. Davidson, Protecting Computer Software: A Comprehensive Analysis, 23
JURIMETRICS J. 337, 339 (1983).

34. /d. at 340. Davidson ultimately supports the copyrightability of computer programs,
based on their symbolic content. The symbolic content makes such programs similar to
works written in a spoken language.

216 H a r v a r d J o u r n a l o f L a w & T e c h n o l o g y [Vol. 3

sof tware expression is so broad that it will never be so constrained. 35

However , mic rocode is much more dependent on external constraints

than higher- level languages. The expression o f mic rocode may fre-

quent ly be dictated by chip microarchi tecture 36 and necessary design

requirements , as noted by Judge Gray in N E C v. In te l . 37

The a l temat ive and more desirable analytical perspect ive focuses on

functionali ty in determining whether a work should be copyrightable.

Compute r technology is best v iewed not as distinct hardware, f irmware,

and software, but as a functional cont inuum. 38 All compute r technology

reduces to the implementa t ion o f sequential logic funct ions and derives

f rom similar creat ive thought processes. As descr ibed by Davidson, all

compute r technology is a blend of: (1) engineer ing and prob lem solving;

and (2) symbol ic representation. 39 Since compute r programs, especial ly

microcode , are funct ional ly equivalent to hardware devices , it initially

seems unreasonable to g ive copyr ight protect ion to such programs.

However , computer programs are undeniably associated with written

expression. 4°

Unl ike traditional literary works, a compute r program gains its value

35. See, e.g., Clapes, supra note 31, at 153; J. LAUTSCH, supra note 32, at 33; but see
NEC v. lntel, slip op. at 36.

36. Steinberg, NEC v. lntel: The Battle over Copyright Protection for Microcode, 27
JURIMETR/CS J. 173, 182-83 (1987). ("The bulk of micro programs represent groups of
microinstructions whose number and order of sequence is dictated solely by the micropro-
cessor hardware. The programmer designing such a program can exercise no discretion in
choosing the particular sequence of instructions to be performed by the desired task.")

37. NEC v. lntel, slip op. at 37. The issue turns in part on the recurrent problem of
determining what exactly the distinction is between an idea and a copyrightable expression.
Steinberg demonstrates how difficult this determination is by emphasizing that a microcode
is functionally continuous with the chip microarchitecture, and that microcode "expression"
can be shifted into the hardware, yet still comprise substantial nonliteral similarity. Stein-
berg, supra note 36, at 191.

38. See generally J. LAUTSCH, supra note 32, at 27-56 for a coherent and informative
overview of computer technology. The continuity of hardware and microcode is dramati-
cally demonstrated by the conclusion of Steinberg, supra note 36, at 193-94, that micro-
code is best protected by shifting its functions back into the chip circuitry and gaining pro-
tection under" the Semiconductor Chip Protection Act of 1984, 17 U.S.C. §§ 901-14 (1988)
[hereinafter Chip Act].

39. See Davidson, supra note 33, at 342. See also supra notes 3-5 and accompanying
text. . '

40. Steinberg, supra note 36, at 191, predicted that if the court in NEC v. lntel did not
fully appreciate the software continuum, it would overemphasize written similarities and
fail to see substantial nonliteral similarities which could result from shiftiug minor code
expressions back into the circuitry. The court might also fail to appreciate that the circuitry
in effect can perform steps simultaneously. Steinberg suggested that copyright protection
should be determined by looking to similarity of the programs when they are being pro-
cessed, rather than to similarities in fixed form.

Spring, 1990] N E C v. lntel 217

from its underlying "ideas," not the style or "expression" of its author. 41

Its "expression" in line-by-line code is often secondary. 42 The truly

"creative" aspect of computer programs occurs at a level of expression

that is beyond the traditional "literary" scope of the Copyright Act. Con-

sequently, overemphasis of the "creative," which is to say, literary,

aspects of software authorship permits inequitable results. An unscrupu-

lous programmer can make merely minor changes in the "expression,"

thereby overcoming the creator's copyright protection while still

appropriating everything of value in a program.

B. Reverse Engineering

Because the underlying idea of machine readable computer code is

inaccessible when embodied in a microchip, copyright protection of the

code contradicts one of its own central precepts, namely, that protection

of expression is for the purpose of encouraging ideas to enter the public

domain. A computer programmer wishing to access the unprotected idea

of a microprogram can only do so by making a copy: that is, by decom-

piling the encoded instructions and reproducing the work. Such a repro-

duction generally constitutes an infringement of the copyright under sec-

tion 106 of Title 17 of the U.S. Code. 43 Section 106(1) prohibits all

unauthorized "copies" of a copyrighted work. Thus, a genuine issue

exists as to whether NEC's initial reverse engineering product, Rev. 0, is

a prohibited copy. Yet Judge Gray did not address the issue of whether

41. J. LAUTSCH, supra note 32, at 32-33. Of course; value is also derived from a par-
titular programmer's "tricks" which may serve to make a program faster and more efficient.
However, this observation emphasizes the ambiguity which results from the difficulty in
defining idea versus expression. Structure, sequence, and organization may be considered
to be either idea or expression, depending on the level of abstraction. Compare Whelan
Assoc. v. Jaslow Dental Laboratories, Inc., 797 F.2d 1222 (3d Cir. 1986), cert. denied, 479
U.S. 1031 (1987) (structure, sequence, and organization are copyrightable expression) with
Plains Cotton Coop. v. Goodpasture Co. Serv., 807 F.2d 1256 (5th Cir. 1987) (structure,
sequence, and organization are not copyrightable).

42. The final coding "can often be routinely entrusted to a beginning programmer."
Clapes, supra note 31, at 1544. Thus, the most visible "literary" aspect, when viewed from
Lautsch's "typographic mindset," see supra note 32, may be contributed by an anonymous
programmer.

43. 17 U.S.C. § 106 (1988). See Hubco Data Products Corp. v. Management Assistance,
Inc., 219 U.S.P.Q. 450 (D. Idaho 1983) (Defendant's production of a written printout of the
unscrambled object code met the statutory definition of "copy," and was infringing to the
extent that it was an unauthorized reproduction). The relief provided to computer users by
the CONTU amendments does not create an exception for disassembly. See 17 U.S.C.
§ 117 (1988).

218 Harvard Journal o f L a w & Technology [Vol. 3

N E C ' s Rev. 0 in f r inged the Intel mic rocode . 44 Ins tead, he focused solely

on N E C ' s final product , Rev. 2. As a result , Judge G r a y ' s expl ic i t

approva l o f reverse eng i nee r i ng t echn iques m a y i tsel f to lerate in f r inge-

m e n t by the ini t ial d e c o m p i l e d p r o g r a m (in this case , Rev . 0).

M o r e o v e r , un res t r a ined reverse eng inee r ing is ha rmfu l to the com-

pu te r so f tware indust ry . 45 Innova to r s require re turns on the i r r e sea rch

a n d d e v e l o p m e n t costs. However , i f p rog rams m a y be reverse

e n g i n e e r e d too rapidly , i nnova to r s m a y not h a v e t ime to r ecove r the i r

costs , let a lone earn m i n i m a l profits. 46

C. The Costs o f Clean R o o m s

A n o t h e r p r o b l e m inhe ren t in Judge G r a y ' s app roach is h i s unques -

t ion ing a c c e p t a n c e o f N E C ' s c lean r o o m evidence . N E C v. Intel

represen t s the first success fu l de f ens ive use o f c lean r o o m p rocedure s to

refute an a l l ega t ion o f copying . 47 T h e ho l d i ng m a y crea te a wi l l ingness

44. The court did not explicitly address the issue; it appears that the issue was not
pleaded by Intel's attorneys. To authorize the copy implicit in Rev. 0, Judge Gray may
have considered Rev. 0 to constitute a "fair use" of the copyrighted material. If so, his
holding would be a considerable expansion of the fair use doctrine, which generally permits
copies of protected works to be made for non-commercial or academic purposes. See
C. SHERMAN, supra note 8, § 210.5.

45. The Chip Act, supra note 38, tries to differentiate between "legitimate" reverse
engineering and outright piracy by imposing an originality requirement. The precise scope
of originality in this context has not yet been defined. See C. SHERMAN, supra note 8,
§ 509.4(C)(2).

46. See Mennell, Computer Software Protection, 39 STAN. L. REV. 1329 passim
(1987). Mennell provides an in-depth economic analysis of the computer technology
market, and is critical of the approaches taken to date by Congress and the courts. See also
Spivock, Does Form Follow Function? The Idea/Expression Dichotomy in Copyright Pro-
tection of Computer Software, 35 UCLA L. REV. 723 (1986). A full discussion of the
economic ramifications of microcode copyright are beyond the scope of this Recent
Development; however, one brief criticism of Mennell's analysis is in order. It is not clear
whether the social costs associated with foreign technology piracy are fully accounted for
(NEC is the largest computer manufacturer in Japan). Factors to reconsider would include
the reduced ability of U.S. companies to compete, stagnation of their research and develop-
ment efforts, and the social costs resulting from loss of American jobs. These factors were
a motivating force behind the Chip Act, which makes extension of protection to foreign
works discretionary. See C. SHERMAN, supra note 8, § 501.3(b). See also Steinberg,
supra note 36, at 175 (predicting that resolution of the NEC v. Intel case wil affect the
national economy, and will govern the long-term availability, price, quality, and form of
computer technology).

47. Prior to NEC v. Intel, two cases addressed the persuasiveness of clean room evi-
dence. In Pearl Sys. v. Competition Electronics, 8 U.S.P.Q.2d 1520 (S.D. Fla. 1988), clean
room evidence was used to show that similarities between plaintiffs and defendant's pro-
grams were not dictated by functional constraints, but were due to copying. In SAS Inst. v.
S & H Computer Sys., 605 F. Supp. 816 (M.D. Tenn. 1985), the court found defendant's
clean room to be inadequately insulated from access to plaintiffs program.

Spring, 1990] N E C v. In te l 219

on the part of courts to accept clean room evidence of noninfringement.

Until now, clean room development efforts have not typically been ini-

tiated until after the inception of copyright infringement litigation, as in

N E C v. Intel . 48 Such "made for litigation" clean rooms are primarily evi-

dentiary tools. The second type of clean room is a standard operating

procedure ("SOP") clean room. Companies may try to avert litigation

entirely by routinely developing compatible software in clean rooms. 49

Companies in the business of producing compatible software run a

high risk of litigation if they develop their software without clean rooms.

If litigation ensues, they may be forced to incur the expense of a made-

for-litigation clean room. As a result, it is cheaper to install clean room

techniques prior to development, both in order to forestall litigation and

to avoid the duplication of effort involved in developing a program and

then developing it again in a clean room. Therefore, a trend toward

greater use of clean rooms in the software industry should be expected as

a result of decisions like N E C v. Intel .

Yet, SOP clean rooms would be a major burden on the software

industry. Most hard-felt will be the record-keeping burden: In N E C v.

Intel , the clean room documentation was "many thousand[s] of pages"

long. 5° It included "every single piece of paper which Mr. Davidian

saw," plus records of all his written and electronic communications. 51

Such completeness demands a large investment of t ime and resources.

The manpower burden is also quite large. Clean rooms require at

least three groups of people: a specification team, a design team, and a
coordination team. s2 These groups must all work together to develop the

same program that o n e d e s i g n team could have developed absent clean

room requirements. Moreover, companies developing more than one

program at a time will be required to maintain numerous clean rooms

simultaneously. Elaborate precautions may have to be created to prevent

developers from talking to one another about sensitive programs.

It may become increasingly difficult to find programmers with the

48. See also Pearl Sys., 8 U.S.P.Q.2d at 1520 (where plaintiff used clean room evidence
to demonstrate a different way to design a program).

49. A number of IBM PC clone manufacturers have begun to use clean room procedures
in developing Basic Input/Output Software for their computers. So far, IBM has brought
no cases against these manufacturers to litigation. See Davidson, Reverse Engineering
Computer Software Under Copyright Law: The IBM PC BIOS, in OWNING SCIENTIFIC
AND TECHNICAL INFORMATION 148 (V. Weil and J. Snapper eds. 1989).

50. NEC's Post-Trial Brief at 36, NEC v. Intel (No. C-84-20799) [hereinafter NEC
Post-Trial Brief].

51. ld. at 33.
52. Derwin, Licensing Software Created Under Clean Room Conditions, in COMPUTER

SOFTWARE 1989: PROTECTION AND MARKETING 439, 447 (M. Goldberg ed. 1989).

220 H a r v a r d J o u r n a l o f L a w & T e c h n o l o g y [Vol, 3

requisite programming skills who have never been exposed to subject
programs. 53 There may ultimately be a shortage of qualified "neutral"
clean room programmers. The alternative is an industry of enforced
ignorance and tunnel vision. Programmers may intentionally avoid
learning about competitors' products so that they will remain qualified to
work in clean rooms developing clones of those products. Such a
development could also stigmatize and render unemployable qualified
programmers with wide-ranging experience.

The burden of maintaining clean rooms extends to every sector of the
software industry. Purchasers and licensees of clean room software will
eventually require warranties of clean room procedures in order to avoid
their own liability for infringement. Auditing clean room documentation
to ensure that proper procedures were observed could likewise become a
massive financial and human drain on prospective buyers and sellers of
software. 54

The most obvious bearers of clean room costs are companies in the
business of producing compatible software ("copiers"). The economic
rationale for burdening copiers with the clean room cost is as follows: In
order to duplicate the function of a copyrighted program without liabil-
ity, a copier will have to install elaborate and expensive clean room pro-
cedures. This requirement forces copiers to pay development costs
closer to those expended by "innovators." Such a disparity seemingly
rewards innovators and forces copiers to pay a premium to benefit from
that innovation. If copiers cease to find the duplication of programs
profitable, they may decide to stop copying and perhaps they will re-
channel their resources into more innovative efforts.

However, this rationale ignores the copyright protection already
afforded innovative programs. If copiers duplicate only unprotected
ideas (functionality) and not protected expression (implementation), then
they infringe no copyright and their "copying" is permissible.55 Imposing
a clean room cost on the copiers of ideas expands the power of the copy-
right holder beyond the intent of Congress. A software designer forced
to incur SOP clean room costs is actually penalized to the benefit of the
copyright holder and to the detriment of consumers who might otherwise
have profited from the competitive exploitation of an unprotected idea.

Moreover, innovators, too, suffer from SOP clean rooms. It is gen-
erally impossible to categorize real software developers as either

53. In NEC v. lntel, Davidian never had access to any microcodes created by either Intel
or NEC, nor did he have access to any microcode implementing the 8086 instruction set.
NEC Post-Trial Brief, supra note 50, at 33.

54. See Derwin. supra note 52, at 439.
55. NEC v. lntel, slip op. at 38.

Spring, 1990] N E C v. l n t e l 221

innovators or copiers. In N E C v. In te l , NEC was not a mere "slavish"

copyist. 56 NEC's V20/30 microcode improved on Intel 's microcode in

many ways. For example, the NEC clean room microcode made

twenty-nine uses of the dual bus in the V-series hardware. The Intel

8086/88 had only a single bus, so its microcode made no such uses. 57 If

clean rooms were standard practice, Intel would have to resort to a clean

room to implement dual bus capabilities in its next generation of micro-

code. Then NEC might again have to resort to a clean room to avoid

incorporating information from Intel 's further improvement.

The clean room benefit to Intel, the so-called innovator, therefore

expires after the first round of development. Then Intel, too, becomes

subject to the high costs of the clean room procedure. And since nothing

is completely new, all innovators will be driven almost immediately to

the use of clean rooms if future courts make clean room evidence neces-

sary by following the lead o f N E C v. l n t e l .

A regime of SOP clean rooms hurts society as a whole. The clean

room cost places a burden on all software producers. As a result, less

money will be available for the development of programs. The software

market in general will become less efficient and less productive. A

regime of SOP clean rooms will also lower the quality of programs.

Clean rooms limit the information with which programmers can work,

resulting in an overall loss of programming effectiveness. 5s Program-

mers will be unable to learn from the mistakes of their predecessors. 59

In addition, the clean room process creates a general duplication of

effort. Not only does the innovator have to develop its microcode from

scratch, but every other company wishing to avoid infringement must,

likewise, start from scratch. Such a system wastes programmers' time

that could be used to create new products.

56. Id. at 25.
57. /d. at 32.
58. The text of any copyrighted work is of public record. The court in NEC v. Intel

ruled that even the inspection of a copyrighted work to get ideas for a new work is permis-
sible, thereby permitting widespread use of programming information. However, the
court's clean room holding inadvertently created a precedent which may severely limit the
information programmers can access.

59. This result should be expected in an SOP clean room regime despite the affirmation
of reverse engineering in NEC v. Intel. Clean room programmers by definition do not
engage in reverse engineering.

222 Harvard Journal of Law & Technology [Vol. 3

CONCLUSION

The current status of copyright protection for computer microcode

and software in general is inappropriate at worst and improvident at best.

A sui generis method of protection for computer technology may be a

desirable alternative. Such sui generis protection currently exists, but is

limited to the designs of photographic "mask works" necessary for the

production of semiconductor chips. 6° Since the microcode is so closely

tied to chip architecture, 61 it seems rational to make their protection co-

extensive under the Chip Act. 62 Similar treatment of operating systems

and even applications software is also conceivable.

The Constitution requires Congress to maximize technological pro-

gress through its protection of intellectual property. However, the

current regime of computer software protection may actually inhibit pro-

gress and harm society. The copyright protection of microcode may pro-

mote either excessive reverse engineering or widespread use of costly

clean rooms. These possible consequences of NEC v. Intel strongly sug-

gest that a new system of computer technology protection may be in

order.

60. Chip Act, supra note 38. As in the Copyright Act, 17 U.S.C. § 102 (1988), the work _..
must be "fixed" in the chip and must be "original." However, the degree of originality that - '
the Chip Act requires is significantly greater than the de minimis requirement in the Copy-
fight Act.

61. See supra notes 37--40 and accompanying text.
62. The Chip Act provides protection for only ten years. "Given the fact that the effect

of any chip can be implemented through the software and that any software can be embo-
died in a chip, the different terms of protection [for software and microchips] poses an
interesting legal problem." M. GEMIGNANI, COMPUTER LAW §40:35, at supp. 311
(1985 & Supp. 1989).

