
Harvard Journal of Law & Technology

Volume 30, Special Symposium

OPPORTUNISTIC FREE AND OPEN SOURCE SOFTWARE

DEVELOPMENT PATHWAYS

Greg R. Vetter *

TABLE OF CONTENTS

I. INTRODUCTION .. 167

II. FREE AND OPEN SOURCE SOFTWARE (“FOSS”) LICENSING

APPROACHES ... 172
A. The Permissive License Approach ... 173
B. The Copyleft Approach ... 173
C. Forking a Software Development Pathway 175

III. FOSS LICENSES AND THE MODULARITY FRAMEWORK

FOR INTELLECTUAL PROPERTY ... 176
A. License Interaction, Opportunism, and the Modularity

Framework ... 176
B. Pathways of Approach and Impeding Opportunism 179

IV. FLEXIBLE SOFTWARE PATHWAYS .. 182
A. Fiscal Benefit Potential Under the Permissive License

Approach .. 183
B. Contributor Recruitment Under the GPL Approach 183

V. AGGREGATION SOFTWARE PATHWAYS 185
A. Software Aggregations and Hybrid Approaches 185
B. FOSS and Source Code in the Cloud 186

VI. CONCLUSION .. 187

I. INTRODUCTION

Every software license limits opportunism in some sense. This

holds for proprietary licenses as well as for licenses this Article will

call “free and open source software” (“FOSS”) licenses. The license

terms reflect the opportunism to be prevented. Sometimes the terms

amplify the rights the license deploys. Thus, a proprietary software

* HIPLA Professor of Law, University of Houston Law Center (UHLC); Co-Director,

Institute for Intellectual Property and Information Law (IPIL). For helpful comments and

discussion, I thank: Participants at the Private Law and Intellectual Property Symposium,

held in March 2016, by the Project on the Foundations of Private Law at Harvard Law
School; Jorge Contreras; Christina Mulligan; Dave Fagundes; and Sapna Kumar.

168 HARV. J.L. & TECH. [Symposium

license prohibits copying even though the software is covered by

copyright’s reproduction right.1

Sometimes the terms of a software license invert its rights-base.

For example, a FOSS license allows copying and distribution for any

type of use, but requires attribution to the originator. The opportunism

impeded is taking credit for the work of another.2 Copyright’s

orientation is prohibiting unauthorized reproductions, but the FOSS

license allows copying in furtherance of a goal: impeding some

variety of opportunism in software development and information

technology. FOSS licenses reflect the dissatisfaction some

communities express with intellectual property protection in software.

To these communities, a better alternative is no property rights in

software, but failing that, software under FOSS licenses is preferable

to software under proprietary licenses.

Given that some licenses work against intellectual property in

software, conflicting opportunism-impedance strategies among

different licenses3 reflect tension about property rights in software.

This Article’s claim is that Henry Smith’s modularity framework for

intellectual property rights4 gives greater insight into this tension.

Inhibiting opportunism with use of a resource is part of modularity, so

this Article uses a definition of opportunism inspired from Smith’s

work with platforms and equity: opportunism is undesirable behavior,

in part because the actions are contrary to the purpose of the property

1. DOUGLAS E. PHILLIPS, THE SOFTWARE LICENSE UNVEILED 10 (2009). Of course,

under the Copyright Act’s preemption clause, 17 U.S.C. § 301, the contractual prohibition
might not be effective. See MICHAEL RUSTAD, SOFTWARE LICENSING § 5.12[5], at 489–91

(2015) (discussing the copyright preemption test for license terms).

2. Greg R. Vetter, The Collaborative Integrity of Open-Source Software, 2004 UTAH L.
REV. 563, 611 (2004) [hereinafter Vetter, Collaborative Integrity].

3. The opportunism strategies relate to differing conceptions about software modes of

production, competition within the information technology ecology, and how to monetize
software technology. Greg R. Vetter, Commercial Free and Open Source Software —

Knowledge Production, Hybrid Appropriability & Patents, 77 FORDHAM L. REV 2087,

2096–100, 2109–14 (2009) [hereinafter Vetter, Commercial FOSS]. This Article is steeped
in discussion of software development, information technology markets, and FOSS

licensing. Relying on my background expertise in these areas and my prior scholarship, I

will cite minimally for these topics. See, e.g., Greg R. Vetter, Slouching Toward Open
Innovation: Free and Open Source Software (FOSS) for Electronic Health Information, 30

WASH. U. J.L. & POL’Y 179 (2009) (discussing FOSS in the enterprise software market).

For a practical overview of FOSS licensing, see HEATHER J. MEEKER, THE OPEN SOURCE

ALTERNATIVE: UNDERSTANDING RISKS AND LEVERAGING OPPORTUNITIES (2008). For an

anthropological treatment, see CHRISTOPHER M. KELTY, TWOBITS: THE CULTURAL

SIGNIFICANCE OF FREE SOFTWARE (2008), http://twobits.net [https://perma.cc/C9KK-
RGDQ].

4. Henry E. Smith, Intellectual Property as Property: Delineating Entitlements in

Information, 117 YALE L.J. 1742, 1779–82 (2007) [hereinafter Smith, IP as Property]. See
also Henry E. Smith, Property and Property Rules, 79 N.Y.U. L. REV. 1719, 1774–85

(2004) [hereinafter Smith, Property Rules] (discussing how an exclusion strategy for

property rights has advantages for avoiding opportunism, particularly as opportunism arises
from asymmetric information).

2017] FOSS Development Pathways 169

rights;5 it “is residual behavior that would be contracted away if ex

ante transaction costs were lower.”6 Even with this definition,

opportunism is a difficult concept to cabin. It is relative, relational,

and depends on past positions among parties.

Licenses are not the same as intellectual property rights in

software. Licenses shape what users may do with the software.

Ubiquitous licenses can transcend the public/private divide to attain a

quasi-public character.7 Thus, license rights may be more important

for users than the underlying intellectual property rights.8

Smith’s modularity framework is based on information costs

shaping the scope of opportunism-impeding intellectual property

rights, and is an extension of his information costs approach to real

property rights.9 In a real property context, ex ante, trespass law

allows the owner to engage in a variety of uses according to her

valuation of those uses or other preferences. The power to exclude

associated with the trespass rule gives the owner an incentive to

develop information about possible uses and associated values and

costs.10 The right to exclude is the informational signal that acts as a

boundary between the modules. One module of human activity is the

5. Henry E. Smith, Property as Platform: Coordinating Standards for Technological

Innovation, 9 J. COMPETITION L. & ECON. 1057, 1062, 1078 (2013) [hereinafter Smith,
Property as Platform].

6. Henry E. Smith, An Economic Analysis of Law Versus Equity 9–11 (Mar. 27, 2012)

(unpublished manuscript), http://www.law.uchicago.edu/files/files/Smith%20paper.pdf
[https://perma.cc/868F-W3WD] (noting that “the most salient feature of opportunism is the

difficulty in defining it”). Part of Smith’s definition of opportunism for purposes of his
equity discussion is purposefully not included: “behavior that is undesirable but that cannot

be cost-effectively captured — defined, detected, and deterred — by explicit ex ante

rulemaking.” Id. This is omitted because property rules and licenses are ex ante, but licenses
in particular are subject to opportunism in ways that property rules are not. For example, a

licensing party might decide to breach the license based on asymmetric information or other

considerations. Finally, this Article uses “strategic behavior” and “opportunism”
synonymously.

7. NANCY S. KIM, WRAP CONTRACTS: FOUNDATIONS AND RAMIFICATIONS 59–62

(2013); MARGARET JANE RADIN, BOILERPLATE: THE FINE PRINT, VANISHING RIGHTS, AND

THE RULE OF LAW 33–40 (2013). Licenses make a private instrument, with particular

opportunism impeding goals, an instrument of competition policy from an interest group.

Indeed, some licenses evangelize software production modes, seeking to originate and grow
software under that license, use of the license in other software, or both. Paradoxically, a

license’s deployment of private rights may transform a popular license into a quasi-public

instrument. This effect is the specific goal of many FOSS licenses.
8. The rights base for software licenses include the four traditional subareas of

intellectual property: trade secrecy, copyright, patent, and trademark. Among these four, this

Article addresses only license concepts for trade secrecy and copyright because these two
work in concert in proprietary licenses but against each other in some FOSS licenses.

9. Smith, Property as Platform, supra note 6, at 1059, 1078; Smith, IP as Property, supra

note 4, at 1742–43, 1765–66.
10. The exclusion strategy is in contrast to a liability rules approach, where information

production by all possible parties is under a different profile of incentives in light of an

adjudicator valuation at the end of a process where the trespasser has a right of entry subject
to damages. Smith, Property Rules, supra note 4, at 1727–31.

170 HARV. J.L. & TECH. [Symposium

owner(s) and what they do with the land. The module on the other

side of the interface is all possible trespassers. Another modularity

example in real property is the law of waste acting as an interface

between the module of future interest owners as compared to the

module of life estate owners.11

To explain modularity generally, this Article transforms real

property examples into a spatial metaphor: modularity seeks to locate

the property rights interface so that it clusters most human interactions

around a resource on either side of a boundary made by the rights.

The shape and character of the rights define the modules of

interactions partitioned by the rights interface.12 The trick is to find

the sweet spot for the interface such that the interface costs13 are less

than the benefits of diminished opportunism with the recourse covered

by the rights. This spot is where most interactions with the resource

occur within a module on either side of the interface. The interactions

within each module do not have the opportunism opposed by the

interface.

This Article posits that it is difficult for software to achieve a

stable modularity interface to impede opportunism.14 In other words,

it is difficult, compared to other types of information resources, to

prevent strategic behavior both ex ante and ex post. This is due to the

multimodal complexity of software development, the overlapping

rights-bases applicable to software, and the licenses that underlie

distribution and use of software.15 In particular, this Article’s focus is

the contrast and incompatibility among FOSS license types against the

11. Smith, Property as Platform, supra note 6, at 1061.
12. The interface might be primarily an exclusion strategy, or a governance strategy of

use rights, or a hybrid of each. Smith, IP as Property, supra note 4, at 1749–50, 1765, 1785,

1799.
13. Interface costs include the information costs needed to administer and delineate the

rights of the interface, whether that interface is based on an exclusion strategy or a

governance strategy. Smith, IP as Property, supra note 4, at 1801 (noting that “[p]atent and
copyright differ in many ways, but especially in the costliness of delineating and evaluating

use”).

14. This Article is the first application to FOSS of Smith’s modularity framework for
delineating entitlements in information. I have previously written about opportunism in the

context of software standards and FOSS. Greg R. Vetter, Open Source Licensing &

Scattering Opportunism in Software Standards, 48 B.C. L. REV. 225 (2007) [hereinafter
Vetter, Scattering]. There has been prior commentary about FOSS license incompatibility

and the related problem of license proliferation. See, e.g., Robert W. Gomulkiewicz, Open

Source License Proliferation: Helpful Diversity or Hopeless Confusion, 30 WASH. U. J.L. &

POL’Y 261, 263−64 (2009). Some license incompatibility is by design, such as the GPL,

with terms intended to unsettle the proprietary licensing approach.

15. In Smith’s treatment of modularity for intellectual property rights, he compares it to
the law of accession. Smith, IP as Property, supra note 4, at 1766–77. Whatever the

complexity of accession for chattels, the complexity of software combinations, and clearing

and disentangling rights for use of software in systems, seems to dwarf the information cost
problems of accession.

2017] FOSS Development Pathways 171

background of the proprietary software license.16 I use the term

“pathways” to describe software that is relicensed over time as

different developer groups work with the software: sometimes a

relicensing attempt will succeed because the earlier license is

compatible with the terms of the later license; sometimes the

relicensing attempt produces incompatibility, rendering the later

license ineffective.

Success for a FOSS license includes use of the software it covers,

or its application to more software, or both. While there are many

FOSS licenses, a taxonomy of two general types is important. First,

permissive licenses allow any downstream use or relicensing of the

software, including into proprietary licensed software, so long as

certain attributions are given.

The second type is what this Article calls copyleft licenses.

Emblematic of copyleft licenses is the General Public License

(“GPL”).17 Copyleft licenses demand greater continuance of the terms

of the license, which typically includes that the software’s source code

remain non-secret and that free distribution not be encumbered (by,

for example, ongoing royalty payment obligations for distribution

recipients).18 Generally, copyleft licenses have greater complexity and

potential effect on the technological future for software covered by

the license. The development pathway of the software — the manner

in which software can be developed — depends on the FOSS license

initially selected.

Success for a FOSS license also includes impeding some variety

of opportunism. License terms indicate behavior deemed strategic in

ways incompatible with a desired production modality for the

software.19 The choice of license for a FOSS project, and the potential

16. The incompatibilities that arise with FOSS licenses are a particularly poignant

observation hinting that full modularity is difficult to achieve for software because certain

FOSS license creators intended to alter the modularity interface, that is, disavow or alter

intellectual property rights in software. They have achieved significant success in doing so:
there is a voluminous amount of FOSS that underlies much public infrastructure and private

information technology.

17. There are two important versions of the GPL. Free Software Found., GNU General
Public License, version 2, GNU OPERATING SYS. (Apr. 12, 2014, 12:39 PM),

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html [https://perma.cc/292Z-CWKL]

[hereinafter GPLv2]. GPLv2 did not explicitly handle granting and terminating permissions
to practice software patent rights. This, along with the need for various other changes,

resulted in version 3 of the GPL. See Free Software Found., GNU General Public License,

GNU OPERATING SYS. (Nov. 8, 2014, 3:04 PM), http://www.gnu.org/licenses/gpl-3.0.html
[https://perma.cc/UK7L-YDBH] [hereinafter GPLv3]; Rationale for First Discussion Draft,

FREE SOFTWARE FOUND., http://gplv3.fsf.org/gpl-rationale-2006-01-16.html [https://

perma.cc/F9UX-BAUD] (discussing the decision to create version 3 of the GPL).
18. Greg R. Vetter, Exit and Voice in Free and Open Source Software Licensing:

Moderating the Rein over Software Users, 85 OR. L. REV. 183, 202 (2006).

19. Jay P. Kesan & Rajiv C. Shah, Deconstructing Code, 6 YALE J.L. & TECH. 277, 362–
66, 2003–04.

172 HARV. J.L. & TECH. [Symposium

influence of the original license on the software development process

both shape the opportunism impeding possibilities.

From a modularity perspective, where opportunism dampening

helps situate a rights interface between modules of interactions around

the resource, the pros and cons of license-pathway potentials

influence the calculus in selecting a FOSS license. Choosing a license

is tantamount to locating the interface, or relocating it in relation to

the rights-base.

Additionally, license complexity may increase interface costs

such that future pathways for use of the technology are constrained or

require transaction costs to obtain. In such a situation, the foregone

uses might represent opportunism dampening that does not overcome

the cost of the license-rights-interface or the lost opportunity of the

foregone uses, despite the other uses allowed by the license.20

To demonstrate these principles with typical FOSS licenses,

Part II provides a brief overview of permissive versus copyleft FOSS

licenses. Next, Part III models the rights-base of copyright within the

modularity framework, overlaying software licenses. The insight is

that the use of software under different licenses, over time, might

create pathway incompatibilities. These incompatibilities suggest that

a stable interface for the modularity framework is more difficult to

achieve for software compared to other types of information resources

covered by intellectual property rights. Then, Parts IV and V,

respectively, discuss these principles from the perspective of two

software scenarios. Finally, Part VI concludes.

II. FREE AND OPEN SOURCE SOFTWARE (“FOSS”) LICENSING

APPROACHES

The hallmark of FOSS development is available source code. In

contrast, the proprietary method of licensing software keeps the

source code as a trade secret and licenses the executable software. But

while FOSS generally is associated with available source code, one of

the two general FOSS license types, the permissive license, does not,

within the license, require available source code. The second

approach, the copyleft license, conditions activity with the software

on the source code remaining published and available.

20. An example of a license-rights-interface with high information costs and foregone

uses is the GPL. By requiring that source code not be incorporated into proprietary licensed

software, the GPL imposes a cost of foregone uses, or imposes the cost of a transaction to
attempt to relicense the source code from the contributors. Additionally, particularity for

GPLv3, understanding the license requires one to overcome significant complexity. The cost

to obtain that understanding is itself an information cost that influences the efficacy of the
GPL as a license-rights-interface.

2017] FOSS Development Pathways 173

A characteristic feature of software development is the interacting

nature of software. Code layers on other code, entangled by lesser or

greater degrees of mixing and interfacing.21 The reach of copyright in

code, particularly with respect to the derivative work right, extends

the licensing possibilities. Comingled source code from different

FOSS licenses might not be compatible in a legal sense even if the

software will interwork.22 License compatibility significantly affects

the productive uses possible for FOSS code.23

A. The Permissive License Approach

The permissive license approach allows one to copy, modify and

distribute the software for any type of downstream use. The primary

condition is to give attribution to the originator. The permissiveness is

broad: the FOSS project can be taken into a proprietary software

application where distribution does not include source code.

The permissive license raises several puzzles about how FOSS

projects under this approach succeed. The license does not require

source code availability, so a variety of influences might keep the

source code available. These are described elsewhere,24 so these

puzzles are put aside beyond the observation that a permissive license

does not impede the opportunism that these other influences seek to

cabin.

B. The Copyleft Approach

A copyleft license conditions activity with the software on the

source code remaining available. As used in this Article, copyleft is

synonymous with the General Public License. The GPL introduced

21. See Vetter, Collaborative Integrity, supra note 2, at 635–36, 674 n.361.

22. MEEKER, supra note 3, at 59–62.

23. See Gomulkiewicz, supra note 14, at 281–82. FOSS licenses are form licenses
published on the Internet. There are literally hundreds, with many possible taxonomies. But

to simplify the discussion, this Article will use the typical dichotomy: permissive licenses in

contrast to copyleft licenses. The essential rights base for FOSS licenses is copyright. With
copyright, a license might condition redistribution of the software on an action by the

recipient. For example, to redistribute, one must give attribution to the source. FOSS license

conditions could theoretically be based on any of copyright’s applicable rights, but the
distribution right is prominently used. For copyleft licenses, however, the derivative work

right is additionally important. David McGowan, Legal Implications of Open-Source

Software, 2001 U. ILL. L. REV. 241, 268, 253–63 (2001).
24. Influences keeping source code available under permissive projects include, in

several categories: reputational interests; economic interests, particularly for suppliers of

complements; organizational structures exhibiting governance over the code; felt belief in
the value of available source code; and a smattering of other influences. STEVEN WEBER,

THE SUCCESS OF OPEN SOURCE 46–49, 184–87 (2004); Jonathan M. Barnett, The Host’s

Dilemma: Strategic Forfeiture in Platform Markets for Informational Goods, 124 HARV. L.
REV. 1861, 1899–908 (2011).

174 HARV. J.L. & TECH. [Symposium

the copyleft approach into software licenses. The term is a play on

words: copyright licenses often narrow and restrict uses with the

software and legally enforce the non-availability of source code;

“copyleft” licenses do much the opposite.25

The GPL imposes conditions on the redistribution of the software.

A recipient can use it with minimal conditions, but redistribution with

modifications triggers the GPL’s requirements to make sure source

code is available and without ongoing royalty obligations.26

The GPL defines modifications broadly. Intermingling the

copyleft software with other code might trigger a condition that the

newly intermingled code also be redistributed under the terms of the

GPL. This condition is based on copyright’s derivative work right. If

that newly intermingled code came from software with a proprietary

license, the GPL’s proposition is that the source code must be

disclosed from that proprietary software.27

Software under a copyleft license is legally incompatible with

insertion into software deployed under a proprietary or permissive

license: the permission set of allowed actions with a proprietary or

permissive license includes actions disallowed by the copyleft license.

Such an insertion produces a pathway incompatibility.

The opposite approach is allowed and sometimes referred to as

one-way compatibility: inserting permissively licensed software into

copyleft or proprietary software.28 The copyleft insertion might be

achieved by obtaining permission from all the copyright holders in the

copyleft software, but this is tantamount to altering its license scheme.

FOSS projects may have small numbers of locatable contributors

such that one can obtain either a new license permission or perhaps

even a copyright assignment to a single person or entity. But some

prominent copyleft software has thousands of contributors,29 posing a

significant hurtle to unifying the copyright ownership in the software

or changing the license.

There is another reason copyleft software with many contributors

is difficult to relicense. The intermixing of those many contributions

into an operable program makes pulling it apart sometimes

25. Free Software Found., What is Copyleft?, GNU OPERATING SYS. (Oct. 3, 2015, 5:25

PM), http://www.gnu.org/copyleft/copyleft.html [https://perma.cc/SVC6-WKXU].

26. GPLv3, supra note 17, at §§ 6, 10.
27. Greg R. Vetter, “Infectious” Open Source Software: Spreading Incentives or

Promoting Resistance?, 36 RUTGERS L.J. 53, 58, 88–94 (2004) [hereinafter Vetter,

Infectious Open Source].
28. Creative Commons BY-SA 4.0 Declared One-Way Compatible with GNU GPL

Version 3, FREE SOFTWARE FOUND. (Oct. 9, 2015, 5:06 PM), https://www.fsf.org/

blogs/licensing/creative-commons-by-sa-4-0-declared-one-way-compatible-with-gnu-gpl-
version-3 [https://perma.cc/RW4B-BC7Z].

29. Linux Kernel Development, LINUX FOUND. (Feb. 18, 2015),

http://www.linuxfoundation.org/news-media/announcements/2015/02/linux-foundation-
releases-linux-development-report [https://perma.cc/2AJS-DN92].

2017] FOSS Development Pathways 175

impractical. The copyleft software is often a single copyrighted work

in executable form. Its use, value, and utility are in that form as a

whole. The components of the whole are internally entangled. Those

components arose from a diffuse group of programmers who all keep

copyright in their contributions but licensed each component to the

copyleft software.30

C. Forking a Software Development Pathway

When a FOSS project splits into two development groups that

take a previously unified body of code down two separate pathways,

this is a fork.31 A fork can occur for software under either license

type. Another type of fork is when permissively licensed FOSS is

forked to a new development group which continues with the

permissive license, but is also relicensed under copyleft to a separate

development group.

The fork is a potential pathway alternative for most FOSS

licenses. The reasons and purposes of a fork are mostly extralegal, but

important in the context of opportunism. Over time, the forked

software might exhibit dissimilarities. Alternatively, the two paths of

the fork might remain similar in the code but under control by

different programming groups.

Consider a fork example based on GPL software. One of the

GPL’s purposes is to impede the opportunism of secret source code.

Another purpose is to ensure that the code base is always available for

anyone to fork. For example, a GPL licensed project might attract the

attention of a company. Before that, there were a dozen developers

who contributed occasionally in a volunteer mode. The company has

complementary products and it assigns four full-time programmers to

work on the GPL software. The more the company improves the GPL

software, the better its business with the complements. The original

dozen volunteer programmers dislike this corporate influence, so they

fork the code and continue with their own version.

The diagram below illustrates GPL code that forked twice. Two

of the versions, A and B, fell into disuse, but version C continued with

viability and active developer support.

30. LAWRENCE ROSEN, OPEN SOURCE LICENSING 252–53 (2005).

31. Gregorio Robles & Jesús M. González-Barahona, A Comprehensive Study of

Software Forks: Dates, Reasons and Outcomes, in OPEN SOURCE SYSTEMS: LONG-TERM

SUSTAINABILITY 1, 2–3 (Imed Hammouda et al. eds., 2012).

176 HARV. J.L. & TECH. [Symposium

Figure 1: Forked GPL Project Pathway

(Solid line is GPL licensed code)

The figure above uses a GPL example because projects are likely

to remain with the GPL once started under that license, particularity

when there are many contributors. The license type and the

possibilities of forking are both part of the opportunism considerations

with FOSS licensing.

The next Part shifts to an explanation of the modularity

framework for property and the role within it for opportunism

impedance. Linked to those ideas is the idea that software licenses

also aim to impede varieties of opportunism.

III. FOSS LICENSES AND THE MODULARITY FRAMEWORK FOR

INTELLECTUAL PROPERTY

A. License Interaction, Opportunism, and the Modularity Framework

License incompatibility suggests some discord with Henry

Smith’s modularity framework when applied to property rights in

software. This discord reflects tension some communities in

information technology express concerning intellectual property rights

in software. The overarching incompatibilities are: the FOSS

approach versus the proprietary approach; and the permissive versus

copyleft approach.32

Modularity seeks to situate an interface within human activity by

shaping rights that make up the interface. The legal terms of the

rights-interface determine how different classes of users interact

among themselves in relation to the resource. Each class of users is a

module on one side of the interface. The shaping purpose is to

diminish opportunism by partitioning human interactions with the

productive resource, driving interactions to either side of the interface

created by the rights-base. With software, this is done by a license.

But software is an unusual resource in this process. It has the key

32. Different licenses impede different varieties of opportunism. As a result, there are

more intricate incompatibility possibilities when examining license terms in greater detail.

This Article uses a high level of comparison by contrasting the proprietary license with the
two typical FOSS categories. Companies or persons choose one license or another for a

variety of reasons, including the emphasis of this Article, to inhibit opportunism in others.

That opportunism is in the eye of the beholder, which is why there is a stratification of
licenses.

2017] FOSS Development Pathways 177

characteristics of other information goods, but the additional

characteristic of interoperability in its common productive uses.

Software entangles with other software to interoperate. An

outward perspective of this suggests considering network effects,

interoperability, standards, and impact on complements within

information technology.33 An inward perspective shows how bundling

software into an operable whole may put components into a single

derivative work that may or may not have compatible licenses.34 Both

perspectives illuminate the difficulty of arranging a stable modularity

interface for rights in software. Both perspectives have their current

static impacts, but have dynamic possibilities for change.35 The

dynamic nature of software as a resource compounds the difficulty of

shaping a rights-base for it.36 Licenses might fill that gap, but licenses

issue from multiple sources with varying agendas.

The figure below illustrates the difficulty conceived above from

the perspective of modularity while also illustrating Smith’s

modularity framework. The concept of the figure is volumetric and

spatial. The rights-base situates an interface with use of the software.

The modularity framework envisions the boundary interface to apply

such that it is no more costly than the losses from strategic behavior.

The interface seeks to locate on either of its sides a maximum volume

of human interactions with the software resource. The horizontal axis

of the “bowtie” shape is, at the center, a place where a minimum

number of transactions occur on the edge of the law, that is, the edge

of legality from the perspective of the rights-base. Moving either to

the left or right from the center of the bowtie shape signifies moving

into a greater volume of human interactions with the resource that

steer clear, increasingly, from any conflict with the rights-base.

The thesis is that the interface’s location lacks full stability with

software as a resource given its current rights-bases and license types.

The figure displays licenses in a symbolic way as influences on the

interface or departures from it.

33. Vetter, Scattering, supra note 14, at 234–35; Vetter, Commercial FOSS, supra note 3,

at 2118–23.

34. HEATHER MEEKER, OPEN SOURCE FOR BUSINESS 51–56 (2015).
35. Jonathan M. Barnett, The Illusion of the Commons, 25 BERKELEY TECH. L.J. 1751,

1775, 1806–08 (2010).

36. Brian Fitzgerald, Has Open Source Software a Future?, in PERSPECTIVES ON FREE

AND OPEN SOURCE SOFTWARE 93–100 (Joseph Feller et al. eds., 2005).

178 HARV. J.L. & TECH. [Symposium

Figure 2: Human Interaction Modules Separated by Interfaces from

Rights-Bases and/or Licenses

Figure 2 envisions an interface of rights-bases in software from

intellectual property, including trade secrecy, copyright, and patent

law. The gray rectangular shape near the middle of the “bowtie”

represents the interface. Each end of the bowtie represents modules of

human activity on either side of the interface.37 The bundle of

intellectual property rights comprising the rights-base has width along

the horizontal axis to signify the range in scope of what the rights

allow, and the uncertainly associated with that scope inherent in the

rights-base. Licenses sometimes reduce that uncertainty, but

sometimes increase it.

The vertical license lines represent licenses with

opportunism-impeding goals that seek to shift the interface location.

The licenses do not have the full legal power of the rights-bases, but

have a quasi-public-law effect. Note that license types one and two

tend to unbalance the bowtie modules: less than a maximum number

of transactions are partitioned to either side. Assume that license type

two is the GPL, one might view the GPL’s effect this way: against a

world of proprietary licenses, the GPL’s effect is to disturb the

proprietary scheme; use of GPL software regularly creates

incompatibilities when intermixed with other software types.38

License type three might be the permissive license: it is a nearly

frictionless instrument, so it reduces the complexity of the rights base

37. Ex ante, a purpose of the rights-base is for classes of users to interact among

themselves with the resource. A class on one side of the interface modeled in Figure 2 is
thought to have greater volumes of interactions where the parties have steered clear of the

rights interface. Thus, the figure envisions the horizontal dimension as the degree to which

an activity with the resource comes close to violating the rights-base or terms of a license.
This activity is near the center of the bowtie diagram. Activity moving away from the center

is more clearly a transaction with the resource that has little legal ambiguity and is thus a

human interaction that is fully modularized.
38. For the communities that brought forth the GPL and curated its evolution over the last

several decades, the goal was to unsettle proprietary licensing and intellectual property right

in software. Ronald J. Mann, Commercializing Open-Source Software: Do Property Rights
Still Matter?, 20 HARV. J.L. & TECH. 1, 27–30 (2006).

2017] FOSS Development Pathways 179

itself.39 License type one is some other atypical FOSS license, of

which there are many.

If the licenses and their vagaries make the interface for software

shifty, what does this mean? It may mean that the concept of

opportunism diminishment in modularity is hard to satisfy with

software as a resource. The right-bases covering software are used to

create licensing implementations with incompatibilities in important

quantities of software in use.40

Perhaps software is an information resource where it is difficult to

find a stable modularity interface. This seems particularly possible

given that copyright’s conception of the derivative work right is

highly amorphous with software.41 The FOSS posture disfavoring

trade secrecy in software source code also suggests this possibility.42

The incompatibilities owe their potency in part to copyleft’s use of the

derivative work right in the rights-base of copyright, and use of

copyright itself to eliminate secret source code.

An inward perspective of software interoperability shows how a

single copyrighted work might have components with incompatible

licenses. An example would be where copyleft software has been

injected into a work that is published under a permissive license. This

is one of several scenarios covered in the next section.

B. Pathways of Approach and Impeding Opportunism

The discussion earlier in this Part posits that software is a

particularly difficult resource for the modularity framework to locate a

stable interface. Software has enjoyed several decades where the

rights-bases of copyright, trade secret, and patent law underlie

licenses targeting opportunism or seeking to support business

39. Another example of simplifying a license is the way in which the GPLv2 was applied

to the Linux kernel. In order to reduce the uncertainty of the reach of copyright’s derivative

work right in software, the Linux kernel application of the GPL disclaimed the license terms

from reaching any software running on the kernel so long as the application made normal
system calls to the kernel as the means of interfacing with it. Vetter, Infectious Open

Source, supra note 27, at 113–18.

40. I recognize in this Article that other explanations might also contribute to an
understanding of the problems of license incompatibility. I do not intend the observation, if

correct, of insufficient modularity to be the sole explanation. For example, as Christina

Mulligan helpfully points out, anticommons effects may also be at work. See Christina
Mulligan, A Numerus Clausus Principle for Intellectual Property, 80 TENN. L. REV. 235,

255–56 (2013) (discussing the possibility for an anticommons effect when multiple

copyrighted works are incorporated into a new derivative work).
41. Lateef Mtima, So Dark the Con(Tu) of Man: The Quest for a Software Derivative

Work Right in Section 117, 69 U. PITT. L. REV. 23, 25–26, 49–50 (2007).

42. Trade secrecy is inconsistent with a software development methodology, like that in
FOSS, which emphasizes the public availability of source code. See Clark D. Asay, A Case

for the Public Domain, 74 OHIO ST. L.J. 753, 783–84 (2013); Greg R. Vetter, A Public

Domain Approach to Free and Open Source Software?, 75 OHIO ST. L.J. FURTHERMORE 8,
10, 17 (2014).

180 HARV. J.L. & TECH. [Symposium

models.43 Yet there is significant discord and heterogeneity with the

licenses.

For example, it is error for a programmer to insert copyleft

software into other software under a permissive license. If someone

takes the permissive software private without understanding that some

of the software is actually licensed under copyleft, the copyright

holders in the original copyleft software have an infringement action.

A potential partial remedy is to release the source code for the

copyleft software. But, if the privatizing entity has intimately

entangled its own proprietary code with the copyleft software (falsely

posing as permissively licensed software) and distributed the resulting

bundle, it may be required to make its own original proprietary source

code available. This is a pervasive concern among proprietary

software companies.44

In the figures below, this section will show some related scenarios

where license incompatibility influences pathways for software

development.

Figure 3, below, represents a regular occurrence. A proprietary

software company arranges to purchase a company to obtain its

proprietary software assets. The acquirer, however, discovers that

some of the software assets contain copyleft software.45

Figure 3: Purging GPL Software for Acquisition

(Dashed line is proprietary licensed code)

The pathway of purging GPL software for an acquisition derives

from intellectual property due diligence. The acquirer insists on

forensic analysis46 that discovers the problem: copyleft software

incorrectly placed inside a proprietary product. The surprisingly

persistent existence of this problem stems from one of the explicit

goals of the GPL license: engendering publicly available source code.

The GPL seeks to inhibit the opportunism of ongoing royalty

payments associated with proprietary licensing. The problem occurs

43. RUSTAD, supra note 1, at § 1.06[1].

44. Vetter, Infectious Open Source, supra note 27, at 152–56.
45. MEEKER, supra note 3, at 54–62. Often, the software asset seller’s management is not

aware of the “contaminated” code, but forensic analysis proves the point. If the problem is

pervasive, the buyer might scuttle the sale. If the severity is manageable, the acquisition
might go forward with restructuring: the seller is charged with the cost to remove the

copyleft software and replace it with software compatible with proprietary licensing.

46. Open Source Software Audits, BLACKDUCK, https://www.blackducksoftware.com/
on-demand/open-source-software-audits [https://perma.cc/C2E4-58JS].

2017] FOSS Development Pathways 181

because the seller’s original due diligence to vet code used in its

product is insufficient. There is much excellent software freely

available on the Internet. The seller’s programmers may have helped

themselves to these resources without notice to management.

Figure 4‘s scenario is straightforward, but often hard to realize for

copyleft software with many contributors: someone wants to obtain

the rights to take the copyleft software private. If successful, the

software continues as a proprietary product, as shown in the diagram

below.

Figure 4: Buyout-Sellout GPL Project Pathway

Copyleft software with many contributors faces various collective

action problems among the programmers. Many of those problems

relate to management of the technological direction of the software.

Typically, the licensing structure is established at the beginning of the

project. Indeed, the type of FOSS license used influences who

contributes. As a copyleft venture progresses with more and more

contributors, it becomes harder to relicense the whole project. But

sometimes an external entity can achieve relicensing with financial

rewards and a narrative about how it will influence the software

positively in the future.

The pathway in Figure 4 is titled “buyout” for the scenario where

all contributors holding a copyright are convinced to assign their

copyrights to the buyer, or grant a license allowing the buyer to take

the software down a proprietary path. The pathway also has the word

“sellout” in the title because some programmers might feel that selling

the copyright to a privatizing entity is selling out the values associated

with copyleft software, and in particular, the GPL license. Any single

programmer could hold out. But if the number who hold out is small,

their code could be purged in a process that is equivalent to the

pathway in Figure 3.

The pathway scenarios covered in this section hinge on the

incompatibility that results in certain arrangements of permissive,

copyleft, or proprietary software. As software develops over time, it

may generate complexities that frustrate the ability of law or licensing

to prevent strategic behavior.

Three decades ago the dominant software licensing approach was

the proprietary license. The GPL ushered in the copyleft approach

with a particular agenda to inhibit certain types of privatizing

opportunism with GPL software. All licenses target some sort of

opportunism. License selection at the start of a FOSS project involves

182 HARV. J.L. & TECH. [Symposium

difficult estimates of the future.47 Perhaps the incompatibility issues

arise from copyright as the underlying rights-base for FOSS licenses,

in particular its amorphous derivative work right. These observations

support the claim that software has an uncertain nature in the

modularity framework.48

The next Part will expand the treatment of path dependence for

license selection with two scenarios. Each represents common choices

facing FOSS software developers for a new project. As such, the

pathways represent opportunism to be avoided or exploited.

IV. FLEXIBLE SOFTWARE PATHWAYS

These pathways posit a FOSS project leader choosing a

permissive license for future flexibility. Figure 5, below, shows some

possible pathways.

Figure 5: Flexible Software Pathways

(Dotted line is permissive licensed code)

By starting with a permissive license, the leader has a greater

range of alternatives. This, however, might necessitate non-license

governance structures if the project remains under the permissive

license long-term. The structures’ purpose would be to facilitate

available source code in an ongoing, sustainable way.

During startup, the permissive license lets the leader test the

environment. Two possible alternatives are discussed in the sections

below. In the first, the project’s pathway needs the support of a

company. In the second, a copyleft community supports the project.

The permissive license’s flexibility makes it palatable for a variety of

opportunities.

47. Molly Shaffer Van Houweling, The New Servitudes, 96 GEO. L.J. 885, 900–03, 937–

94 (2008).

48. A smaller claim available to the logic of this Article is that copyleft induces the

uncertainty for software in the modularity framework for intellectual property rights, but
that the uncertainty applies less to other types of software. One reason to adopt the smaller

claim even if the larger claim is not persuasive is that copyleft purposefully creates the

potential for extreme license incompatibility because it prohibits certain preexisting, popular
monetization modalities for software.

2017] FOSS Development Pathways 183

A. Fiscal Benefit Potential Under the Permissive License Approach

The straightforward fiscal benefit pathway is to convert the

permissively licensed FOSS project into a proprietary software project

if there is a paying market.49 This result might have been intended as a

planned strategy. Or, the project might have been public tinkering

noticed by a company. Converting the software to a proprietary mode

allows direct monetization.

In contrast, converting the project to the GPL renders most

monetization opportunities indirect in some way. The complementary

goods or services that might coalesce around the software will depend

on technological and market factors.50 The monetization opportunities

for some GPL projects are also influenced by the developers’ strong

sense of ideology for the mode of development.

B. Contributor Recruitment Under the GPL Approach

A FOSS leader starting a new project might encounter a niche

where programmer recruitment works best with the GPL approach.

Thus, the permissive-to-copyleft pathway allows the leader to make

that transition. Once under the GPL, if the software grows with many

contributors, there is, in practical effect, no going back.

The pathway ending in copyleft emphasizes that FOSS is also a

movement. More specifically, each of the two primary FOSS license

types correlate to sub-movements within FOSS. The first is the free

software movement, associated with copyleft and the GPL. The

second is the open source movement, associated more loosely with the

permissive license.

Covering all the differences between the sub-movements goes

beyond what is useful to discuss in this Article. But it is worth saying

that the free software movement is more directly fueled by ideology.51

To the extent programmers are willing to voluntarily contribute to a

free software project, many will do so only if the software is under a

49. One commentator postulates that this scenario is a possible strategy for Apple after it

released a programming language under a permissive license. Florian Mueller, Apple May

Regret Its Choice of a Permissive Open Source License for the Swift Programming

Language, FOSS PATENTS (June 9, 2015), http://www.fosspatents.com/2015/06/apple-may-
regret-its-choice-of.html [https://perma.cc/5WAC-65TE] (“Apple . . . could always release a

future version of Swift . . . exclusively under a proprietary software license. It can’t re-close

the source code published by then, but it has no obligation to publish more code on open
source terms.”). See also Robles & González-Barahona, supra note 31, at 6 (noting that

some forks to a FOSS project are due to a commercial strategy).

50. MARTIN FINK, THE BUSINESS AND ECONOMICS OF LINUX AND OPEN SOURCE 175–89
(2003).

51. See Richard M. Stallman, Why Software Should Not Have Owners, FREE SOFTWARE

FREE SOCIETY: SELECTED ESSAYS OF RICHARD M. STALLMAN 45–49 (Joshua Gay ed.,
2002).

184 HARV. J.L. & TECH. [Symposium

copyleft license such as the GPL. As a result, FOSS project initiators

might find themselves in a situation where they embrace the GPL

license even if they are not themselves free software adherents. This is

done to make the project more attractive to contributing developers.

The instinct might be that this effect is particularly important for

developers volunteering their own time, but it might also be important

for developers being paid to work on FOSS projects by their primary

employer.

This Part emphasized the flexibility of the permissive license

when starting a FOSS project. Some sources report recent growth in

software under the permissive license in comparison to copyleft.52

The flexibility of the permissive license might be a causal factor in

that trend. Another factor might be information costs comparing the

two licenses. The cost to generate information about uses of a

resource is an influence within the modularity framework.53 The more

costly the rights-interface, in terms of information costs, the less

efficacious it is to impede opportunism. In Figure 2‘s “bowtie”

representation, the permissive license vertical line (License Type 3) is

placed near the center because it is an almost frictionless instrument:

interactions among humans relying on it have a straightforward

character. The GPL copyleft license, on the other hand, pushes away

from the center, purposefully outside the character of the rights-base

making up the modularity interface because it seeks to upend

proprietary software licensing.

The GPL is a complex license compared to the permissive

license. Arguably, it is more complex than the copyright rights-base it

uses. GPL version 2 originated in 1991, but its complexity increased

substantially with version 3 in the mid-2000s.54 The additional

complexity creates information costs that may not be overshadowed

by the benefits of inhibiting the varieties of opportunism the GPL

targets.55 The balancing of these concerns plays out in the dynamic

and constantly changing ecology that is modern, networked, and

52. Jim Farmer, Open Source Software Licensing Trends, OSSWATCH (Feb. 5, 2015),

https://osswatch.jiscinvolve.org/wp/2015/02/05/open-source-software-licensing-trends

[https://perma.cc/DC3N-LZB6] (discussing trends toward greater use of permissive
licensing in comparison to copyleft licensing).

53. Smith, IP as Property, supra note 4, at 1745.

54. Robert W. Gomulkiewicz, A First Look at General Public License 3.0, 24 COMPUTER

& INTERNET LAW. 15, 20 (2007).

55. One point of evidence about the increased complexity of GPLv3 is that it lags behind

its predecessor in license popularity. Top 20 Open Source Licenses, BLACKDUCK,
https://www.blackducksoftware.com/top-20-open-source-licenses [https://perma.cc/4DLA-

88BH] (showing GPLv2 at 21% while GPLv3 is at 9%); Heather Meeker, Who’s Afraid of

GPL3?, BLACKDUCK (Jan. 25, 2013), http://osdelivers.blackducksoftware.com/2013/01/
25/whos-afraid-of-gpl3 [https://perma.cc/RD7V-B3YD]. From an information cost

perspective in the modularity framework, the shift from GPLv2 to GPLv3 needs to cause

increased opportunism-impeding benefits that overcome the increased information costs of
version three of the license.

2017] FOSS Development Pathways 185

increasingly personal information technology. To some extent,

ubiquitous software licenses are the modularity interface as much as,

or more than, the rights-bases used by the licenses. Therefore, if the

GPL is being used less, the interface may be shifting or warping.

The next Part addresses software aggregations. It is an apt venue

to discuss hybrid approaches potentially combining license types in

software systems.

V. AGGREGATION SOFTWARE PATHWAYS

A. Software Aggregations and Hybrid Approaches

Software license incompatibility exists within a copyrighted

work. Software aggregations do not intermix all of the software into a

single work. For example, the FOSS operating system Linux is

actually an aggregation of many FOSS software projects into an

operable system.56 The kernel of the operating system carries the

name Linux, but many other dozens or hundreds of FOSS projects are

present in a typical distribution of Linux.

A Linux distribution carries the various software components

under various licenses. When the operating system runs, some of

these components might be properly thought to be combined as a

single copyrighted work, but many are not. The Linux kernel itself,

while under GPL version 2, explicitly modifies its license to declare

that software running on the kernel is not reached by the derivative

work right potential so long as it accesses the kernel through normal

system calls.57 For example, one can operate the proprietary Oracle

database software on a computer running the Linux kernel without

fear that the Oracle software will need to come under the GPL license

terms.

Software aggregations containing FOSS can be functioning

software systems because the potential license incompatibilities are

partitioned. In an aggregation, software components exchange data

and cooperate technologically in ways that do not (it is thought)

trigger the reach of copyright’s derivative work right in software. This

is the case with a Linux-based operating system distribution. It is the

case with many other software systems that are large and sufficiently

complex such that the costs of arranging this technological

partitioning is worth it to gain access to the FOSS functionality within

the system.58 The entire system can be distributed with some of the

software under a proprietary license and other software under a

56. FINK, supra note 50, at 19–21.

57. Vetter, Infectious Open Source, supra note 27, at 113–18.
58. ROSEN, supra note 30, at 253.

186 HARV. J.L. & TECH. [Symposium

copyleft license. The mere colocation of both types on distribution

media, or in an electronic distribution stream, does not trigger the

GPL’s viral effect.59

These observations complicate and extend the possibilities for

hybrid systems. They show the importance of copyright’s construct of

a work, taken to its limit by the derivative work right. A base

illustration of the pathway possibilities is given below.

Figure 6: Aggregation Software Pathways

In terms of sequence, the permissive license might originate

software projects that take different forms in a system. The stylization

in the figure is overly simple. The system is often patched together

from FOSS pieces collected across the Internet rather than originating

from a few FOSS sources and fragmenting over time.

Recently another consideration has arisen for enterprise software

applications: delivering functionality to the user from what is called

the cloud. The next section considers this evolution and a FOSS

license that aspires to induce transparency for source code in the

cloud.

B. FOSS and Source Code in the Cloud

The Internet converted classical concepts of remote computing

into “the cloud.” Pervasive Internet accessibility enables our resources

and data to come from elsewhere. The companies operating cloud

services such as social networks and search engines, use much FOSS

internally.60 The GPL licensing structure originated when most

software was distributed to run on computers near the user. As a

result, the copyleft license terms are triggered by certain types of

physical distribution of the software.61 But software running in the

cloud does not amount to a distribution.62

The result is that GPL code operating in the cloud, but delivering

functionality via an interface to users on the Internet, mostly does not

constitute a copyright distribution of software source code by the

59. Vetter, Infectious Open Source, supra note 27, at 95–97.

60. Jose Teixeira, Open-Source Technologies Realizing Social Networks: A Multiple
Descriptive Case-Study, in OPEN SOURCE SYSTEMS: LONG-TERM SUSTAINABILITY 250,

250–53 (Imed Hammouda et al. eds., 2012).

61. MEEKER, supra note 34, at 69–75.
62. MEEKER, supra note 34, at 71.

2017] FOSS Development Pathways 187

cloud operator.63 For example, assume that a company takes a

publicly posted GPL document management system and sets up a

cloud service with it. It attracts a sufficiently large user base that

allows it to make a profit on Internet advertising. It regularly

improves the code, intimately intermixing its revisions with the

original software within a copyright work. The user interactions with

the interface do not trigger an obligation under the GPL to provide the

improvements. For copyleft adherents, this is a bad result because

new software that improves a GPL project is not made available to the

community.

One particular group promulgated a license with hopes to impede

the opportunism of hiding source code in the cloud.64 Using the

hypothetical document management system, if the original project

was licensed under the Affero GPL, then the company’s revisions

would need to be made available as source code. The Affero GPL

uses copyright as it would map to “users interacting with [the

program] remotely”65 — presumably invoking copyright’s display

right and/or performance right. That remote activity is written as a

license condition that requires intimately intermixed revisions to the

source code to be made available. Software aggregations and software

in the cloud compound the opportunism varieties inherent in the

development pathways described in the earlier Parts. In Figure 2‘s

“bowtie” representation, the vertical line for License Type 1 might

represent the Affero GPL because it seeks to substantially unsettle the

licensing approaches that went before it.

VI. CONCLUSION

Rights in software evolved over many decades, first embracing

trade secrecy, then copyright, and later patent law. These rights are

deployed by licenses. Thus, licenses provide the full shape and extent

of interactions among all of us as users of software. Some licenses,

particularly copyleft licenses, seek to shift the modes of production

and usage for software in furtherance of a social movement about

freedom to access software. Licenses are contested and sometimes

incompatible, showing the dynamism of both technological and legal

evolution in this important technological field. Beyond their

inconvenience, software license incompatibilities suggest a theoretical

63. Whether there is a distribution of source code from the cloud will be technology

dependent. Some Internet technologies will send source code from the cloud to the user

computer’s client application. An example would be copyrighted client-side code such as

JavaScript.
64. Free Software Found., GNU Affero General Public License, GNU OPERATING SYS.

(Nov. 8, 2014, 3:04 PM), http://www.gnu.org/licenses/agpl-3.0.html [https://perma.cc/

6FQA-MYE9].
65. Id. at § 13.

188 HARV. J.L. & TECH. [Symposium

observation: from the perspective of Henry Smith’s modularity

framework for intellectual property rights, software may have an

uncertain rights-interface within that framework.

