S

" Volume 5, Fall [ssue, 1991

COPYRIGHT OR PATENT OR BOTH:
AN ALGORITHMIC APPROACH TO
COMPUTER SOFTWARE PROTECTION

John Swinson*
INTRODUCTION

The creation of an efficient legal protection system for computer
programs has been a difficult process. The growth of programming
occurred rapidly. Lawyers knew little about computers and computer
scientists knew scant about the details of the law. Because of this lack of
knowledge, lawyers pigecnholed computer programs into the existing
intellectual property framework of copyright and patent without ac-
knowledging the potential problems. Legal rules relating to other types
of works such as novels and plays were applied with little adaption to
computer software. The chaotic expansion of protection caused by the
transfer of these preexisting rules to the computer programming field
continues to WOITY many computer scientists.

The theme of this Article is thar algorithms, fundamental to the
growth of computer science, must be understood and taken into account
to sensibly formulate and apply a legal protection system O computer
software. An algorithm can be expressed in different ways or at dif-
ferent levels of abstraction. When asked to detail a solution to the prob-
lem, that solution will he written at various levels of sophistication by
people using divergent expressions, but an intelligent human should be
able to examine the solutions and determine which are the same. Can
the law do likewise for computer programs and algonthms?

The Article starts with a bnef introduction to algorithms and com-
puter programs. It then analyzes whether the application of the patent
system to algorithms and computer programs provides a coherent, rea-
sonable approach to the legal protection of computer software. The
software industry’s criticisms of the application of the patent system to
computer software, namely the inapplicability of traditional patent
justifications to this field and the current patent system’s counter-

* Barrister-at-law, Queensland, Australia; B.A. Computer Science, 1986, University of
Queensland; LL.B. (Hons.) University of Queensland, 19388; 11 M., 1991, Harvard Law
School. The writing of this Article was made possible through the support of the Fulbright
Foundation, the Frank Knox Memorial Fellowship, and Mallesons Stephen Jagues. The
author wishes 0 thank Professor Terry Fisher of the Harvard Law Schoal, and Mr. Peter
Treyde of the Antomey General’s Department of Australia for supplying materials concern-
ing the Copyright Law Review Committee.

146 Harvard Journal of Law & Technology [Vol.5

productive effects on the growth of this industry, are shown to be little
different than grievances aimed at the patent system in general. Yet, the
unigue nature of computer programming exacerbates traditional faults in
the system.

Before resolving the issue of whether patents should be granted for
computer programs and algorithms, the other major form of protection,
copyright, is examined. The Article assumes the desirability of some
protection for software to encourage innovation. The contentious issue
becomes the extent of protection. What should be protected as a com-
puter program? How can one tell if two programs are the same? Should
the test be whether they perform the same function or whether a user
believes them to be the same? An examination of the law in the United
States and Australia, where the copyright s;‘siems are somewhat similar
but where different problems have stretched them in different directions,
reveals the need for one set of rules that can be applied in both juris-
dictions. The policy arguments for and against protecting user interfaces
will be outlined. An algorithmic approach will be used to formulate the
optimal protection plan to be applied to computer programs.

In conclusic.., the Article suggests that only a modified version of
copyright protection is needed for the proper level of protection of com-
puter software. The value of software is its form of expression—a com-
puter can understand and carry out instructions expressed as a program.
The thesis of this Article is that patent protection is too broad and that
copyright, if limited, will provide the necessary incentives in an efficient
way to encourage progress in software development.

I. BACKGROUND
A. Algorithms

In order that legal rules can sensibly be applied to computer software,
a system of intellectual property law, and the lawyers practicing it, must
comprehend and account for algorithms. An algorithm is simply a series
of steps telling a processor how to perform a given task. For example,
the algorithm for knitting a sweater is a knitting pattern, in which a typi-
cal step is “knit one, pur! one,” and the processor is 2 human being.
Recipes, instructions to build model planes, and computer programs are
all aigorithms.

An algorithm can be expressed in different ways, using divergent
expressions at varying levels of sophistication and abstraction. For
example, an algorithm for sorting a list into order may be expressed in
the form of a computer program, in which case a typical step may be

Fall, 1991] Copyright or Patent or Both 147

“while n > 0 do,” and the processor will be a computer. That same algo-
rithm may be written for a human to carry out, but the language used
would be different, enabling the human processor to understand the algo-
rithm, Still, the two expressions would be the same algorithm.

The steps of the algorithm must be written to be understood and
executed by a processor. Algorithms are not dependent or digital
computers. Many algorithms were written for humans, long before
computers were invented, by people such as Pythagoras, Beethoven,
and Newton. Algerithms are processor-independent in the sense that the
same algorithm can be carried out by many different types of processors,
provided that the processor understands the form of expression used to
communicate the algorithm.! Each algorithm must be designed to tell a
certain processor what to do, but the processor need not be specified.
However, as instructions for accompiishing a task, all algorithms by
definition have at least one defined or implied processor.

A processor must be defined for an algorithm to exist, but how
specific does the definition of the processor have to be? Some argue that
a series of instructions, written in a high-level form of expression, that
can be carried out by a “generic” machine, is not an algorithm, but rather
a law of nawmwre, 2 mathematical formula, or an idea. Because an
algorithm must be tied to a specific device that wilt be used in the
problem-solving process, “until the device is specified, an algorithm can-
not be constructed.”® If this is true, is a program written in a general
high-level language that can be executed by any computer with the
correct compiler just an idea? High-level languages are designed so that
they are not device-specific. The better view is that ar least one proces-
sor must be defined or implied for an aigorithm to exist. In identifying a
processor, the higher the level of abstraction of the algorithm, the lower
the level of specificity needed in defining the processor.

Every computer program is an algorithm.®> For computers to perform
any useful task, they need to be instructed what to do. These instructions

1. The idea of the algorithm, or the general description of the solution to the problen
can be expressed in different languages for different processors, but the algorithm is still ©
same. For example, a recipe (which is an algorithm) to bake a cake can be written in
English or French, and so iong as the English cook and the French cook can understand the
language, the same cake should result. In fact, given any algorithm, it is possible 1o code it
in any programming language. See Allen Newell, Response: The Models Are Broken, The
Modeis Are Broken!, A7 U. PITT. L. REV. 1023, 1029 (1986).

2. Mirchell P. Novick & Helene Wallenstein, Algorithm ard Software Patentabifity, 7
RUTGERS COMPUTER & TECH. L.J. 313, 335 (1980).

3. See Newell, supra note 1: “An algorithm is just an ahstract program . . . the only dis-
tinction is the degree of abstracrion.” Bur see Paine, Webber, Jackson, & Curtis, Inc. v.
Merrill, Lynch, Pierce, Fenner, & Smith, Inc., 564 F. Supp. 1358 (D). Del. 1983) (Defining
“algorithm™ narrowly, the court heid that a computer program is not an algorithm.).

148 Harvard Journal of Law & Technology [Vol. 5

make up the algorithm called the program. However, algarithms for
which a computer is the interded processor are no different from other
algorithms, except for the manner and level of expression.* A computer
program may just be one form of expression of an algorithm.

The travelling salesman problem offers an illustration.> The solution,
an algorithm, is expressed by network theorists partly in English and
partly in symbols. The algorithm could be used by the post office in an
instruction manual for letter carriers telling them how to determine the
most efficient delivery route: That use would be one manner of express-
ing the algorithm. A computer scientist may take the algorithm and,
with only a “generic computer” in mind as the intended processor,
express the algorithm in pseedo code (an abbreviated form of English) or
a flow chart. At this stage, the algorithm is expressed in a form of code
at a high level with no particular processor in mind. After the intended
application and the programming language are chosen, the algorithm is
refined, step by step. until it is in a form understandable to the computer
(the computer program). The level of expression depends on the level of
sophistication of the chosen computer language.® The identical algo-
rithi could be written in & second programmiing language. The expres-
sion would be different, but the fundamentzl idea (of how to solve the
problem) and the resplis of running the program would be the same.
There is nothing to stop the programmer from refining the algorithm still
further, so that it is expressed in a less advanced computer language,
such as machine code.” The refinements express the same algorithm in a
more detailed way, or as described by computer scientists, at a lower
level. There is a continuum between the high-level descripticn of the
solution to the problem and the low-level machine code. The only
change is the detail of expression. ‘

4. It was predicted in 1980 thar if “a court determines that 2 program is identical 10 the
algorithm it expresses, then the court will find the program unpatentable” Michael C.
Gentignani, Legal Protection for Software, 7 RUTGERS COMPUTER & TeCH. LJ. 269,
294 (1980). Such a test would render all programs unpatentable; a program is a way of
expressing an algorithm so that a computer can understand it.

5. The algorithm determines the shortest route around a network so that the “salesman”
visits all “towns.”

6. As technology advances, the derail of expression required to communicate with and
program a computer will decrease. iigh-level languages look more like natural languages
than {ike machine code. Some database query languages allow questions to be asked in
patural languages such as English. Any dividing line between an algorithm written in 2
language that cnly a computer can understand and one that a human can understand is
disappearing rapidly. Indezd, this is a goal of compater science.

7. This i, in effect, what a program called the compiler does.

Fall, 1591] Copyright or Patent or Both 149

B. Computer Programs

A computer program uses a nusnber of algorithms to produce a cer-
tain result. This fact prompts some commentators to advocate protection
of the function of the program, rather than its expression. However,

- since a given result can generally be reached by more than one program,
several complications are created for such a function-based definition.
For example, a second programmer may write a different program that,
1o a user, operales in the same way and has the same user interface.3
The program, although achieving the same end, may do so by a com-
pletely different route or, in other words, by using a different algorithm.
Alternatively, the algorithm may be the same, but the actual code may be
different, because the programming language or operating system used is
different, or because the programmers have different programming
styles. Another variation occurs when the same algorithm is used to
accomplish the same result but the user interface and output are dif-
ferent; the user would then be unaware that the algorithm is the same.
Finally, two programmers may use different algorithms and interfaces,
but write programs that accomplish identical goals. For example, both
programs may pmd{jce useful airline boarding passes with the same
information, but the programs look different to the user and result from
dissimilar algorithms.

To say that one computer program has the same function as another
program really says nothing about the expression nsed in the program,
the expression produced by the computer as output, or the algorithm
used when coding the program. Simply, the function of a program is its
purpose, as distinguished from how it accomplishes that purpose (the
algorithm) or what is produced (the output).

It is often stated that the underlying algorithm of a computer program
is the idea, and that the computer program is the expression of that idea.
This is an over-simplification. A program may contain many algorithms,
ta control the data flow, 1o control the screen display, to sort things into
order when needed, and to accomplish the overall task. Some of a
prograin’s algorithms may perform a very small part of the overall func-
tion, whereas others may define the whole operation of the program. All
of these individual algorithms can be expressed at different levels of
abstraction. The computer program as written is only one of the possible
expressions. In one sense, the computer program is the only expression

8. The user interface is the program’s external appearance; two programs with identical
interfaces would appear, to the user, 10 be identical, even though they might have com-
pletely different internal program workings.

150 Harvard ._Ioumai of Law & Technology [Vol.5

that correctly maps the algorithm of the program. It is convenient, how-
ever, to think of the unexpressed method of accomplishing the task as an
idea; 1o call the algorithm of the program an idea merely states a conclu-
sion and tells nothing about the idea itself.

In summary, one should understand the following basic features of
alporithsns:

a. An algorithm is a set of instructions that are followed by a proces-
sor to carry out a process, which need not have anything to do with
mathematics.

b. Algorithms are not dependent on having a digital computer as the
Processor.

c. Algorithms are fundamental to computer science. Every computer
program is the expression of at least one algorithm.

d. Algorithms can be used to solve many problems, not just
mathematical problems.

. PATENT

Computer software, like any other invention, is currently the proper
subject for patent protection if it is a “new and useful process, machine,
manufacture, or composition of matter, or any new and useful improve-
ment thereof.™ Excluded from patent protecticn are laws of nature,
natural phenomena, and abstract ideas.!? There has been much debate as
to whether algorithms and computer programs are more like processes
and machines, therefore eligible for patenting, or more like the laws of
nature, therefore unpatentable.!! Part of the confusion has been caused

9. Patent Act § 101, 35 US.C. §101 (1988).

10. See Le Roy v. Tatham, 55 U.S. (I4 How.) 156, 175 (I852) (“A principle in the
abstract . . . cannot be patented.™); Diamond v. Diehr, 450 U.S. 175 {1981); Parker v. Flook,
437 11.S. 584 (1978).

11. See, e.g., Gregory J. Maier, Software Protection—Integrating Patent Copyright and
Trade Secret Law, 69 J. PAT. & TRADEMARK OFF. SOC'Y, 151, 165 (1987) (“patent pro-
tection is presently available for virually all software inventions”); Alan C. Rose, Profec-
tion of Intellectual Property Rights in Computers and Computer Programs, 9 PePP. L.
REV. 547, 556 (1982} (“at least some subject maner involving compuers may be
patented™); Jack E. Brown, The Current Status of Copyright and Patent Prortection for
Computer Software, 12 COMPUTER L. REF. 406, 407 (1990) {“Provided it is not expressed
as a pure mathematical algorithm, software that qualifies as nonobvicus inveation also is
protected by patent™); David Bender, The Case for Sgftware Patents, 6 COMPUTER Law.
2 (1989) (**sofrware patents” are ofien available on a cost effective basis and may be quite
valuable™); Donald S. Chisum, The Pazentability of Algorithms, 47 U. PITT. L. REV. 959,
960 (1986) (“mathematical algorithms ‘as such’ or *in the abstract” do not constitute patent-
able subject matter™); Comment, The Patenting of MIS Computer Programs, 21 PAC. L. J.
761, 762 {19940) {“no court has been willing 10 grant patent protection 1o 2 computer pro-
gram of and in fself™).

Fali, 1991} Copyright or Patent or Both 151
by the judicial systemn’s unfamiliarity with algatithms.
A. Algorithms and Patent Law

Courts have problems with the term “algorithm.” K is not defined in
the Patent Act, nor has the Supreme Court considered the word in great
depth. The Supreme Court, in its most prominent case on this question,
adopted the view that an algorithm, being a “prccedure for selving a
given type of mathematical problem,” is not patentable, but the applica-
tion of an algorithm “t a known structure or process may well be
deserving patent protection.”'? The Court is underinclusive in saying
that an algorithm is a precedure for solving a mathematical problem,
unless such procedures as knitting a sweater or building a model plane
are regarded as mathematical probiems.

The Patent Act does not explicitly prevent the patenting of algo-
rithms. However, in practice, because of the lack of understanding of
the distinction between algorithms and computer programs, and because
the inherent nature of an algorithm is to carry out a process (which is one
subject matter of patent), the distinction that the Supreme Court articu-
lated has proven to be of little use.’® The United States Patent and
Trademark Office (“the PTO™) has interpreted the Supreme Court’s deci-
sion as allowing patents for computer software but has disregarded the
limitations that decision imposes.'* Many of the patents granted to date

12. Diehr,450 U.S. at 187.

13. The Scpreme Court decided that a claim “does not become nonstanstory simply
becanse it nses a2 mathemanical formula, computer program or digital device.”™ id. The
Courr held that insignificant post-sohmtion activity will not wansform an unpatentable prin-
ciple into a patentable process, but whea a claim containing a mathematical formula imple-
Ments or apples that formula in a process that performs a function the patent laws were
designed to protect (such as transforming an article to a different state or thing), then the
claim satisfied the requirements of the Patent Act. The problem with the decision s that all
computer programs are applied processes. The test has not been limited, in its application,
to processes physically transforming mater, imd was regarded as the “go-ahead™ for paten-
tabiliry of algorithms and sofrware. See, e.g., In re Pardo, 684 F2d 912 (C.CP.A. 1982);
in re Abele, 684 F2d 902 (C.CP.A. 1982); ¢f. in re Bradley, 600 F.2d 807 (C.CP.A.
1979), summarily off d, 450 U.S. 381 (1981) (o algerithm in an investion in firmware
module that directs data flow transfers between register and memory); Paine, Webber,
Jackson, & Curtis, [oc. v. Merrill Lynch, Pierce, Fenner, & Smith, Inc.. 564 F. Supp. 1358
(P. Del. 1983) (suggesting that any new computer program capable of commercial use will
be patentable, provided only that it avoids reciting a mathematical algorithm that was
defined in a very narrow way). See gemeralfy COLIN TAPPER, COMPUTER Law 20-22
{4th ed. 1989).

14. Many of the patents granted by the Patent Office “are *pure’ software patents which
indicates the Patent Office is now wiliing to grart patents for novel and nonobvious com-
puter programs c¢perating on conventional off-the-shelf computer hadware”
PROPRIETARY RIGHTS COMMITTEE, COMPUTER LAW SECTION, STATE BAR OF
MICHIGAN, A SURVEY OF US SOFTWARE ¥FATENTS ISSUED FROM JULY 1987
THROUGH DECEMEBER 1987, quoted in Bender, supra note 11, a1 4. Seeaiso U.S. PAT. &

152 Harvard Journal of Law & Technology [Vol. 5

are regarded by many computer scientists as patents for pure algorithms.
~ The PTO allows the patenting of algerithms, but not mathematical
formulas. It regularly applies a two-step test to determine whether an
invention involving a computer program ‘s directed to statutory subject
matcr. The first step is to decide if the claims in the patent directly or
indirectly recite a mathematical algorithm. For example, if the claim
contains words or equations that look like a mathematical formula, the
claim recites a mathematical algorithm.

Secondly, the claim as a whole is analyzed to determine whether it
preempts the “algorithm.”'5 The claims are looked at without the “algo-
rithm” to see if what remains is otherwise stamtory. If what remains is
data gathering or non-essential post-solution activity, such as the
transmission of data or the display of output, the claim is held to be non-
statutory.

It would seem then that when the PTO tatks of mathematical algo-
rithms, it really means mathematical formuias. A recent decision of the
Board of Patent Appeals and Interferences, Ex parte Logan,'® has said
that this is not so. The Board noted that mathematical algorithms could
be computational procedures.!” But the Board then held that the claims
before it

did not recite a mathematical algorithm, because neither claim
essentially recites, either directly or indirectly, a method of
calculation, i.e., a method of computing one or more nurabers
from a different set of numbers by performing a series of
mathematical computations. '

This definition of a mathematical algorithm seems close to that of a
mathematical formula. :

The line the PTO draws is between algorithms and mathematical for-
mulas Tn effect, all algorithms, so long as not simply algorithms insert-
ing data into a mathematical formula (or 2 computational procedure
where the input and output are numbers) are patentable subject matter.
The Logan test would render only 2 small number of claims non-

- statutory. Any claim where either the input or result of the process is not

TRADEMARK OFF., THE MANUAL OF PATENT EXAMINING PROCEDURES § 1106 {stat-
ing that the Patent Office readily accepts claims relating to programs as patentable].

15. See fn re Iwashashi, 888 F.2d 1370, 1375 (Fad. Cir, 1989); /n re Grams, 888 F.2d
835, 83738 (Fed. Cir. 1989). ‘

16. Ex parte Logan, Appeal No. 89-2047 (B.P.A T Feb. 20, 1981).

17. Seeid.at6.

18. Id. a1 1G.

Fall, 1991] Copyright or Patent or Both - 153

a number or a set of numbers would not recite what the Board calls a
mathematical algorithm and is therefore patentable. That the algorithm
has a computer as the processor “is not a proper basis for [a section 101]
rejection.”” An algorithm that is something more than the application of
a mathematical formula, and that is capable of being expressed in the
form of a computer program, is patentable.

Patent law also requires that the process being patented be useful.?”
Therefore, to be the proper subject of patent protection as a process, the
patent application detailing the algorithm (or computer program) needs
to specify, among other things, the processor to be used in the process,
A processor must be defined for an aigorithm to exist, but how specific
does the description of the processor have to be? It could be argued
either that an algorithm written at a high level of abstraction is patent-
able, since it describes how a problem could be solved or that it is so
abstract that it is a non-useful or unpatentable idea.?! The same algo-
rithm may be able to be expressed so that processors other than comput-
ers can complete the process. The consequence of granting a patent
monopoly over the use of such an algorithm would be the total restric-
tion of that task, regardless of the processor contemplated for use, even
when the processor is a human carrying out the process without the use
of a machine. If patent law is to give coverage io algorithms and com-
puter progiams, it muost demand that the processor be defined in detail
‘and that the scope of protcction be limited to the use of that algorithm on
the specified processor. Anything else would risk overbroad protection.

B. Can Existing Patent Rules Deal with Algorithms?

One goal of patent law is to encourage the impiementation of
knowledge for the creation of useful products, not just the creation of
knowledge itself. Algorithms expressed in the form of computer pro-
grams are more directly beneficial to society than algorithms existing

19. In re Gelnovatch, $§95 F.2d 32, 36-37 (C.C.P.A. 1979).

20. See Paient Act §101, 35 U.S.C. §1D1 (1988); Bremner v. Manson, 383 U.S. 519
{1966). .

21. An algorithm can be designed with more than one processor in mind or with no pro-
cessor in mind but with the intention to refine the algorithm when a particular processor is
chosen. However, the algorithm would not be “useful” until the processor is specified. It
would be wrong to conclude, in patent doctrine, that anything that was not “useful” was just
an idea. As an example, instroctions to mix chemicals in a spacial way could be expressed
at a high level, with vague steps such as “stir until mixed.” The high-level algorithm could
be refined into a more specific algorithin for use by either 2 machine or a human once the
details (as required by each processor) were added. The device may be specified once the
high-level algorithm is refined.

154 Harvard Journal of Law & Technology [Vol. 5

solely in academic texts. The algorithms are useful only because a
machine can understand and perform such algorithms.22 No machine as
yet can execute algerithms written in natural languages. Thus, what
makes a computer algorithm valuable is its form of expression.? The
difficulty in legally analyzing the exclusion of computer programs from
patent protection results from trying to distinguish between algorithms
and the implementation of those algorithms in the form of computer pro-
grams, where the only significant difference between the two is in the
level of detail of expressicn. Expression is not something the patent sys-
tem is designed to protect, but it is the valuable aspect of the computer
program.

What one must definitely exclude from patent protection is high-level
or abstract ideas. Assuming that computer programs are a proper subject
matter for patent protection, can a line be drawn within the existing
patent framework between a process carried out by a corputer program
(which is pateniable) and the abstract idea that the pro;:.am embodies
(which is not), io determine what computer programs (or, more
correctly, which underlying algorithms) warrant patent protection? That
line cannot sensibly be drawn between programs and algorithms?* (as all
programs are algorithms)® or between useful and non-useful algorithms
(as by definition all algorithms are useful)?S or between laws of nature
and algorithms (as no algorithms are laws of nature)?’ or between

22, See Maier supra note 11, at 151 {Softwarc has functionality that distinguishes it
from ordinary writings and “has the power to physically implement [intellectmal concepts)
with the aid of a computer.”).

23. Note that patent law is concerned with determining whether a process is novel and
nonobvious and not whether a process is expressed in a more useful way than it has been
expressed previcusly.

24. See Bradley J. Hulbent, Speciai Consideratizns for Obtaining and Litigating
Software Patents, 4 SOFTWARE LJ. 1, 3 (1990) (high-level algorithm not computar pro-
gram).

25. See Diamond v. Dichr, 450 U.S. 175, 219 (1981) (Stevens, ., dissenting) (wanting
an “unequivoczl cxplanation that the term ‘algorithm’™ as used in this case ... is
synonymous with the term ‘computer program.”™).

26. See Newell, supra note 1, at 1026 (stating that algorithms are designed to do some-
thing useful and that “they jump the gap to application [and therefore are] patentable™).

27. An algorithm is not a natural phenomenon or abstract concept. It is a construction of
the human mind. Algorithins do not describe natural phenomena. See Chisum, suprg note
i1, at 980. However, an algorithm can be expressed at such a high level of abstraction that
it is, practically spezking, merely an idea. For example, an algorithm 1o bake a cake may be
“mix ingredients, then cook until brown.™ Is that an idea or an algorithm giving a high-
level description of the solution? It goes without saying that a patent for a process that uses
a law of nature, such as a process bottling milk using the law of gravity, does not give the
patent holder a patent on the law of gravity.

Fall, 1991} Copyright or Patent or Both 155

mathematical and non-mathematical algorithms?® (as most programs and
algorithms are non-mathematical and the distinction would exclude vir-
tually no programs or algorithms from patent coverage).?® There must
be criteria established to determine when an idea expressed as a com-
puter program is sufficiently distinct from the abstract idea that it
expresses to warrant patent protection of the process carried out by the
program.

However, it would be inconcsistent with the scheme of patent law to
prevent the patenting of a process simply because it is expressed in
detail—in a form “simple” enough for a computer to understand. As an
example, even if a novel way were invented 1o spray paint a car, the idea
of spray painting the car could not be patenied. Only that particular
novel process could be patented, and only if the patent claim was drafted
in enough detail to cover only the process and not the abstract idea. If
the process were carried out by a computer, the patent claim could legiti-
mately set out as the process the instructions given to the computer.
Failure 1o protect a narrowly drafted patent claim in the case where a
computer is involved has no justification in the language of the patent
statute 30

‘When lawyers speak of patenting a computer program (or part of a
computer program), what is generally meant is the patenting of the pro-
cess that the program carries out.’! No one, at the patent level, is con-
cemed with the protection of the literal code: That is the domain of
copyright. It is what lawyers call the process, and what computer scien-
tists call the algorithm, that all the fuss is about. But does granting a

28. Chisum, s;mra note 11, at 960, concludes, after deciding that there need to be addi-
tional incentives for investment in computer software, that “(nlew and useful algorithms,
including mathematical algorithms, should constitute subject matter eligible for patent pro-
tection.” Chisum correctly states that algorithms can be devised 10 solve all sorts of non-
mathematical preblems. /d. at 976.

29, “[BJecause most software falls in this category of non-mathematical algorithms, a
significant percentage of software potentially can be patented.” John R. Lastova & Gary M.
Hoffman, Patents: Underutilized Leverage for Protecting and Licensing Software, 6 COM-
PUTER LAW. 7, 8 (1989). Mr. Lastova is a Primary Examiner handling computer software
applications at the PTO.

30. Differences in levels of abstraction in the description of the algorithm in the patent
claim are to be distinguished from leveis of invention—a trivial improvement, which is at a
lower level of abstraction than a patentable invention or a nonpatentable law of nature, is
not patentable and is not what the example is discussing.

31. Patent applications are usually language-independent. The algorithm can be ex-
pressed in the form of a flow chart. See Mater, supra note 11, at 164. To make sufficient
disclosure, that flow chart must be able to be used by a programmer of ordinary skill to pro-
duce a workable code. It follows thar, given the algorithm, any coding of it is obvious.
Clearly, the parent holders are trying 1o protect the algorithun and not any particular coding
or form of expression in which the algorithm is expressed.

156 Harvard Journal af Law & Technology [Vol.5

patent for an algorithm where a computer is the processor in effect pro-
tect expression?

The dilernma presented in the above paragraphs can be stated as fol-
lows: Patent law does not protect abstract ideas. A computer program is
not abstract, but a highly detailed and specific description of a way of
solving a problem. However, the underlying algorithm over which the
monopoly is sought may be general or abstract. The algorithm in ques-
tion can be expressed either in a highly abstract way, so that it resembles
an idea, or in a highly detailed form such as compuier code. The detail
of expression gives no indication of the level of abstraction of the pro-
cess over which patent coverage is claimed. Patent law has difficulties
distinguishing between algorithms as ideas and algorithms as processes.
If an ad hoc line is drawn excluding all computer programs from patent
protection, it excludes algorithms which may be the proper subject of the
grant of a process patent. On the other hand, if to determine patentabil-
ity, a rule is used requiring the processor to be a computer and limiting
the scope of protection to the use of the algorithm by the computer,
patent law comes very close to protecting expression rather than the
underlying process.

At present, the algorithm of any computer program is capable of
receiving patent protection provided the algorithm does not simply apply
a mathematical formula and provided that the claims are expressed at a
level of detail sufficient to distinguish them from abstract ideas. Such
protection will prevent any programmer from using a more detailed
expression of that algorithm in any computer program. In effect, the
patent on the process limits the independent creation of expression.

C. Rationales for Excluding Patent Protection

Many reasons have been suggested as to why computer programs
should be excluded from patent protection.3? Most of these are merely

[

32. Because of differences in definitions, not everyone has been discussing the same
thing. There are at least four possibilities for patent protection involving computer
software: A complete program, such as 2 Computer Aided Design program. that in a new
and novel way allows an architect to plan a high-rise building; a section of a program, such
25 code 10 store variables in memory efficiently or 10 locate an jtem in 2 database speedily,
that performs a computer operation in a new and novel way; a solution (using a computer)
10 a problem that has not been able to be solved previously, such as a program that deter-
mines whether another program is emor-free or a program that solves the uremployment
problem: and a process that has not been able 1o be computerized previously, such as a pro-
gram to keep track of the location of taxis, that uses a computer (and possibly other physi-
cal devices) in a new and novel way. See In re Abele, 684 F.2d 902, 907 (C.CP.A. 1982)
(A claim that was otherwise statutory, even though less useful without the algorithm,
“presents statutory subject matter when the algorithm is included.™); Diamond v. Diehr, 450
U.S. 175, 189 (1981) (subject matter must be statutory regardless of presence of computer).

Fall, 1991] Copyright or Patent or Both 157

objections to the patent system itself. The most common objections that
have been made to the patenting of computer programs are discussed
below.

1. In Software, Independent Reinvention Is Commonplace

Compared with other areas of science and “useful arts,” it is common
for separate computer scientists to “discover” indzpendently the same
way of solving a problem.>® Where independent reinvention is common,
one rationale of the patent system, the encouragement of the dissemina-
tion of knowledge through publication, loses force: Anyone who consid-
ers the problem is likely, without much effort, to arrive at one of a
limited number of solutions. As a patent grants a seventeen-year mono-
poly, anyone wishing to use the process for that period is forbidden to do
s0, even another independent inventor. Due to the constraints a com-
puter language imposes on the expression of the algorithm, the physical
constraints of the computer itself, and the large number of programmers
solving problems daily, many argue that there is more repetition of
invention than occurs elsewhere in science and business.

In the normal course of events, the subject matter of patent is mors
general than the subject matier of copyright. Copyright protects expres-
sion, where the chance of two people independently producing the same
expression is very small. Patent. on the other hand, “operates at the level
of generality at which there is at least a plausible possibility of indepen-
dent creation of the same invention.” For this reason, patent has a
requirement of novelty, interpreted so as to prevent a patent being
granted for an invention that already exists or is obvious to those “skilled
in the art.” The more abstract the interest for which protection is given,
the more likely the odds that two people will independently create the
same thing. ~ ~
~ For example, there is dispule over whether Newton invented the

33. See THE LEAGUE FOR FROGRAMMING FREEDOM, AGAINST SOFTWARE
PATENTS 8, unpublished paper of Oct. 24, 1990. The Leaguc is “a grass-rools organization
of programmers and users opposed 1o software patents and interface copyrigats,” id. at 1,
and includes as members successful entrepreneurs, executives, independent consultants and
programmers, including Richard P. Gabriel, John McCarthy, Marvin Mipsky, Robent
Bayer, and Patrick Winston.

34. THOMAS HEMNES. NOVELTY. SCOPE AND THE SHARED GEOMETRY OF
PATENT AND COPYRIGHT PROTECTION 22, paper delivered to the Computer Law Asso-
ciation at Boston, November 5, 190. Cf. John S. Wiley, Copyright at the School of Patent,
58 U. CH1. L. REV. 119, 182 (1991), who claims that a partial reason why patent law
requires novelty and nonobviousness and copyright does not is because patent innovation is
incremental while copyrighe authorship need not “begin with library research.”

158 Harvard Journal of Law & Technology [Vol. 5

system of calculus. Some claim that Gottfried Leibniz came up with the
idea first. Itis likely, regardiess of whether Newton or Leibniz had ever
studied mathematics, that someone by now would have discovered and
written about calculus. However, it is highly unlikely that anyone would
have written a book identical to Newton’s Principia Mathematica.>*

In writing computer programs, where the idea is expressed in a highly
refined manner, why would the likelihood of indepandant reinvention be
greater? The answer to this depends on how the inventicn is specified.
If the invention is the particular code in a compater program, it is true
that once an algorithm has been designed te sclve a problem, the likeli-
hood that two independent programmers using the same algorithm and
programming language will write the exact same code is quite high. The
programmers are merely expressing the aigorithm at the level the com-
puter can understand, and are not in fact inventing anything. The con-
straints of the programming language, if a well defined language, will
not allow much room for creative thought process or variations in
expression.’ The likelihood of independent creation of the same pro-
gram in such circumstances is therefore high.

The inventive steps in software design almost always take place at the
level of algorithmic creation. It is the algorithm, and not the code, that
the inventor wishes to paient. The question then becomes whether, in
the creation of a new and novel algorithm for use on a computer, the
likelihood of independent reinvention is greater than where an algorithm
or process is created in other fields. Assuming that the level of ahstrac-
tion is the same both when one is solving a problem where the processor
is a computer and where the processor is not a computer, why would the
involvement of 2 computer make independent reinvention of an algo-
rithm more likely?

The League for Programming Freedom, a main proponent of this
argument, states generally that a programmer “solves many problems in
developing each program. These solutions are likely to be reinvented
frequently as other programmers tackle similar problems.”>” This state-
ment is misleading in that it does not differentiate between the creative
problem-solving component (the design of the algorithm) and the

35. SR [SAaCc NEWTON, PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA
(1687).

36. This does not mean, however, that coding an algorithm is mechanical or that all cod-
ings of an algorithm will be identical. The point is that the constraints of the language are
designed to Limit the number of possible ways of expressing a particular algorithm. Com-
pare the process of encoding an algorithm with writing a screenpiay from a novel.
Although the plot will be the same, the number of possible screenplays will be extremely
large. s

37. THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33.

Fall, 1991] Copyright or Patent or Both 159

mechanical expression of the sclution in a language a computer can
understand (the coding). As previously stated, it is likely, due to the
constraints of programming languages, that there will be similarity in
coding. But, is a person who solves a specified problem by designing an
algorithm with a computer as the processor constrained in such a way
that only a small number of solutions is possible. If so, then the likeli-
hood of independent reinvention is greater where a computer is invoived
and the rationale for patent protection, to stimulate independent creation,
is weaker.

For any problem, there are many conceivable solutions. However,
just as to fly between Boston and Washington, D.C. there are many pos-
sible routes but only a few sensible flight paths and stopover airports,
there exists only a finite number of reasonably efficient algorithms to
solve a problem.?® A finite number does not necessarily mean a number
50 small that reinvention is likely or that all efficient algorithms will be
obvious once the problem is brought to mind. As Professor Newell, a
computer scientist, writes, “Algorithms of immense generality and scope
will continue to emerge so long as science endures."* They will con-
tinue to emerge for problems not thought of today and provide better
solutions for known problems. Not including simple triviai problems, it
would be unreasonable to assume that for all known problems all
efficient solutions have been thought of and published. More research
wiil lead to more solutions and better algorithms in many fields. Itis a
goal of the patent system to encourage such research. That there are a
limited number of solutions to a problem does not imply that the first
person discovering the solution is not worthy of a patent.

A second concern about the increased probability of independent
" creation is raised by the existence of computer constraints that limit
efficient solutions. Constraints such as available memory limit the size
of programs and data, and the silicon chip in the CPU limits the speed of
calculation. With today’s technology, there may only be one efficient, or
even workable, algorithm to solve a given problem.*® To say that these
algorithms are reinvented frequently may just be a restatement that the
solutions are obvious to a person experienced in the field. The Patent

38. See Charles Walter, Defining the Scope of Software Copyright Protection for Max-
imum Public Bernefit, 14 RUTGERS COMPUTER & TECH. L. J. 1. 59 (1988).

39. Newell, supra note 1, at 1028. If algorithms of importance continue 10 ernerge so
long as science endures, why is it necessary for Lhe patent sysiem to encourage such
research?

40. A doctrinal responsé 'is that there is no rule in patent law that a patent can only be
granted lo the best invention to solve a problem or will not be granted if the invention is the
only solution to the problem.

160 Harvard Journal of Law & Technology [Vol.5

Act does not, in any event, allow a patent for an obvious invention, pro-
cess, or improvement. For the argument that independent reinvention is
commonplace to succeed, one further premise must be added: There are
a small number of nonobvious practical solutions to problems in the field
of algorithmic design of computer programs and therefore they are more
likely to be reached and rediscovered independently as compared to
algorithmic design in other fields. Such a conclusion is difficult to jus-
tify. It should not be assumed that designing an algorithm for a com-
puter, as compared to an aigorithm designed for any other processor,
limits the number of nonobvious solutions to a problem.

Although there may be more computer programmers solving more
problems using more accessible technology resulting in greater progress
and more inventions (and possibly the same solutions to those multitudes
of problems) than in any other field, this phenomenon of intensive
creative effort in a developing technology is not new to patent law. At
stages of history there is often a race to be first to make a new invenrion,
and as existing knowledge reaches a stage where the time is ripe for such
invention, numerous people independently “discover” the same solu-
tion.*? The patent system has previously dealt with such occurrences,
maybe not in a very satisfactory way, in its rules about priorities:*> Only
one of the inventors wins the “patent louwtery.” The criticism here
amounts 0 no more than a criticism of the patent system having to
choose between inventors; compuier scientists compiain that since they
invent more, they are more adversely affected by this rule.

It can not be assumed or proven that computer programmers, just by
having a computer as the intended processor, are more creative and thus
more likely to arrive independently at the same nonobvious solution than
would be the case for other inventors. In fact many problems are solved
without computers in mind as the processor, but the solution is later used
as the basis for 2 computer program. In that case, invention and any
independent reinventiorr of the algorithm is not affected by having a

41. For example, note the simultanecus discoveries in the glass boule manufacturing
industries, Uniled States v. Hartford-Empire Co., 46 F. Supp. 541 {(N.D. Ohio 1942),
modified, 323 U.S. 386 (1945), the ongoing historical dispute over who invented the air-
plane, and the 20 year dispute in the Patent Office over who invented the silicon chip.

42. See Patent Act § 102(g). 35 U.S.C. § 102(g) (1988). The general rule is, as between
two inventors, the first to conceive has priority, so long as the first inventor uses continrous
diligence from a time pricr to the second Inveator’s time of conception, and reduces the
invention to practice first. The test is ambiguous when applied beyond the two inventor
simation. This problem is avoided in other jurisdictions. such as Canada, where the patent
is granted to the first to file, not the first to invent.

Fall, 1991} Capyright or Patent or Both 161

computer as a processor.*> This emphasizes the point that an algorithm
is not dependent on having a computer as the processor: One would
expect the accurrences of independent recreation of algorithms to be the
same whether the algerithm is expressed in the form of a computer pro-
gram or not.

It may be true that independent reinventior.is more likely in coding
an algorithm, but for algorithmic design, there is no difference in the
creative process, indicating that independent reinvention of nonobvious
processes is more likely to occur than in other fields.

2. Most Software Deve[opmenr;;f Are Nonobvious and Not Novel

Although there is a distinction between the tests for novelty and
nonobviousness,* the same attack is made on both—that the tests atlow
common techniques to be patented, thus hindering legitimate develop-
ments in the software industry.*® It is claimed that the PTO has granted
parents on software oo casily and without proper knowledge of what is
occutsing in the software industry.

Prior art must be examined to determine whether the claimed inven-
tion is novel and nonobvious. The rapid growth and nature of the
software industry has resulted in the commercial success of “back yard”
companies. Developments are ad hoc and undocumented. Many new
techniques are spread through the use of electronic bulletin boards,
where they are not physically stored and where, after a period of time,
they are irretrievable or unlocatable.® Programmers are more concemed

43. The question of whether a person using a known algorithm in a computer program to
improve a known, as yet not computerized, process has been the main focus of cases in this
area. See, e.g., Diamond v. Dichr, 450 U.8. 175 (1981). The Supreme Courr has held thar
the person doing so has undentaken a sufficient inventive step for the grant of 2 patent. For
processes already in vse, there is a strong likelihood that two people will independently try
to use that process’ algorithm as the basis of a program 10 computerize the process. If so,
the invention is the idea of using a computer to improve a solved problem. That is not a
novel or new invention, but an improvement on an old invention. Cf. id. at 219 (Stevens,
J., dissenting). Justice Stevens wanted “an unequivocal holding that no program-related
invention is a patentable process under §101 unless it makes a contribution to the art that is
not dependent entirely on the utilization of a computer.” /d.

44. Simply, novelty depends on what is known, and nonobviousness depends on what
the next step may be and if that step has been anticipated.

45. Newell, supra note 1, at 1026, states that “it is not possible 1o do anything in com-
puter science without having it be almost immediately related to use, with only small
efforts of the imaginarion. . . . Hence. where is the rewardable, risky. inventive effort?”

46. Prior art is only relevant if it is exists “In a manner accessible 1o the putlic ... and
open to the people of this country . . . upon reasonable inquiry.” Galyer v. Wilder, 5t U.S.
(10 How.) 476. 496 (1850). The inventor must search with reasenable diligence for materi-
als that could be located by a person ordinarily skilled in the subject maner. Unpublished,
uncataloged materials do not, therefore, fall within the category of prior art. See In re Hall,
781 F.2d 897, 900 (Fed. Cir. 1986). For computer programs it is likely thar most of the

162 Harvard Journal of Law & Technology [Vol.5

with completing contracts than publishing academic papers: “Some-
times it is possible to patent a technique that is not new precisely because
it is obvious—so obvious that no one would have published a paper
about it."¥7 Determination of what the prior arnt is or was at any partico-
lar time is not the only problem. Matters are exacerbated by the PTO’s
inexperience in dealing with computer software®® and its inability to
compare patent applications involving computer software with the prior
art®® This results in patents being incorrectly granted in borderline
cases.

A second attack on the current situation is that the “standard of obvi-
ousness developed in other fields is inappropriate for software™0
because the nature of programming encourages the application of tech-
niques used to solve one prablem in the solution of a completely separate
problem.3! For example, sub-procedures, such as sorting routines, are
used over and over in a variety of programs as 2 step in accomplishing
the ultimate goal of the program. As programmers are trained to
generalize, it is obvious to them 1o use or adapt different techniques to
different settings.5? ’

Where the programmer is just coding an algorithm, it is difficult to
regard the coding of an algorithm as creating something new or involv-
ing an inventive step:*® it is just expressing an alzorithm at a different

existing prior art will not be able to be found “upon reasonable inguiry™ and the Patent
Office will grant patents over preexisting processes. Cf. Wiley, supra note 34, ar 142

47. THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33, at 2-3 (“[M]Jany
commonly-used software techniques do not appear in the scientific literature of computer
science. Some seemed 100 obvious to publish while others seemed insufficiently general:
some were open secrets.”). See also Hulbert, supra note 24, at 13, who states that it may be
difficult to mount a defense for lack of novelty or fos obviousness as “so many of the previ-
ously created programs (prior art) may be undocumented, stored only on disk.”

48. “The Patent Office refused until recently to hire Computer Science graduates as ex-
aminers, and in any case does not offer competitive salaries for the field.” THE LEAGUE
FOR PROGRAMMING FREEDOM, supra note 33, a1 2.

49 See D. Lee Annor: & Theodore A. Feiwhans, Is the United States Automating a
Parenr Registration System for Sofiware?, 72 J. PAT. & TRADEMARK OFF. 50C'Y 8%4
(1950).

50. THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33, at 3.

51. Cf. Walter, supra note 38, at 84. (*Software develops incrementally; subsequent gen-
erations of computer programs are usually obvious and seldom based on novel processes.”™).

52. Hulbert, supra note 24, at 4, claims that under the current law, a patent “may reach
far beyond the particular software patented and may relate 10 other methods that may be
useful on far different types of software.™ It is argued by people opposed to patents for
software that such a patent should not have been granied in the first place as in ali ikeli-
hood it is not a new process but is itself borrowed from elsewhere.

53. Compare the process of translating a patent application from Freach to English.
There is nothing novel or fventive in doing so. As another example, a baker who applies
the laws of physics to invent a new way of making bread is rewarded by a patent mosop;:,
when he expresses that process in a patent application and the patent is granted. On the
other hand, a computer scientist who develops a successful program may either code an

Fall, 1991] Copyright or Patent or Both 163

level of abstraction. If the number of feasible codings is limited by the
constraints of the programming language, then it could also be argued
that the resulting code is obvious. The automation of the previously
manual steps of a process is obvious.¥ Therefore, no patent should be
granted to a computer scientist who takes a known algorithm and
encodes it in a computer program.

At the higher level of algorithmic design, more complex issues arise.
The question shifts to whether or not the “discovery™ (and subsequent
coding) of a novel and nonobvious algorithm can be distingnished from
the simple coding case.™® As an algorithm may be expressed in many
different ways, and used in many disjoint fields, the PTO, as a practical
matter, may have limited its inquiry to whether the algorithm in its
encoded form is new and nonobvious. If that is the case, then despite the
fact that the manifestation of an algorithm as a computer program is
always obvious 10 a computer scientist, what is being protected is the
compiuter code—in other words, expression.

If an idea is directly related to computer programming techniques,
such as controlling screen displays or memory management, the algo-
rithms behind such programming “tools™ raise similar problems to those
raised by simple coding technigues: The algorithm is constrained by the
caomputer’s physical construction. However, since the algorithm is not
useful where a computer is not involved, the computer beccmes both the
processor and the object of the process. Most programming tools are
likely to be obvious once the the problem surfaces—most innovations
occur soon after a new computer is invented.’® The criticisms that the

algorithm aiready in existence inte a form a computer can understand or create a revolution-
ary new process and code that idea. The second case is more like that of the baker. In the
first case, it is difficult to see why the programmmer should be given a monopoly—what was
done was the creation of a new expression of an old idea, which is the domain of copyright
protection. Making 2 distinction berween “tanslaring” an algorithm and “inventing™ an
algorithm, where both are applied in a useful way, would be a rime-consuming and difficult
task for a court w0 undertake.

54. Cf. Parker v. Flook, 437 US. 584 (1978) (obvious post-solution =ctivity not
sufficient to trensform an unpatentable principle inte a patentable process).

55. Id. a1 594, setting out the “point of navelty” test: A process is umputentable if the
point of novelty lay in the formala or algorithm in the claim. This cace has been described
as the “low point for patent protection of software inventions.™ Maier, supra note 11, az
154_ The point of novelry test was rejected by the Supreme Court in Diamond v. Diehr,
450 U.S. 175, IB9 (15981), which stated that the claim must ne considered as a whole.

56. For example, the use of backing store to store the contenis of hidden windows was
first developed at MIT. on a Lisp Machine. “The Lisp Machine was the first computer to
use this techmique cnly because it bad a larger memory than earlier machines that had win-
dow systems.” THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33, at 4. A
claim by a computer hardware manufacturer that a programming technique for one of its
new machines is new and nonobvious must be regarded with suspicion: The tecknique may
only be new because no one has had the oppornmnity o write any programs for such a
machine and i is likely, if history is any guide, 1o be obvious 1o a programmer using that

164 Harvard Journal of Law & Technology {Vol. 5

prior art is not easily discoverable and that programmers regard the flexi-
bility of programming tools as obvious become even stronger when these
types of algorithms are considered.

The PTO must be strict in its application of the tests of novelty and
nonobviousness to software inventions. Where there is doubt, the safer
path in the field of computer programming may be te withhold the
patent: the nature of the industry being such that there is a high likeli-
hood that what is claimed is nonobvious and not novel.’ Secondly,
there must be a rule that the mere coding of an existing algorithm or the
computerization of a preexisting process (as producing nothing new and
only what is obvious) should not lead to the grant of a patent over the
algorithm.> In other words, no patent should be granted for an algo-
rithm solely due: to the fact that it is expressed in a computer language.
At what level of abstraction should the PTO and the couns look 10 see if
the algorithm is novel and ncnobvious? If the PTO and the courts should
not fook at the algorithm expressed as code, they must chose a higher
level of expression of the algorithm. The higher the level examined, the
less likely it it is to be novel and the wider the scope of possible cover-
age. The closer the level of expression is to computer code, the more the
patent system looks as if it is protecting expression. That is the role of
copyright. These concemns suggest that patenting is not the optimal form
of protection for computer programmying innovations.

3. There is No Need for Incentives to Invent in the Software Industry

In 1980, when the law in this area was more uncertain and it was gen-
zrally believed that there was no patent protection for computer pro-
grams, a lawyer wrote that “the industry is growing in leaps and bounds
without [copyright or patent protection].™ He further suggested that
patent protection would stifle competiion whereas continuation of the
stams quo would encourage software developers to improve their pro-

machine once he is given the chance to use the new machine.

57. IBM Australia, whose United States parent holds many software patents, submitied
to the Australizn Copyright Law Review Commiree (“ACLR™) that “patent Iaw has only 2
miner role to play in software protection—as most software is insufficiently novel and
imventive.” Collection of Letters on Copyright Proiection of Software 4 (unpublished sub-
missions, on file at the Harvard Law School Litrary) [hereinafier Collection].

58. “Itis not at the coding phase where the primary creativity is expressed in the writing
of a computer program.” Brief of Amicus Curige, ADAPSO, in Whelan Assocs., Inc. v.
Jeslow Dental Lab., Inc., 797 F22 1222 (3d Cir: 1986), cerr. denied, 479 U.S. 1031 (1987).

59. Gemignani, supra note 4, at 309.

Fall, 1991} Copyright or Patent or Both 165

ducts constantly.% In 1991, the industry is much more developed and
patents have been granted to computer-related processes.$! No study has
been conducted to determine whether the perceived change in the law
has enbanced or encouraged innovation or led to an increase in output.
If additional incentives are unnecessary, patents will add nothing of
valve to society, but rather increase costs by granting a monopoly over a
useful product or process.

It is not only difficult to quantify the extent to which the patent system
encourages innovation tha: would nat otherwise occur;%? it is a formid-
able challenge to distingdish the software industry from an unknown
general position. This Amicle merely outlines the arguments that the
patent system impedes innovation in software development.

Farst, it is claimed that there are many other incentives to invent new
software apart from the chance of being granted a patent. When there
was no patent prolection, the industry grew rapidiy.$* Many successful
developers never attempted to apply for patents but still produced
software for commercial gain or intellectual satisfaction.® innovation, it
is claimed, often occurs by accident in solving probleins where invention
was not the goal of the programmer, 5

Secondly, it is the market that determnines whether an innovation will

60. Id.ar3il.

61. See. e.g., Chisum, supra note 11, at 1021-22. The Appendix ists examples of the
parents granted, including the technicue of using an exclusive-or o write a cursor onto 2
screen {patent number 4,197 590}, a technique o allow several programs to share the same
plece of memory (shared copy-on-write segments: patent number 4,742,450), a process for
the use of backing store 1o allow hidden windows 10 be retrieved quickly (patent number
4,555.775), a menu systera for a word processing program (patent number 4308,582), an
algoritimm for solving linear programming problems (patent number 4,744,028) and a pro-
cess for conveying source code Into an object program, fitigated i Refac Int'l Lid. v. Lotos
Dev. Corp., 131 FR.D. 56, 57 (S.D.N.Y. 1990;.

62. Cf George L. Priest, Whar Ecornomists Can Tell Lawyers Abour Intellecrual Pro-
perty: Comment on Cheung, 8 RES. L. & ECON. 19, 21 (1986).

63. In 1572, the Scpreme Court believed the PTO’s claim thar there was sufficient
growth in the industry in the absence of patent protection. Only copyright protection was
then available for computer programs. Gottschalk v. Benson, 409 U.S. 63, 72 (1972;, See
also PRESIDENT'S COMMISSION ON THE PATENT SYSTEM, TO PROMOTE THE PrO-
GRESS OF ... USEFUL ARTS 13 (1966), which recommmended demying patentability to
sottware as, without the patent systemn, the software industry was “doing well.” Gonuschaik,
409 UU'S_at 72. The recommendarioas of the Commission were ignored by Congress.

64. The prce of new development made inventions obsoletz quickly, and so it was
thought any patent eventually granterd would provide no economic return.

65. “Much software nnovation comes from progammers solving problems while
developing software, not from prujects whase specific purpose is to make inventicns and
obrain patents. In ther words, these ianovations are byproducts of software development.”
THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33, a1 9.

166 Harvard Journal of Law & Technology [Vol. 5

Lyt

be successful, not the granting of a patent.% Developments occlir 50
swiftly that patented programs are of little commercial value in them-
selves,5 and any patent will impede possible improvements that could
be made to the program by other developers. The lead time a software
developer has in the marketplace gives that developer enough commet-
cial advantage so that the a:(dmonal incentive of a monopoly over the
“ invention is not needed.%® However, some software developments can
be quickly and cheaply copied and distributed, reducing this lead time
advantage. Even when literal copying is not involved, software is dif-
ferent from other products. Softwere is inexpénsive to design and casy
0 manufacture compared with a hardware system with the same number
of components.®® As software is not designed rsing real components
that have to be physically assembled and tester, :zad not manufactured in
large piants that have 0 be equipped and tocled, but built from well
defined mathematical objects, the reverse engineering of software will
take less time than other products.”™

There is the additionai factor that the holder of a patent may ficensa
the process. This may be an incentive in itseif to create software or to

66. Motorula, a computer chip manufacturer lost a key market by delaying the introduc-
ticn of new products due to “an obsession with technological excellence.” Stephen K.
Yoder, Motorola Loses Edge i M:croprocessors by Delaying New Chips, WaLL ST. J.,
Mar. 4,1991, at Al.

67.. “Companies no longer wait for paient authorities to award them inchiallengeable first
creck at a mearket. Competition decides who gets the lion’s share of the market. Patents. as
they armive, are swapped for royalties or other patents. Instead of . zing the arbiter of com-
petitive position, patents are becoming just another tradeble commodity, like bonds or base-
ball cards. . . . Given today’s shortening product cycles, the ability to create a sieady fiow of
vnique, innovative products is far more profitable than trying to stake a claim to any single
idea.” The Paint of Patents, ECONOMIST, Sept. 15, 1990, at 19-20. The article presents
the example of Mr. Gilbert Hyar, a self-cmployed inventor whose patent claim on the
microprocessor took 20 years 1o be granted. If a company waited on such a patent, it would
be “irredeemably behind.”™ fd. at 20.

See also Tim W. Ferguson, Liberaring Inventors or Shackling Progress with Paper-
work?, WALL ST. J., Mar. 5, 1991, at A17. Mr. Hyatt claims that “a hzndful of .. . major
companies . .. tried 10 appropriate his work™ and that innovators “have been routinely
ripped off by lawyer-driven, bureaucratic companies and as a result are holding back break-
throughs that could transform life on eanth,” Id.

68. Even if a process is imitated and marketed sperdily by rival firms without the
research overheads, competition in that market may be weak so that prices are not driven
below a ievel wheiz development costs cannot be recovered. Cf. Stephen Breyer, The
Uneasy Case for Copyright: A Study of Copyright in Boaks, Photacopies, and Computer
Programs, 84 HARV. L. REV. 281, 345 (1970} (arguing that an imitator will need to
develop technical suppert for copied computer software, thus giving the initial programmer
sufficient “lead time™ to recover development costs).

69. THE LEAGUE FOR PROGRAMMING FREEDOM. supra note 33, at 4.

“#6. A computer program may still be complex and require a large amount of testing time
to see if it performs correctly. An industrial product, with a similar number of components,
it is suggested, would be far more complex o design and test. Id. at 5.

Fall, 1991] Copyright <r Patent or Both 167

acquire patents on software that others have been induced to create. In
the hardware field, revenues from license fees have been high. For
example, Texas Instruments Inc. in 1987 decided to raise the license fee
on its chips'to five percent, generating 281 million dollars of income in
two years from protesting rivals.”!

Thirdly, software is often designed by universities as part of research
or through government subsidized programs.” The resulting inventions
are not due io the incentives of the patent sysiem. On the other hand,
universities often patent and develop the results of research, and the
investment by private enterprise in such ventures would be unlikely
without the knowledge that the product or process was patented.”> A
reply may be that such institutions are inefficient in their development of
marketable software and that the large amounis of money spent take
resources away from more socially desirable or efficient projects.

Without further study and economic analysis of the patent system, no
final solutions can be reached. The issues that computer software inno-
vation present, due to the infancy of the indusiry and the different *
methods of production used, wili put a gloss on any general findings
about the patent system. In the fong term, there is no reason to believe
that the ratio of innovation in the software industry because of the patent
system to innovation in spite of the patent system will be different from
that in other industries.

At present, the expression in software is protected by copyright.
Whether patent should provide protection to programs in addition or as
an alternative to copyright is examined in the Conclusion. However, due

71. Paula Dwyeret al., The Battle Raging over “Intellectual Property,” BUS. WK., May
22, 1989, ar 79.

72, An sxample is ADA, a computer language designed by the U.S. Defenze Depart-
raenk.

73. Farexample, the British Technology Group (“BTG") claims to be “the world's lead-
ing technology transfer organization, licensing and financing products worth over 600 mil-
lion pounds in annual sales.” Universities, polytechnics, and government research estab-
lishments in the U.K. are BTG’s most important inventive sources. See BRITISH TECH-
NOLOGY GROUP, THE WORLD'S LEADING TECHNOLOGY TRANSFER ORGANIZATION,
firm brochure, undated. The point is that the academic may invent regardless of incentives,
but the financier will not risk the possibility of imitation by rival firns when deciding
whether to invest in further development and construction. The countervailing arguments
are that not all sociaily valuable inventions are given patent monopolies and are still
developed, and that research by universities or government subsidized bodies is inefficient,
producing only a tiny fraction of worthwhile products compared with the amounts invested.
BTG's promotional materials do not say what percentage of their patent porefolio consists
of software patents, and state that for some inventions copyright is the preferred form of
protection. It would be useful to know if companies readily invest in software projects
where the only intellectual property protecticu is copyright. BTG recently opened an office
in the United States. -

168 Harvard Journal of Law & Technology [Vol. 5

to the fact that software can be copied easily, one may assume that the
incentive to write programs would be less if no protection were provided
at all. This Section has considered only whether protection of
computer-related algorithms by the patent system encourages or stifles
program creation, One should note in conclusion that since it is only
recently that the PTO has granted patents on software, most innovation
in the industry has not occurred because of patent protection.”™

4. Licensing of Software Patents Does Not Work

There are three common arguments why licensing of computer
software inventions is harmful to the software industry and the commun-
ity. Although these may be valid complaints, this Section will only show
that they are not unique to software patents: It will be left for others to
prove (if it is possible) that the patent system does not fulfill its claim of
promoting efficiency by enabling others to license existing inventions.

The first argument is that patents of computer programs are hard to
find, and if found, are impossible to understand. The PTO has no
classification for software or computer related inventions. They are filed
everywhere and anywhere, “most frequently classified by end results . . .
but many patents cover algorithms whose use in a program is entirely
independent of the purpose of the program.””® Even a diligent inventor,
who did not wish 1o infringe another’s patent might be unable to find out”
*. whether a patent exists over a certain process.’®

When a possible patent is found, even though it is meant to disclose to
the world the new invention or process, it is often difficult or impossible
to understand. Another computer scicntist, reading a patent, would have
problems in establishing if the patent covered kis or her inventior, and as
the patent owner is likely to assert a wider patent than actually exists,”’

74. See generaily Hans A. von Spakovsky et al., The Limited Patenting of Computer
Software: A Proposed Statutery Appreach, 16 CUMB. L. REV. 27, 44-45 (1986) (noting
that the computer industry has grown in the absence of patent protection and suggesting
that such protection may act as a disincentive for innovation). In addition, von Spakovsky
et al. claim that patenting software would encourage mediocrity. “The first new nonobvi-
ous program performing a particular function . .. would be patentable . . . regardless of . . .
how efficiently it ran.” /¢, at 45.

75. THE LEAGUE FOr PROGRAMMING FREEDOM, supra note 33, at 6. See also
Gonschalk v, Benson, 409 U.S. 63, 72 (1972) (citing report of the President’s Commission
on the Patent System which stated that the PTO could not patent computer software due to
a fack of classification).

76. The answer to this argument is not to prohibit the patenting of computer programs
and algorithms, but to provide a comprehensive and easily searched register of such patents.

77. Bur of. Walker Process Equip:- Inc. v. Food Mach. & Chem. Corp., 382 U.S. 172
(1965) (Maintaining and antempting to enforce a patent procured by fraud may itself violate
the Shermen Act and entitle the injured party to recover treble damages.). i

Sal

Fall, 1991] Copyright or Patent or Both 169

would be hesitant to proceed with possible conflicting works. On the
other hand, how can a judge, not technically trained, be expected to deal
with issues involving computer patents? Such complaints are not new or
limited to computer software patents.™

Secondiy, as most commercial programs are large and developed
using many software techniques and algorithms, an inventor of new
software will be unable 10 search the patent repister for every process
used in the new program since each patent search costs aver a thousand
dollars and the new program may have thousands of danger points. If a
royalty had to be paid to each patent holder, the marketing of the
program would be unprofitable. For example, if a program contained
twenty previously patented inventions, each licensed at a rate of one
percent, the second programmer would be at a large commercial disad-
vantage breaking into the market. It would be worse if the program
contained one hundred patented processes, which is possible for large
programs if patents continue to be grani... .y the Patent Office for
computer software.

This leads into the third complaint—that existing firms can stifie com-
petition, and therefore innovation, by obtaining licenses over many dif-
ferent inventions, and keep rivais out of the mnarket by refusing to
license, by charging 2xcessive license fees, or by forcing rivals to waste
resources inventing inferior processes that accomplish similar results in
less efficient ways.™ The problem is worse for small time programmers,
as many existing patents are invalid and will be declared so if tested in
the courts.’® These programmers do not have the money or legal

78. E.g., Nyyssonen v. Bendix Carp., 342 F.2d 531, 533-34 (1965) (“[W]e cannot read
[the patents] intelligently. . .. Moreover, we have great difficuity in undersianding, even in
a general way, the technical testimony and the discussicn of that testimony by counsel.”).

79. A further method of reducing competition is the threat of high damages in pateat
suits, which some authorities have claimed “makes the patent system a ‘tool of extortion””
with claims up to 3.3 billion dollars. Joseph M. Fitzpatrick & Robert H. Fischer, Patent
Damages, ELECTRONIC AND COMPUTER PATENT LAW 737, 760 (Practicing Law Inst.
Course Handbook Series No. 292, 1990). With regard ta det:nhining damages, the authors
state that as “'software patent claims typically must include limitations and/or steps in addi-
tion to the algorithm in order to claim patentable subject matter . . . it is possible to imagine
a royalty base for a patented software program including a computer selling at tens or hun-
dreds of times the price of the program.” /d. at 759.

80. During the 1960s, fewer than 40% of patents were upheld by the courts. See IRVING
KAYTON. THE CRISIS OF LAW IN PATENTS, Table A-2 (1970). See also PHILLIP
AREEDA & LOWis KAPLOW, ANTITRUST ANALYSIS, PROBLEMS, TEXT, CASES
{ 186(d) (4ih ed. 1988) (The PTO “often seems to resolve doubts abour patentability in
favor of issuance,” especially in close cases so that the examiner’s decision is not
appealed.). However, these criticisms apply to the patent system generally, and not just in
relation 10 computer software patents,

" 176 Harvard Journal of Law & Technology [Vol. 5

resources to challenge the big software firms.8!

The problem is worse when it is considered that the holder of a patent
may have little incentive to license software to rivals. Patent protection
allows a software developer to introduce a program into the market
without having to license it and expand the network of rivals. A firm
with brand recognition thus would reap increased rewards by preventing
a rival reducing the well recognized firm’s market share. A compulsory
license may be the solution to this problem, especially considering that
society benefits from the expanded network. The purpose of such a
compulsory license is said to be to reduce the extent to which patent
ownership of the process conveys monopoly power.52

These “abuses” of patents, if the strict enforcement of a government
granted monopoly can be regarded as an abuse, are not new or solely
software related. For example, the United Shoe Machinery Corporation,
in the 19503, had 3,915 patents that, to some extent, blocked potential
competition in the shoe-making business.®? Where patents are abused to
create monopolies or to restrain trade, the antitrust laws may rTovide the
desired remedy.* Further, a small firm may be granted a patent for its

81. Worse still, the big firms may use the threat of the (possibly invalid) patent to close
down or purchase a rival’s business. See, ¢.g., Hartfard-Empire Co. v. United States, 323
U.S. 386 (1944), and discussicn of the case in AREEDA & KAPLOW, supra note 80, at
463-67. However, the engineers that formed the Harford Company did ‘'so only 10 profit
from the patent system and were not interested in glass manufacture as an example of the
patent system encouraging innovation. Cf. United States v. Genciat Eiec. Zt.. 272 ULS.
476 (1926) (Holder of a valid patent. subject to continuous legal challenges and infringe-
ments, decided that the easiest way to control the industry/market was to license all appli-
cants and infringers.). See aiso AREEDA & KAPLOW, supra note 80, at 428 n.2.

82. See Jame C. Ginsburg, Creation and Commercial Value: Copyright Protection of
Works of Information, 90 COLUM. L. REV. 18685, 1924-27 (1990).

83. United States v. United Shoe Mach. Corp.. 110 F. Supp. 295, 333 (D. Mass. 1953),
aff d per curiam, 347 U.8. 521 (1954). The court, in compelling the defendant 0 grant any -
applicant a nonexclusive license at a “reasonable royalty™ under any: patent now or suhse-
quently acquired from a nonemployee, stated that the defendant was “not being punished
for abusive practices respecting patents.” Id. at 351.

84. See, e.g., United States v. United States Gypsum, 340 U.S. 76 (1950); Transparent-
Wrap Mach. Cerp. v. Stakes & Smith Co., 329 U.S. 637 (1947); United States v. General
Elec. Co., 82 F. Supp. 753 (D.NJ. 1949). Bur see SCM Corp. v. Xerox Corp.. 645 F.2d
1195 (2d Cir. 1981), cerz. denied, 455 U.S. 1016 (1982); Louis Kaplow, The Fatent-
Antitrust Intersection; A Reappraisal, 97 HaRrv. L. REV. 1813 (1984); Lasercomb Am.,
Inc. v. Reynolds, 911 F.2d $70 (4th Cir. 1990) (anticompetitive language in software pro-
gram license amounted to misuse of copyright and barred infringement even if misuse was
not antitrust violation); Clarifying the Copyright Misuse Defense: The Role of Anritrust
Standards and First Amendment Values, 104 HARV. L. REV. 1289, 1299 (1991)
(“[Wihether copyrighted computer programs are likely 1o enjoy market power—and thus
whether a finding of misuse based on antitrust standards is more likely—will depead on
how the courts define the scope of protection for computer sofiware.™).

Fall; 1991] Copyright or Patent or Both 171

invention and so have the ability to enter a concentraied market success-
fully and compete where it otherwise would ot be able to do so.

5. Software Developments Build an Previous Developments

Large software projects are often built from the components of other
programs and use techniques developed for other applications but
modified or adapted to fulfill the new project’s goals.! Novel successful
programs can be developed from similar less successful programs, so as
to add a more congenial user interface, or to add new featu\re:s,"6 or to
run on mote popuiar machines or with more atcessible operating sys-
tems,” or 1o run faster® or to use less memory: The underlying algo-
rithm is the same but other features of the program are enhanced.3¢

If patents were granted for the the underlying algorithm, these
advunces, which often make the program commercially successful,
would not be permitted to occur without the permission of the patent
holder. Inventors may be deterred from further research by the realiza-
ticn that improvements could not be made without infringing the original
patent. This may lead to doubly wasteful results: The original invention
may, although superior, be ignored in the marketplace, and the new
inventor will, to compete, have to waste resources inventing around the
original patented algorithm.

Consumers invest large amounts of money in particular software sys-

“tems, both in purchase costs and, more particularly, in staff training
costs, One reason that consumers so invest is that they are promised that
the software will be upgraded and enhanced by the manufacturer: The

consumer will always have the best software without having to repur-
b :

A

85. In fact, most new useful inventions are based on products produced from original
inventions, and not on the original invention itself. See Newell, supra note 1, at 1034.

86. E.g., a spelling check program is used in conjunction with 2 word processor that
modifies the screen display by adding another pull-down menu.

87. Cf Richard H. Stemn, Copyright infringement by Add-on Sofrware, 31 JURIMETRICS
J. 205 (1991) (The program “Masquerade™ makes programs written for [BM mainframes
appear 10 be written for the Macintosh.).

88. Cf. Anic Int'l Inc. v. Midway Mfg. Co.. 704 F.2d 1009 (7th Cir.) (involving a speed
up kit for a video game), cert. denied, 464 U.S. 823 (1983).

89. This problem is different from the conventiona! improvement probler: in thar the
underlying algonthm may be used when “adding-on™ features to existing programs. An
add-on feature could be a separate program that runs concurrently with the main program,
or modifies the code of the main program when running, or it could incorporate the main
program and the add-on in the one program presale. Possibly only the last example would
infringe the patent of the algorithm of the main program. Aliernatively, the new program
could take a successful feature from an existing program and add it to the new program,
thus using the algorithm in a different context or in a superior way (for exarople, with a
more useable interface).

e
172 Harvard! Journal of Law & Technology [Vol.5

chase new systems or retrain staff each time a technological improve-
ment is made. If the firm producing the software is either infringing an
existing patent or unable t0 upgrade due to a pateat on the “enhanced”
process, the consumer will lose. The choice will be to remain with the
outdated software or retrain staff on new software. This software may
itself become outdated and the company manufacturing it may be
prevented by another patent from enhancing that software.

The poiicy question that arises is whether society will benefit more by
providing a wider scope for protection for the original inventor, and thus
encouraging that inventor to risk more due to the possible rewards of the
licensing of enhancements, or by encouraging subsequent inventors to
improve existing software. The question is “whether allocating the
incremental value of the new technological use to the original or to the
subsequent entreprencur will lead to more creation and marketing of
technological advances.” It is a question that can be asked for all
derivative works and is examined in detail elsewhere.”!

D. Conclusion on Patents

The criticisms presented above do not indicate a clear answer to the
question of whether patent protection should be denied to computer pro-
grams. The criticisms, when examined closely, either present old prob-
lems in a new form or, with sensible arguments both ways, leave a pol-
icy choice to be made. The consequences of such a choice could have a
long-term effect on the software industry.

It has been suggested that, as the pre-patent software industry had “no
problem that was solved by patents” inere should be a complete elimina-
tion of software patents. As the answers 1o the questions presented

'above are not clear, the former simple position—granting no software
patents—should be adopted in case the answers to the questions turn out

90. Stern, supra note 87, at 212. The author concludes that “society gains more from
rewarding the subsequent entreprereur than the original one.” The original entreprenenr
did not foresee or market the new technology and its possible existence was sot an incen-
tive to produce 1o that person. The subsequent entrepreneur will have little incentive to
develop an improvement if the law could be used :o :hut him down. See also William M.
Landes & Richard A. Posner, An Economic Anatysis of Copyright Law, 18 J. LEGAL
STUD. 325, 332 (1989) (more exlensive copyright protecticn would raise cost of creating
new works and reduce number of works created).

91. See Commission of European Communities, Green Paper on Copyright, at 172,
45.2.9, Junz 7, 1988 (stating that the real profit for the sofrware house is in adding value to
the original software by adapeing it for each user). See Robert P. Merges & Richard R.
Nelson, On the Complex Economics of Patent Scope 90 COLUM. L. REV. 839 (1990).

Fall, 1991] Copyright or Patent or Both 173

U

10 be against the protection of software developments by patents.2

A second solution is to clarify the position to definitely allow patents
for software, like other processes, pending a detailed review of the patent
system. If a process is otherwise patentable, it should be irrelevant that a
computer is the intended processor. If an algorithm implemented in
hardware is patentable, why should it not be patentable if it is imple-
mented in software?

To review, a computer program is a detailed and precise expression of
an algorithm. An algorithm is a set of instructions to carry out a pro-
cess,” and processes that are novel and noncbvious are patentable%?
When one talks of patenting a computer program, it is not the expression
that is the subject of the patent, but the underlying algorithm. The
expression is just that—a way of articulating the algorithm so that some-
one or something, 2 pregrammer, a patent examiner, or a computer, can
comprehend the algorithm.?* Thus, 10 follow the argument through, all
computer programs that express 2 novel and nonobvious algorithm
shouid be patentable, or rather, the patent should be granted over the
algorithm represented by the program. Anyone desiring to carry out that
process in that way can be prohibited. It is irrelevant that a computcr is
used as the processor.

At this point one may conclude that all novel and nonobkus algo-
rithms implemented in a useful way with a computer processor should be
granted patent protection. A nonexclusive test to determine patentability
of subject manter would be easy: Can a computer understand and carry
out the algorithm? If so, then the algorithm is expressed at a sufficient
level of detail and is patentable subject matter.

92. See THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33, at 9. {“If it is
ever shown that software pat=nts are beneficial in exceptional cases, the law can be changed
again at thar time—if it is important enough. There is no reason to continue the present
catastrophic situarion until that day.”). The League would only allow patents for “imple-
mentarions in the form of hard-to-design hardware™ but not implementations of patented
processes in software. Id. at 10. Simply, the distinction they propose is between algo-
rithms implemented in hardware and algorithms implemented in sofiware.

93. See Chisum, supra note 11, at 975 (The current definitions come close 0 equating
algorithm with 2 “process In the patent law semse of a sequence of specifically defined
operations that accomplish a useful result.”).

4. See Newell, supra note 1, at 1031 (After stating thar all invenrions, inciuding the
transformarion of mater, may occur by the invention of algorithms, the author concluded,
“[i}f methods and processes over large technological domains become an exercise in algo-
rithms, then it is extraordinarily dangerous not to patent algorithms.™).

95. Cf. Wiley, supra note 34, at 123. (“[A]n idea inevitably becomes a concrele expres-
sion as soon as a human staies it. That is, an idea cannot be defined or communicated o
another person without becoming an expression, a particular and precise collection of
mezningful symbels.”). An “idea” communicated to a computer in the form of a program
could not therefore be an abstract idea according to Wiley's logic.

174 Harvard Journal of Law & Techrology {Vol. 5

However, this proposed subject maner test leads to difficulties. As
computer science progresses, computers will be able to carry out more
processes and understand higher levels of expression, even possibly
natural languages such as English. The scope of protection would there-
fore increase over time to include algorithms expressed in more vague
and general ways. The more general the expression of the algorithm, the
more applications that the algorithm covers.

Secondly, people would code an algorithm just to get patent protec-
tion over the algorithm. An inventor of a process which may otherwise
be unpatentable as an abstract idea would need oaly to code it to have a
patent over the process. The resulting computer program itself would be
of little use.% If the scope of the patent was limited to applications
where a computer was the processor, then other inventors would be free

.to build machines that were not computers that used the algorithm to
accomplish the same results without infringing the process patznt.

The proposed subject matier test in reality only determines if the level
of expression of the algorithm is sufficiently detailed to give the algo-
rithm patent protection.” But why should a subject matter test for patent
law say anything about levels of expression? The point of the subject
matter test in relation to processes is to make sure that the process is not
particularly abstract. An abstract process is barred from patent protec-
tion because, although the inventor was the first to articulate the mietho-
dology, it is so basic a process that it could be regarded as naturally
occurring. An abstract process is unpatentable because it effectively

96. A related problem is that if computer programs were patentable, due w the large
numbers written daily, the costs involved in administering the patent examination system
would be burdznsome. With many applications in which fine distinctions had 10 be made,
the likelihood of error sous decisions (and the resulling costs to scciety) would be high.

97. If the patent application describes the program at a high level of expression, then as a
consequence it could be regarded as too wide in scope to carch programs expressed in lower
level languages where the detail of expression has changed and the processor has become
less sophisticated. Alternatively, the paent on the algorithm may cover the use of that
algorithm in all programming languages in which thar algorithm could be expressed.
regardless of the form of expression, prohibiting the use of any program in any language
pecforming that 1ask in that way. See Gotischalk v. Benson, 409 U.S. 63, 72 (1972) (The
patent “would wholly pre-empt the mathematical formula and in practical effect would be a
patent on the algorithm itself.”). The middle ground is that it only caiches programs written
using that zlgorithm in the language in which the patent application is expressed. This
would be close to what copyright protects: the form of expression.

To comply with disclosure requirements, the patent application must describe the pro-
cess in detail to enable an ondinary skilled programmer 10 draft a workable code with no
more than a reasonable degree of difficulty. Disclosure is usually by flow diagrams, which
are language-independent. See Maier, supra note 11, at 164. All programs, in vhatever
language. using that algorithm, would be within the scope of such a patent. Alternatively,
if the patent application disclosed the exact code, it might have a “bug™ in it, and lead 10 the
argument that the disclosure is not enabling or is of a uszless process.

Fall, 1991} Copyright or Patent or Both 175

includes too much within its scope. The praposed test mistakenly fooks
at the level of expression of the algorithm, not the level of abstraction.%®
For example, a new algorithm 1o find the average of three numbers is
regarded as too abstract for patent protection even though it can be
expressed easily in computer code. If, 1o prevent the patenting of
abstract ideas, the algorithm were limited to where a computer was the
desired processor, what in fact was protected would be the algorithm
expressed in the form of a computer program. I copyright protects the
expression of algorithms there is no need for patent to do the same.

As has been seen previously, the pzatent system should not give pro-
tection to the coding of a preexisting algorithm or the computerization of
a preexisting process. What would be left for the patent system to pro-
tect and encourage is the design of novel and nonobvious algorithms.
The courts would have a difficult task deciding into which of these
classes a program/algorithm falls. One cannot tell just by looking at the
code alone whether the programmer coded an existing algorithm or
created a novel nonobvious algorithm.” At the end of the day, there
may be few algorithms, where the computer is the desired processor, that
pass such tests. One doubts whether the patent system is in the best posi-
tion to make such determinations.

Whether the intellectual effort of algorithmic design should be pro-
tected by the grant of a patent cannot be decided without first examining
the scope of the copyright regime. Far if capyright protects all that is
worthwhile without any of the bad side effects that it is claimed that the
patent system has, it would be inefficient to give protection under both
regimes. ‘

4. Parent law says o ignore the level of expression of the algorithm and examine only
the algorithm. It is a philosophically difficult problem to ignore the expression of some-
thing that only exists once expressed. Is an algorithmn that carries out the same process In
the same way but expressed at a different level of absiraction the same algorithm after al?
Can one distinguish the dancer from the dance?

99. A court would also have 10 detzrmine whether different codings were of the same
algorithm. The court would have to look in derail into the different programming structures
and constructs and understand how both the algorithm and programming language worked.
A court couid not look only at the result or output of the program. Different algorithms can
be usad 10 produce the same results. Therefore, Maisr, supra note 11, at 158, is overbroad
in saying that a patent protects “the functonal aspects of software.” Cf. Pursche v. Atlas
Scraper & Eng. Co.. 300 F2d 467, 482 (9th Cir. 1961), (The alicged infringing invention
must have substantial identity of function, means, and results), cerr. denied, 371 US. 911
(1962).

o176 Harvard Journal of Law & Technology | [Vol. 5

OI. COPYRIGHT

Capyright protection, like patent protection, exists on the theory that
“the public benefits from the creative activities of authors; and that the
copyright monopoly is a necessary condition [for] such creative activi-
ties.”!'® Copyright does not pratect an idea alone, but the tangible
expression of an idea is protected, provided that that expression consti-
tutes “the fruitc of intellecrual labor™'® and has not itself been copied
from eisewhere.!02 An algorithm can be expressed in the form of a com-
puter program. Copyright will prevent, at the least, literal copying of the
computer program. However, as the algorithm of the program can be
expressed in different languages and at different levels of abstraction, it
is not clear to what extent copyright prevenis others from expressing that
algorithm in different ways.

A. The Scope af Protection

Copyright protects mere than the literal expression. The plot of a
novel,!” the characters in 2 movie,'® and the melody of a song'® are all
protected. A computer program is presently regarded as a literary
work.!® Thus, unless there are reasons to the contrary, the nonliteral
elements of a computer program should be protected as well. This is in
fact the way the law has progressed in the United States: Courts have
protected a program’s structure, sequence and organization,!” user

100. MeELviLiE B. NIMMER & DAvVID NIMMER. 1 NIMMER ON COPYRIGHT
§ 1.O3[A] (199C & Supp. 1991).

101. The Trademark Cases, 100 U.S. 82, 94 (1879).

102. See NIMMER & NIMMER, supra note 100, § 1.08[Cl.

103. See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930);
Holland v. Vivian Damon Prods. [1926—35] MacG. Cop. Cas. 69 (ChD}.

104. See, £.g.. Ideal Toy Corp.' v. Kenner Prods. Div.. 443 F. Supp. 291 (SDN.Y.
1977); Sid & Marty Kroift Television v. McDonald"s Corp., 562 F.2d 1157 (Stk Cir. 1977);
Wamer Bros. v. Columbia Broadcasting Sys., 216 F2d 945 (Sth Cir. 1954); Walt Disney
Prods. v. Air Pirates. 581 F2d 751 (9th Cir. 1978); f. Kelly Cinema Houses [1928-35}
MacG. Cop. Cas._ 362 (ChD).

105. See Bright Tunes Music Corp. v. Harrisongs Music, 420 F. Supp. 177 (S.D.N.Y.
1976).

106. In the United States, see H.R. REP. NO. 1476, %4th Cong.. 2d Sess. 54 (1976);
Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1243 (3d Cir. 1985), cerr.
denied, 479 U.5. 1031 (1987}. In Australia. see Copyright Act § 10 definition of literary
works that includes “(b) a computer program or a compilation of computer programs.™ See
also Dyason v. Autodesk. inc.. 96 AL R 57, 83 (Full Federal Court 1990).

107. See Whelan, 797 F.2.0 - 1240, 1248; SAS Ins. v. S & H Computer Sys., 605 F.
Supp. 815. 430 (M.D. Tenn. 19s5); Jotmson Comtrols v. Phoenix Control Sys.. 706 F.2d
Li73, 1:75 (9th Cir. 1989); Telemarketing Resources v. Symantec Corp.. 12 USP.Q2d
{BNA) 1991, 1993 (N.D. Cal. :989) (helding thar plaintiffs may not claim copyrigint pro-
tection of expression that is, if not standard. then commoaplace in the softiware industry).

I/ Fail, 1901) Copyright or Patent or Both 177

interface,!%® and screen displays.'®
1. Expressions Are Protected, Not Ideas

Given thai the idea-expression distinction is the fundamental test in
copyright law to determine the scope of protection,!’® computer pro-
grams and algorithms will be analyzed within that framework to see if
consistent and practical rules can be devised to decide what forms of
expression should be protected.

The current state of the law in this area will be examined in the
jurisdictions of the United States and Australia. Both are common-law
countries that have the same basic copyright framework embracing the
idea-expression distinction.!'! The copyright legislation®'? in both coun-
tries has been enacted by the federal lawmaking body under somewhat
similar grants of power in their respective constitutions.!!* Both coun-
tries are members of the Berne Copyright Convention. However, the
copyright laws of Australia and the United States reflect differences of
analysis that affect computer software copyright. There is no policy rea-
son why the protection provided should differ, since the same software is
sold in these countries and they have similar laws. This Article, after
disposing of two unhelpful doctrines, will propose tests that can be used
in both jurisdictions to produce sensible results consistent with the policy
of copyright law.

2. The State of the Law

The law in this area is not stable. In Australia, the Copyright Law
Review Committee, under a reference from the Attomney General, is

Comra Plains Coton Coop. v. Goodpasture Computer Servs., 807 F2d 1256, 1262 (5th
Cir. 1987).

108. Lotus Dev. Corp. v. Paperback Sofrware Int’l, 746 F. Supp. 37 (D. Mass. 1990).
Oue of the inventors of Lotus 1-2-3, Mitch Kapor, referring to the Lomes case ar a forum at
MIT, Intellectual Protection of Software, Oct. 30, 1990, said “1 sometimes feel like Dr.
Frankenstein ™ Kapor is a software minimalist, wanting protection only of the literal ele- -
ments in the source and object code.

109. Manufacmurers Techmologies. fic. v. CAMS, Inc., 706 F. Supp. 983, 993 (D. Conn.
1989} Telemarketing Resowrces, 12 USP.Q2d (BNA) at 1993; Broaderbund Saoftware,
Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1133 (N.D. Cal. 1986).

110. Ser NIMMER & NIMMER, supra note 100, § 1.03(D].

111. See Biackie & Sons Lid. v. The Lothian Book Publishing Co. Pry. Lid. 29 CLR.
356. 400 (1921); Hollintake v. Truswell, 3 Ch. 420 {1894); Baker v. Selden, 101 U.S. %9
(18795 ,

112, US.: 1TUSC (1976) rast: Copyright Act 1968.

113. US.: US.CONST. art. 1, §8, cl. 8: Aust: AUST. CONST. § S51(xviil).

178 Harvard fournal of Law & Technology [Vol. 5

currently deciding whether the existing Copyright Act *adequately and
appropriately protects computer programs.”'!* The High Court of Aus-
tralia has granted special leave to appeal the leading Australian computer
copyright case, Dyason v. Autodesk Inc.!'? This case provides an illus-
tration of the difficulties involved in applying copyright protection to
computer programis.

In the United States, the protection of user interfaces is strongly con-
tested by various members of the software industry.!'6 One side is con-
centrating its efforts on expanding the scope of profection through court
action,!!” while the opposing side is lobbying for legislative changes to
limit copyright protection of user interfaces.

B. Two Unhelpful Doctrines

In cases involving infringement of copyright in computer programs,
the United States courts have used two doctrines to help resolve the
difficult issues that have arisen. The docirines are “merger of idea and
expression” and “ne protection for wseful articles.” This Section will
show that these doctrines are unhelpful in computer program copyright
cases.

I. Useful Articles

In the United States, purely utilitarian objects are not subject to copy-
right protection; the utilitarian aspects of useful articles'!® are not works
of authorship in which copyright can exist.

114. Reference of Attorney General of Ausualia, Oct 1988, to Australian Copyright
Law Review Committee.

115. 96 ALR. 57 (1990) (Full Federal Court decision: Locthart, Sheppard, & Bean-
mont, J1.), special Icave granted Nov. 16, 1990 (Mason CJ., Gaudron & McHugk, JI).
Sheppard, J.. is Chairman of the Copyright Law Review Commirnee.

116. A computer user must commumicate with the program znd the program must com-
municate with the user. This communication is via what computer scientists call a nser
mterface. The mterface is partially expressed as part of the program”s output, usually on
the computer's screen. Should the Law prevent the copying of a program’s interface given
that no part of the computer program producing the cutput and using the interface has been
copied?

117. See. e.g. Lotus Dev. Corp. v. Paperback Software Int'L, 740 F. Szpg- 37 (D. Mass.
1990); Xerox Corp. v. Apple Computer, Inc, 734 F. Supp. 1542 (N.D. Cal. 1990); Apple
Cowmputer, Inc. v. Microsoft Corp., 759 F. Supp. 1444 (N.D. Cal, 1991); Michael B. Bixby,
Synzhesis and Originality in Computer Screen Displays and User Interfoces. 27 WiL-
LAMETTE L. REV. 31 {1991).

118. “A “usefol article® is an article having an indrinsic otilitarian function that is oot
merely to portray the agpearance of the aricle or 1o convey information.” 17 US.C. § 102
(1988).

Fall, 1991] Copyright or Patent or Both 175

The United States Copyright Act gives copyright protection to works
of authorship, including “pictorial, graphic, and sculptural works, !9
Such works are defined as including “works of artistic crafismanship
insofar as their form but not their mechanical or utilitarian aspects are
concerned 12 The atistic features must be able to exist independently
of, and be identified separately from, the utilitarian aspects of the article.

The scope of exclusive rights in pictorial, graphic, and sculprural
works is limited by section 113(b). This subsection refers back to the
law existing prior to the commencement of the 1976 Act: Simply, the
copyright in a pictorial, graphic, or sculptural work, poriraying a useful
article as such, does not extend to the manufacture of the useful article
itself. The owner of the copyright in z drawing kas no copyright over
the useful article portrayed in the drawing. A useful article built from a
two-dimensional drawing does nat infringe the copyright in the drawing.

Second, a three-dimensional object only has copyright protection for
its form; there is no copyright protection for any wscful featre of the
work. If the article is purely utilitarizn it has no copyright protection. 2!
A three-dimensional object which is an architectual work, however, is
protected by copyright even though it is useful.!2

The leading case prior to the 1976 Act is Maizer v. Stein,'2 where the
5. eme Court held that works of art that had been incorporated into the
desi .5 of useful articles were copyrightable. In that case, an aristic
female Balirese dancer statuette was used as a Jamp base. It was
irrelevant that the artist had the inteniton 10 mass-produce the design as
part of a commercial article and that the design lacked aesthetic value.
Congress enacted the basic rule of Maizer v. Stein in the 1976 Copyright
ACL|24

Later cases have interpreted section 113(b) as requiring the functional
concemns of the article to have no infiuence on the work’s aesthetically
pleasing appearance ' There iz po copyright protection if the form of

119. Id § 102(a)(5).

120. Id §101.

121, Cf. Talk of the Town Py, Lid_ v. Hagsm%.ﬁ..l..h_l%(i%i)

122, An, as yet unenacied. bill would zmerd the law o allow copyright of architectiral
works. Copyright Amendmenis Act of 1990, HR. 5498, 101wt Cong., 24 Sess. (1990). .
The old law is stated in Demetriades v. Kaufmann, 680 F. Supp. 658 (S.D.N.Y. 1986);
David E. Shipley, Copyright Protection for Architectural Works, 37 §.C. L. Rev, 393

(1986).
© 1230 T .S 201 (1954).

124, I7TUS.C §113(1978).

125. See, e.g.. Brandir '] v. Cascade Pac. Lumber Co., 834 F.2d 1142 (2d Cir. 1987)
(form of an endulating tube bicycle zack inseparable from its funcrion).

180 Harvard fournal of Law & Technology [Vol. 5

the artistic work is dictated by its utilitarian function.’28 The artistic ele-
ments of the work must be physically!Z? or conceptually separable from
the utilitarian aspects of the work.128 Where the design elements can be
identified as reflecting the designer’s artistic judgment exercised
independently of functional influences, conceptual separability exists,
and the artistic elements are copyrightable. Copyrightable art does not
lose its copyright just because it is put to a function, but if the design of
the art is changed to make it more functional, then the cases hold that
copyright protection ceases,

Computer programs that contain no errors are useful. It is not correct
to say that useful works are not subject to copyright protection: Maps'®?
and music, both useful in the same sense that computer programs are
useful, are clearly the proper subject matter of copyright and have been
so since 1790 and 1831 respectively. An argument, which is constantly
made in this area,'?0 is that a computer program is a useful article and so
has no copyright protection. This argument misunderstands the useful
article doctrine; computer programs are not “pictorial, graphic or sculp-
tural works.” Even works that are functional, such as houses, are given
copyright protection,

A more refined argument is that a screen display is a useful pictoriai
or graphic work, or is part of a useful work, and is therefore not pro-

tccted by the Copyright Act. However, the computer display is not a
useful article made from an artistic work. The computer program is not
an artistic work. A screen display can not be regarded as being made
from a representation of the screen in the computer program in the same

126. A jump rope, a billiard ball, and a contact lens are examples of ilems where the
function dictates the form.

127. For example, a sculpture attached to the front of 2 boat is separable from the utili-
tarian function of the boat.

128. See Carol Bamhart Inc. v. Economy Cover Corp., 773 F.2d 411 (2d Cir. 1985)
(clothes mannequins not copyrightable since artistic features are inseparable from use; it is
irrelevant that the manneguin is pleasant to look at.); Keiselstein-Cord v. Accessories by
Peari, Inc., 632 F.2d 989 (2d Cir. 1980) (belt buckie made out of sculptural design is copy-
rightable).

129. The definition in 17 U.S.C. §101 of “Piclorial, graphic and sculptural works”
specifically includes maps, and by inference, does not include maps within the later term
“warks of artistic craftsmanship,” so a map wauld be copyrightable, regardless of whether
the graphic features can be identified separately from the utilitarian aspects. A map is nota
*“useful article” as it must have an intrinsic function other than to convey information itself.

130. Contra Loms Dev, Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 58 (D.
Mass. 1990) (“A more sensible interpretation of the statutory mandate is that the mere fact
that an intellectual work is useful or functional—be it a dictionary, directory, map, baok of
meaningless code words, or computer program—does not mean that none of the elements
of the woark can be copyrightable.”). The same argument was used in Appte Computer, Inc.
v. Microsoft Corp., 759 F. Supp. 1444 (N.D. Cal. 1991).

Fall, 1991} Copyright or Patent or Both 181

way as a machine part is made from a representation of the part in a
technical drawing. Finally, a screen display is not an “article.” It is a
transient work in two dimensions. It is not like a statuette, belt buckle,
or bike rack. Analyses of computer programs under the useful article
doctrine give far too broad a reading to a narrow, limited rule.

2. Merger

In the United States, the courts have formulated the mysterious
merger doctrine. When courts examine computer programs, they often
confuse this doctrine with the idea-expression distinction, the rule
against the copyright of systems, and the copyright of minimalist
works.!3! The logic is as follows.

If the same idea can be expressed in a plurality of different manners,
a plurality of copyright may result.*> However, copyright protection
will not be given to a form of expression necessarily dictated by the
underlying subject matter.1* If the idea can only be expressed in one
way, then what is being expressed is not expression but an idea, and is
not the proper subject matter of copyright. It is said that the expression
and idea have merged where there are few or no ways of expressing a
particular idea.!3 One reason for limiting the scope of copyright where
there are few forms of expressing an idea (assuming it is possible to
determine that the different expression is of the same idea) is to stop one
person from copyrighting those few forms of expressior by reducing to
writing all possible forms of expression and taking the idea out of the
reach of the public.!35 However, this assumes that the second person
wishing also to‘express that idea has access to all the copyrighted expres-
sions: If the second person independently comes up with the same
expression, which is likely if the means of expression are limited as the
doctrine supposes, then there has been no copyright infringement,

For computer programs, as shown in the previous section on patents,

131. See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253
(3d Cir. 1983).

132, See Dymow v. Bolton, 11 F.2d 690, 691 {2d Cir. 1926),

133, See, e.g., Freedman v. Grolier Enters.,, Inc, 179 US.P.Q. (BNA) 476, 478
(S.D.N.Y. 1973).

134. Apple Computer, 714 F.2d a1 1253, referring to Morrissey v. Procter & Gamble
Co., 379 F.2d 675, 678-79 (Ist Cir. 1967). See also Lotus Dev. Corp., 740 F. Supp. at
58-59 (“When a particular expression goes no farther than the obvious, it is inseparable
from the idea itself. .. . It is only a slight extension of the idea of ‘obviousness’-—and one
supported by precedent—to reach the . .. concept ‘merger.’ I a particular expression is
one of a quite limited number of possible ways of expressing an idea, then, . . . the expres-
sion is not copyrightable.™).

135. Morrissey, 379 F.2d at 678-79.

182 Harvard Journal of Law & Technology [Vol. 5

the constraints of a programming language do not allow much room for
variations in expression. Therefore, courts have looked at the computer
program in issue, tried to determine its idea, and then examined whether
that idea could be expressed in other ways.!%6

This test has problems. Courts in practice equate “idea” with “algo-
rithm.” But, as previously seen, the algorithm can be expressed at dif-
ferent levels of abstraction. There is no one algorithm for any program.
Different programmers may state the algorithm of a program at many
levels of abstraction and all be cormrect. For every program, its “idea”
can always be expressed in many ways. Examples of differing expres-
sions of an algorithm may include computer code, machine code, high-
level pseudo code, and cemplex or simple flow charts.

Even if one only looked at computer code, the answer depends on
what level of abstraction of the underlying idea is chosen. One can not
say that the expression used is the only way of expressing the idea of the
program. It may be the only way of expressing an idea as a program, but
if one looked at the idea from another level, it could be expressed in
other ways. ‘

The test, if it is ever workable, encourages complex programs. All
computer programs can be expressed in more than one way. To be safe,
a programmer will express a simple algorithm in a roundabout way to
show that there is more than one form of expression and that the form of
expression chosen is more than an expression of the idea.'*”

The merger doctrine has expanded to catch cases where there are few
forms of expression of the idea. But how does cne determine how many
is a few? If there is more than one way of expressing an idea, the court
must decide which are really expressions of the idea at issue and which
are expressions of a second idea. This is the same as determining if two_

136. See, e.g., Apple Computer, 714 F.2d at 1253 (“The idea of one of the operating sys-
tem programs is, for example, how to wansiate source code into object code. If other
methods of expressing that idea are not foreclosed as a practical matter, then there is no
merger.”); Digital Communications Assocs. v. Softklone Distrib, Corp,, 659 F. Supp. 449,
458 (N.D. Ga. 1987) (“Since the work at issue is the status screen, the court must determine
what is the “idea’ behind the status screen and then determine whether the expression of the
status screen is ‘necessary’ to that ‘idea’. ... Thus, ‘idea’ is the process or manner by
which the status screen, like the car, operates and the ‘expi'ession' is the method by which
the idea is communicated to the user.). '

Taking from a program those elements that are essential to its purpose is regarded as
1aking of an idea and not infringement. See also M. Kramer Mfg. Ce. v. Andrews, 783
F.2d 421, 436 (4th Cir. 1986) (Normally all computer programs will be expressions not
ideas.).

137. Under the merger doctrine, would directions to run the Boston Marathon be copy-
rightable, even though there was only one path to run? What if the directions included
nonessential information, such as good places to rest?

Fall, 1991] Copyright or Patent or Both 183

forms of expression are substantially similar. In other words, the merger
doctrine states a conclusion. It is not a test.

To make matters worse, it is often alleged in cases in this area that the
plaintiff is trying to copyright a system; that is to say, the plaintiff is try-
ing to protect a procedure to carry out a particular task by claiming copy-
right over the instructions for the task!*® or over a form to be completed
while accomplishing the task.!?® It is clear in copyright doctrine that it is
only expression, and not a method or a system, that is the subject matter
of copyright.' Even so, the reasoning in such cases is often that what is
claimed as copyrightable is “so straightforward and simple” that “copy-
right does not extend to the subject matter at all.”'*! In other words, the
forms or instructions themselves are not the proper subject matter of
copyright in such cases, for protecting them is tantamount to protecting
the system since there are few ways of expressing that system.'42

Baker v. Selden'® is the fo-ndation case in this area. Its holding is
confused. The plaintiff, b~ -~ ../ ‘ghting a book containing bookkeeping
forms and instructiors - <. tnose forms, claimed copyright in the
method of bookkeepir ‘e Supreme Court, reasoning that “[t]he
copyright of a work on maihematical science cannot give to the author
an exclusive right to the methods of operation which he propounds, or to
the diagrams which he employs to explain them, so as to prevent an
engineer from using them whenever the occasion requires,” concluded
that “no one has a right to print or publish [the plaintiff’s] book, or any
material part thereof ... [but] any person may practice and use the art

138. See, e.g., Marrissey, 379 F.2d 675, where the plaintiff claimed, unsuccessfully,
copyright over instructions to enter a competition,

139. See Bibbero Sys. v+, Colwell Sys,, 731 F. Supp. 403 (N.D. Cal. 1988) (= blank form
to determine procedures and diagnoses to be performed by doctors is not copyrightable),
aff d, 893 F.2d 1104 (9th Cir. 1990). Cf. Applied Innovations, Inc. v. Regents of the Univ.
of Minnesota, 876 F.2d 626 (8th Cir. 1989) (computer software infringed copyright in test
consisting of shart simple statements; test data expression of process or facts).

140. In the 1976 U.S. Copyright Act, 17 U.S.C. §102 (1988), this is made clear by
§ 102(b) which stops copyright extending “to any idea, procedure, process, system, method
of operation, concept, principle, or discovery, regardless of the formn in which it is
described.”

141, Morrissey, 379 F.2d at 679.

142. The court in Morrissey rejected the reasoning that as “‘the substance was relatively
simple, it must follow that the plaintiff’s [instructions] sprung directly from the substance
and ‘contains no original creative authorship,”” but held that as the “subject matter is very
narrow, so that ‘the topic necessarily requires” ... only a limited number [of forms of
expression] . . . the subject matter would be appropriated by permitting copyrighting of its
expression.” Both tests lead, as a practical matter, to the same result. Id.

143. 101 U.S. 99 (1879).

184 Harvard Journal of Law & Technology [Vol. 5

itself which [the pisintiff] has described and illustrated” in the book.!*
However, the court ruled that “blank account-books are not the subject
of copyright; and that mere copyright of [the plaintiff’s] book did not
confer upon him the exclusive right to make and use account-books . ..
illustrated in said book.”'** This is the foundation of the so-called rule
that blank forms are not copyrightable subject matter. Even literal copy-
ing, in this court’s view, would not be a breach of copyright.!*¢ The
court distinguishes the text of the book (which was copyrightable) from
the forms shown in the book (which were not copyrightable). Nothing is
said in Baker about the case where only one way to express the system
or to design the forms exists, or where the expression merged into the
idea.!*?

The Code of Federal Regulations Section 202.,1 prohibits copyright of
blank forms “which are designed for recording information and do not in
themselves convey information,” names, titles, slogans, and lists of
ingredients and contents.!*® This regulation is said to be founded on the
rule of Baker v. Selden.'*® But it is not correct to say, as some cOurts
have held, that blank forms and the like cannot be copyrighted-—the
correct rule is that blank forms may be copyrighted “if they are
sufficiently innovative that their arrangement of information is itself
informative.™150 ‘

Baker v. Selden has been expanded to computer software cases to
claim, since the screen display resembles a blank form, that the screen
display is an unprotected idea. This raises the issue whether giving

144. Id. at 103-04.

145. Id. at 107,

146, Would the result be the same today? Part of the court’s reasoning was that in 1859
the copyright legisiation then in force only gave copyright over “boaks, maps, charts, musi-
cal compositions, prints, and engravings.” Today, the 1976 Act gives protection to
“graphic” works. If blank forms conveyed information, thus not being useful articles, they
could be regarded as graphic works, and the forms themselves would be copyrightable.
However, if a form were not regarded as an “article” but only as a “work,” then it would not
even need to convey information to be copyrightable. ‘This latter interpretation seems the
most sensible.

147. Cf. Educational Testing Servs, v. Katzman, 793 F.2d 533, 539 (3d Cir. 1986) ("It is
on the basis of the merger principle that copyright has been denied to utilitarian ideas, such
as forms.™).

148. 37 CF.R. §202.1(c) (1991).

149. See, e.g., Bibbero Sys. v. Colwell Sys., 731 F. Supp. 403, 404 (N.D. Cal. 1988),
aff'd, 893 F.2d 1104 (9th Cir. 1990). The regulation also prohibits copyright for tables
containing public information, calendars, and tape measures, as they contain no original
authorship.

150. Digital Communications Assocs. v. Softklone Distrib, Corp., 659 F. Supp. 449, 461
(N.D. Ga. 1987) (quoting Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1243
(3d Cir. 1986), cert. denied, 479 17.S. 1031 (1987)).

Fall, 1991] Copyright or Patent or Both 185

copyright to the program in effect impermissibly protects a blank form.
These claims misinterpret Baker v. Selden. The screen always gives
information to the user. The only valid test, relying on this line of cases,
should be whether the screen display contains enough expression to
amount to an original work. Secondly, relying on Baker, because the
computer program carries out a process, it has been suggested that the
programmer should not be given copyright over the expression, as doing
so would give the author the exclusive right over the process.'>! The
validity of this argument will be examined below.

The merger doctrine has not reached Australia. When the subject
matter of an action allows little variation in the form of expression, Aus-
tralian courts usually decide that copyright subsists in the work. How-
ever, a precise similarity must be shown to exist between the two works
before there will be a finding of infringement.} As an example, the
design of a simple house is likely to have standard-height ceilings and an
entrance hall adjacent to the front door. Copyright infringement will be
found in Australia only if the plan of those features is copied exactly. !5
The merger doctrine in United States law, by contrast, does not give any
copyright protection, even against literal copying, in circumstances
where there are few ways of expressing the idea. In Australia, it is clear
that copyright protection is given for the particular expression used by
the author explaining a méthod of operating 2 system or using an
apparatus or playing a game. The courts have not regarded this as giving
copyright over the process carried out. It is irrelevent, in regard to the
process, system, or game, whether the resulting expression is obvious.!™
Thus, not all argunments used in the United States will be available in
Austraiia when dealing with computer software copyright. !5

The merger doctrine should be abandoned by the courts for all copy-
right cases.

151, See, e.g., Apple Compuler, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1250-52 (3d. Cir. 1983). Cf. Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp.
37, 54-58 (D. Mass. 199D).

152. Compare Dorsey v. Old Surety Life Ins. Co., 98 F.2d 872, 874 (10th Cir. 1938) (“a
shawing of appropriation in the exact form or substantially so”) with Continental Casualty
Co. v. Beardisey, 253 F.2d 702, 705 (2d Cir. 1958} (“a stiff standard for proof of infringe-
ment”).

153. See, e.g., Dixon Invs. v. Hall, unreported, Federal Court of Australia (Pincus, 1.).

154. See, e.g., Meccano Lid. v. Anthony Horden & Sons Lid., 18 N.S.W, St. R, 606
(1918). ‘

155. As the law cumrently stands, one would feel it would be harder to protect the nonli-
teral elements of computer programs in the United States than i Australia. But this has not
been the case. The courts in the United States have decided, mostly on what seem like pol-
icy grounds, 10 give wide pretection 1o computer programs and other aspects associated
with the use of computers, such as interfaces.

186 Harvard Journal of Law & Technology [Vol.5

C. The AutoCAD Example

No court has yet found infringement where peither the underlying
algorithm of the program nor the user interface had been copied. The
nearest courts have come is in the Australian Autodesk case.!® The
plaintiff, an American software company, wrote 2 complex Computer
Aided Design (“CAD”) program, AutoCAD. Part of this program con-
tained another program, called “Widget C,” which regularly sent a signal
to a hardware device (called a lock, but really a key) attached to the
computer’s serial port. Unless the lock was attached, no display would
appear on the screen and no printout of any drawings or calculations
could be made.!5” The signal sent to the lock by Widget C was a series
of electrical impulses, represented in binary by ones and zeros, which the
lock processed. The lock then replied to the Widget C program: If the
reply was the one expected, the CAD program continued to run as nor-
mal. The lock was a hardware device which included as components a
clock, a shift register, an XOR gate and switching circuitry. The lock
stored no computer program in the sense commonly understood by the
computer industry.1’® Although the CAD (and therefore the Widget C)
program was easy to duplicate, the lock was not.!5?

The object of the lock was to prevent the CAD program from running
correctly if illegally copied. Copies run without the lock would not func-
tion. The lock did this by receiving a binary input and returning a binary
output.

The defendant produced a software version of the lock (the “Aute-
Key lock™) which had the same function as the plaintiff's lock. How-
ever, the algorithm used by the defendant’s lock to reply to the Widget C
signal was completely different from the hardware ‘components in the
plaintiff’s lock. The defendant determined how the lock worked by ¢xa-
mining the output of the plaintiff’s lock with an oscilloscope; conse-
quently the defendant had no need to examine the Widget C program or

156. Dyason v. Autodesk Inc,, 96 A.L.R. 57 (1990) (Full Federal Ct. Decision). Oral
argument in the appeal took five days.

157. Id. a1 68. Thus the lock prevented unauthorized use of the AutoCAD program that
retails for A$5,700. Autodesk permits adaptation of its program under license and has done
so approximately 100 times in Australia. See Autodesk’s submission to ACLR, Collection,
supra note 57.

158. Id at93.

159. Cf. Vault Corp. v. Quaid Software Ltd., 847 F.2d 255 (Sth Cir. 1988), commented
on in Deborah Kemp, Limitations upon the Software Producer's Rights: Vault Corp. v.
Quaid Software Ltd., 16 RUTGERS COMPUTER & TECH. L. J. 85 (1990) (Software lock
that unlocked plaintiff’s protection program did not infringe copyright in the protection
program.).

Fall, 1991] Copyright or Patent or Both 187

the components making up the plaintiff’s lock. The devices had the
‘same function but used different algorithms to achieve their results.
They had the same interface and they produced the same output given
the same input.

The trial judge found there was copyright infringement!% because:
Each lock contained a computer program, the function of the plaintiff’s
program had been reproduced in 2 material form by the defendant, and
the form of the reproduction was irrelevant,

The Full Federal Court reversed. Tts findings were: (1) Copyright in
computer programs resides in the expression of a set of instructions that
cause a specified device to perform a particular function; but copyright
does not reside in the function of the device or program itself.!5! (2) The
lock, looked at in jsolation, was neither a computer program nor a device
which contained a computer program.!®2 The information-—the
voltages—sent by the Widget C program to the lock was not an instruc-
tion to stop or proceed. The Widget C program decided whether to stop
or proceed from the information returned from the lock. (3) The Widget
C program and the defendant’s lock were an integrated system, which
constituted a computer program.63 (4) The defendant did not reproduce
any part of the Widget C program.i®* (5) The defendant’s lock, whether
it was a program or not,%% was not a reproduction or adaptation of the
plaintiff’s Widget C program.!% There was no reproduction because the
only similarity was in the function of the locks, not the defendant’s lock
and the plaintiff’s program.!%’ (6) As the algorithms werse different, the
defendant's lock was not an adaptation or variant of the combination of

160. Dyason v. Autodesk Inc., 15 LP.R. 1, 27 (1989).

161. Dyason, 96 A.LR. at 63.

162. Id.at78, 105.

163, Id, at78.

164. “[TIhe expression of the set of instructions being Widget C was not reproduced in
the hardware lock. . . . [T]here was only one relevant computer program in the present case.
This was the AutoCAD program itself.” Id. at 104.

165. Sheppard, J., was responding to the plaintiff’s submission that “Widget C was itself
ihe program but a substantial part of that program was reproduced in the lock. Thus the
computer had the program Widget C in it and the lock had part of Widget C in i, In other
words Widget C was a program and each of the locks was & reproduction of that part of the
program so that the comparison was Widget C and each of the locks.” /d. at 76. However,
if the Jock had part of Widget C in it, it would contain a computer program, which the zourt
found was not the case. The submission assumes that a program can be infringed by a
piece of hardware replicating the function of part of the program.

166. The court relied on Australian Copyright Act § 14, which allows the court to see if
the defendant’s work infringed a substantial part of the plaintiff's work, in this case the
Widget C program. /d. at 78-83, 105-06.

167. “[Wlhat is contained in the Auto-Key lock is not a substantial part of the program
because, in substance and in form, it is essentially different.” Id. at 83 (Sheppard, I.)

188 Harvard Journal of Law & Technology {Vol.5

the plaintiff’s lock and Widget C program, 168

The result of the case may be correct—the defendant copied function
not expression. The defendant “invented™ his algorithm independently
and did not copy the plaintiff’s algorithm, and, therefore, any computer
program from the plaintiff. However, some of the reasoning of the court
is suspect.

1. Can Hardware Be Software?

First, is the court’s reasoning for not categorizing the lock as contain-
ing a computer program!%® correct under Australian law? By definition,
an object can not be both a computer program and a computer.!” If a
computer program can be reproduced from any form of storage, whether
the program is visible or not while stored, then what is stored, or more
correctly the form of storage, is a reproduction or an adaptation of the
computer program reproduced. Therefore, if the algorithm that causes
the lock to convert the input into the output is stored in the lock and can
be “reproduced” from that storage, then the lock contains a reproduction
of a computer program. It is not correct, as the court did, to look at the
reasrn the lock existed (to stop the effective operation of the AutoCAD
program if not attached to the computer) and conclude because the lock
did not do this directly, but just produced automatic responses, that it
was not a program. The lock’s function was to take binary input and

168. ld.

169. *“‘[Clomputer program’ means an expression, in any langnage, code or notation, of
a set of instructions . . . imtended, either directly or after either or both of the following: (a)
conversion to another language, code or notation; (b) reproduction in a different material
form, to cause a device having digital information processing capabilities to perform a par-
ticular function.” Australian Copyright Act § 10.

170. The Australian Copyright Act requires that a program cause a device (here a com-
puter) to perform a particular function. This prevents a hardware device from being pro-
tected under copyright as a computer program. However, according to the Australian
Copyright Act, a hardware device can “contain™ a computer program, stored in hardware, if
the program can be reproduced from the hardware. The form of storage containing the pro-
gram is a “reproduction in a different material form” of the reproduced expression.

Charles Babbage, who died in 1871, designed a “difference machine” that could gen-
erate mathematical tables of many kinds. It operated by thousands of swirling intricate
geared cylinders interlocking in incredibly complex ways. The machine used an algorithm,
the “method of differences,” which was physically built into the machine, Such an algo-
rithm, unless it could be “reproduced” from the machine, would not be a computer program
under the Australian Copyright Act. Compare Bahbage’s “analytical engine™ that stored
numbers and made decisions under the control of a program contained in punch cards. See
DouGLAS R. HOFSTADTER, GODEL, ESCHER, BACH: AN ETERNAL GOLDEN BRAID

' 25 (1979). See aiso Computer Edge Pry. Lid. v. Apple Computer, Inc., 161 CLR. 171,
194 (1986). Hardware and software are logically equivalent. ANDREW S. TANENDAUM,
STRUCTURED COMPUTER ORGANIZATICN 11 (2d ed. 1984).

Fall, 1991] Copyright or Patent or Both 189

preduce binary output.!”! This function may be carried out by a com-
putez program!’? or by a piece of hardware, which although using an
algorithm does not contain a reproduction of a computer program.!'”
* Determining the function of a device does not determine what it is.

The court instead determined that the lock and the Widget C program
topether constituted a computer program. But if the lock was not a com-
puter program and did not contain a computer program itseif, as the
court determined, how can the lock, in combination with a computer pro-
gram become a computer program? It is like saying that a piece of
hardware, such as a computer keyboard, which operates in conjunction
with a computer program, is part of the program.

The correct view is that the plaintiff’s lock is just a piece of hardware.
It is not a program and does not contain a program. It can not reproduce
a program from any storage: It contains no form of storage apart from
the shift register. It does, through its circuitry, follow an algorithm, just
as a washing machine follows an algorithm, but this algorithm is not, in
Australian copyright law, a literary work in a material form.

It should be the case, both in Australia and the United States, that the
function a machine performs is not protected by copyright. That is the
domain of patent. It is sensible that copyright does not protect function.
To do so would give too a wide a scope to copyright. Preventing copy-
ing of functions would prevent anyone from creating a road map, recipe
or spreadsheet: works whose functions have already been invented.
Function does not involve expression. However, if a machine can repro-
duce a form of expression that causes a machine to perform a function,
in the narrow sense that it can store and then reproduce (print out) the
instructions that cause the machine to operate, that expression should be

171. In this case, the binary code transmitted was nat a set of instructions {to stop), but
input or output data, which Widger C acted on. There is nothing to stop a hardware device
from transmirting to another hardware device & computer program (a set of instructions) in
the form of binary code, such as a program sent via a modem to a computer from another
camputer, which causes the receiving computer to act in a centain way.

172, The lock could be attached to the printer port. A printer receives instructions from
a compuater program, called the operating system, 1o print certain data. The printer tells the
program, by binary code, when it has finished this task. How is this different from the lock
in this caze? Many printers have a separate computer program installed in them in ROM to
enable the printer to communicate with the operating system. In Star Micronics Pty, Ltd. v.
FiveStar Computers Pry. Lid., unreporied, Federal Court of Australia, Oct. 9, 1990 (Davis,
J.) (holding tha: computer program embedded in computer chip in printer was protected by
copyright). '

173. The algorithm could be expressed, for example, in pseudo-code. See¢ Dyason v.
Autodesk Inc., 96 A.L.R. 57, 75 (1990) (Full Federal Ct. Decision).

190 Harvard Journal of Law & Technology [Vol. 5

copyrightable.!” QOtherwise computer programs would be deprived of
protection in their most useful form.

2. Can Hardware Be a Copy of Sof*tware?

Secondly, assume arguendo that the plaintiff’s lock contains a com-
puter program, If the defendant’s lock does not contain a computer pro-
gram, could the defendant’s hardware infringe a copyright on the
plaintiff’s program? The Full Federal Court, in asking the question
whether the defendant's lock was a reproduction of a substantial part of
the Autodesk program, assumed that a piece of hardware may, under
some circumstances, infringe the copyright of a computer program. The
court indicated that infringement occurs when there is similarity in the
sets of instructions constituting the programs.!”> But how can there be
such similarity when one object being compared does not contain a set of
instructions. True, the defendant’s lock operates in accordance with
instructions that could be written as an algorithm, but the expression of
that algorithm is not determined by the workings of the lock. A piece of
hardware, not conteining a computer program, can never be a reproduc-
tion of a computer program, whether that computer program is written
down or is stored and can be retrieved from another piece of hardware.

The Full Federal Court then examined whether the defendant’s lock, a
piece of hardware not containing a computer program, was an adaptation
of the plaintiff’s Widget C program.!’® The Australian Copyright Act
defines “adaptation’” in this context as “a version of the work (whether or
not in the language, code or notation in which the work was originally
expressed) not being a reproduction of the work.”!7? It is implied in this
definition, and the definition of “material form,” that the work in ques-
tion must be a form of expression. The forms of expression are exam-
ined to determine whether there has been a copying of expression—to
see if one form of expression is a version or variant of the other form of

174. But see Davies & Co. v. Comitti, 54 L.J. Ch. 419 (i1885); STANIFORTH RICKET-
SON, THE LAW OF INTELLECTUAL PROPERTY { 5.34 (1984).

175. Dyason, 96 A.L.R. at 66, 82, 105.

176. Cf. United States definition of “derivative work™: “a work based upon one or more
pre-existing works, such as a translation, musical arrangement, dramatization, .. . or any
other form in which a work may be recast, ransformed, or adapted.” 17 U.S.C. §101
(1988).

177. Australian Copyright Act §9.

Fall, 1991] Copyright or Patent or Both 191

expression, As the lock expresses nothing, it could never be an adapta-
tion of a computer program.!78

It is also incorrect 1o examine whether the lock is a three-dimensional
reproduction of a2 two-dimensional computer program or algorithm,!”?
Computer programs and algorithms are not artistic works. An analogy
can not be made to the Australian house plan cases!30—although both a
house plan and an algorithm tell a “processor” how to accomplish a task
(how to build a house or respond 10 binary input). The house results
from following the algorithm and is an artistic work itself protected by
copyright. The lock does not result from carrying out the algorithm;
rather it performs the algorithm. It would be ridiculous to say that a
house executes a house plan.

The law should be clearer: A machine that performs the same func-
tion as a computer program should never be a copy, reproduction, adap-
tation, or derivative of the computer program. A machine that uses the
same algorithm as expressed in a computer program can never be a copy
of the computer program. In both cases, there is no copying of expres-
sion,

The current copyright laws in Australia and the United States raise
several concerns over their applicibility to the growing field of computer
programming. Below is a proposed test that would correct the problems
inherent in the two countries’ sysicus. The test’s application to the
AutoCAD case will illustrate its advantages.

D. When Are Two Computer Programs the Same? A Proposed Test

If the defendant’s lock did contain a computer program, then the court
would have to decide if there was substantial similarity between the
plaintiff’s program and the defendant’s program. The Australian court
was correct in holding that functional similarity is not sufficient for
copyright infringement: Copyright protects expression, not function. '8!

178, Cf. Computer Edge Pty. Ltd. v. Apple Computer, Inc., 161 C.L.R. 171, 186 (1986)
(“An adaptation must itself be a ‘work."™).

179, An artistic work in Australia js deemed to have been reproduced, in the case of a
two-dimensional wark, if a version of it is produced in a three-dimensional form, or, in the
case of a three-dimensional work, if a version of it is produced in a two-dimensional form.
Australian Copyright Act §21(3).

180. See, e.g.. Collier Constrs. Pry. Ltd. v. Foskett Pty. Ltd., 97 A.LR. 460 (1991);
Dixon Invs. v. Hall, 18 1L.P.R. 490 (1990}. See aiso Hart v. Edwards Hot Water Sys,, 159
C.L.R. 466 (1985),

181, But note the court went too far in Vault Corp. v. Quaid Software Lid., 847 F.2d
255, 268 (5th Cir. 1988), holding that if two programs had the same code, but different
functions, they would not be substantially similar,

192 Harvard Jou.r‘nat' of Law & Technology [Vol. 5

But what if the two programs, in addition to carrying out the same
function, use the same algorithm, although expressed in different ways?
If different computer languages were used, and the court was able to
determine that what was expressed was the same algorithm, then one
work would be a reproduction or adaptation of the other. For example, a
program in Pascal and a compiled version of that program are the same
program, in the same way that Crime and Punishment is the same novel
whether in Russian or English (even though there may be variations of
expression between two English translations). It is a similar analysis
where the Pascal program is translated, line by line or construct by con-
struct, into another language at the same level of abstraction. But what
if, like the defendant in the Autodesk case, the defendant never saw the
plaintiff’s expression, but rather “guessed” the algorithm used and wrote
a program in a different language that used that algorithm. In other
words, should copyright protect an algorithm expressed in the form of a
computer program and prevent others from expressing that algorithm in
another way? '

To restate the problem, copyright protects more than the literal expres-
sion, but does not protect ideas!®? or function. Two computer programs
may use the same method to accomplish the same poal. That method is
not protected.'®® Copyright does not protect an algorithm, but only
expression of the algorithm. Although not protected by copyright, a
program’s algorithm must be examined to determine if there is copying of
expression. If algorithms are ignored and function is not examined, there
is no way to determine if two programs, expressed in different languages
or at different levels of abstraction, are similar: A computer programmer
will usually look to see if, taking the same input, the same output will
result (functional similarity), or if the algorithm that each program uses is
the same.!® As copyright ignores function, the test for substantial simi-
larity between two programs written in different languages must be, at a
minimum, whether the underlying algorithms are the same.

No test should give copyright protection to algorithms.!®3 An

182. See Ashion-Tate Corp. v. Ross, 916 F.2d 516, 521 (9th Cir. 1990) (to be author of
spreadsheet, one must contribute more than the idea).

183. See 17 U.S.C. § 102(b) (1988). Cf. Brigid Foley Lud. v. Elliot, [1982] R.P.C. 433,
434,

184. There are many programs that translate from one language to another. The pro-
gram translated may just be one of a number of possible translations; a pregram could be
copied from ancther program but when the original program is translated, a different ver-
sion is likely to result. In each case the algorithm will be the same.

185, Algorithms, being equated with methods or processes, are not expressions and are
not copyrightable. Compare the Japanese position that does not give copyright protection
to “metiwods of solution™ (“kaihoo™), which Japanese courts have interpreted as including
algorithms. See Dennis S. Karjala, Jeparese Courts Interpret the “Algarithin” Limitation
on the Copyright Prarection of Computer Programs, 31 JURIMETRICS J. 233 (1991).

Fall, 1991] Copyright or Patent or Both 193

alternative test to those currently used must meet this goal. A computer
program should be protected as expression. The algorithm, if written
down in the form of a flow chart or pseudo-code, does not cause a com-
puter to perform any particular function, and should not be copyrightable
as a computer program.' The algorithm, expressed in this form, may
be copyrightable as an artistic or literary waork in its own right, just as a
house plan or a recipe may be copyrightable. This copyright does not
prevent the builder or chef from using the plan or recipe.!¥? However,
for this algorithm to be used by a computer, it must be “translated” by
the pragrammer into ancther form of expression, the computer program,
and one might argue that the program (as a translation) infringes the
copyright in the flow chart!®® or pseudo-code. As a result, any program-
mer who uses the flow chart or pseudo-code to write a program infringes
the copyright in the flow chart or pseudo-code.!®® Further, if a second
programmer deduces the algorithm from the original program, and uses
it to write a program, there is indirect reproduction of the first
programmer's flow charts and pseudo-code.!®® Therefore one may
decide that in effect the algorithm is copyrightable.

To prevent this, but to allow courts to look at the underlying algo-
rithm to determine if two programs are substantially similar, computer
‘programs must be partitioned from other works in the copyright regime.
Computer programs should not be regarded as literary works.!8! The
copyright of a literary work, artistic work, or any other work, should not
be infringed by a “computer-program work™ and vice versa.’*? A com-
puter program is a work whose intention is to cause a computer io per-
form a certain task. Therefore, a novel stored on a computer disk is not a
computer program, as it does not cause a computer to do anything. An
algorithm expressed in the form of a diagram is copyrightable as an

186. However, in Ausrralia, such expression of the algorithm is copyrightable as a com-
puter program. See Australian Copyright Act § 10 (definition of “computer program™).

187. See Cuisenaire v. Reed [1963] V.R. 619, 736.

188. “Flowcharts . . . are works of authorship in which copyright subsists, provided they
are the product of sufficient intellectual jabor to surpass the ‘insufficient labor hurdle’.”
CONTU FINAL REPORT 43 (1978), cited with approval in Lotus Dev. Corp. v. Paperback
Software Int'l, 740 F. Supp. 37 (D. Mass, 1990).

189, Cf. Synercom Technology, Inc. v. University Computing Ce., 462 F. Supp. 1003,
1013 n.5 (N.D. Tex. 1978} (coding “detailed description of particular problem solution,
such as flowchart” was violation of copyright); Data Cash Sys, Inc. v. JS&A Group Inc.,
480 F. Supp. 1063, 1067 n.4 (N.D. IIL. 1979).

190. Cf. Solar Thompson Eng’g Co. Lud. v. Barton, [1977] R.P.C. 537; Purefoy Eng’g
Co. Ltd. v. Sykes, Boxall & Co. Lid., 72 R.P.C, 89 (1955).

191. It is interesting to note that Autodesk, in its submissions to ACLR, Collection,
supra note 57, at 3, states that “computer programs should not be treated as literary works.”

192. In other words, a non-computer program can not be a derivative work of a
computer-program work. Buf see Williams v. Amndt, 626 F. Supp. 571 (D. Mass. 1985).

194 Harvard Journal of Law & Technology [Vol. 5

artistic work, but a program written using that algorithm does not
infringe the copyright in the diagram. A piece of hardware that uses an
algorithm 1o carry out its task, but does not allow the storage and
retrieval of the algerithm, does not infringe the copyright in a computer
program that uses that algorithm.!> Only computer programs can
infringe the copyright in computer programs.'*

The reason for this limitation is the idea-expression distinction. To
determine if there is copying, one must compare expression. If the rule
allowed comparison between an algorithm expressed as a computer pro-
gram and an algorithm expressed as a diagram, it would be too much like
a comparison of ideas. As the expressions and levels of expression
would be substantially different in virtually every case, there can be no
infringement.

Computer programs are different when they use different algorithms.
But they are not always similar when they use the same algorithm. A
test of substantial similarity of expression must do more than determine
whether the underlying algorithms of two programs are the same.

The same algorithm can be expressed at different levels of abstrac-
tion, from a general high-level description of the methed of completing
the task, to a detailed low-level description. Or looking at it another
way, each program’s algerithm can be expressed at different levels of
abstraction, from the high level (read in data, process data, or print
monthly report) to the low level (a computer program written in assem-
bler language.) Again, the idea-expression distinction becomes useful.
So far most courts in the United States have used this dichotomy, and,
unfortunately, the mérger doctrine, to determine if what is expressed is
essential to the program’s function. Alternatively, if there are various
means of expressing the function of the program, then what is chosen by
the author as expression is protected expression. But there is always
more than one way of expressing the funciion of a program.

What the courts should concentrate on is the level of expression.!?
The algorithm of the program can be expressed at various levels, but not
all those levels should be infringements of another program’s expression.

193. " Cf. Note, Computer Intellectual Property and Concepiual Severance, 103 HARV.
L. REV. 1046, 1055 {1990) (Distinguishing hardware and software is meaningless.).

194. A narrower and unsatisfactory argument was used by the defendant in Computer
Edge Pry. Lid. v. Apple Compurter Inc., 161 C.L.R. 171 (1986), that a reproduction must be
in the same form or nature as the original form in which the alleged reproduction is made.
That is, a reproduction of source code written on paper could only be infringed by the same
source code written on paper. The proposed test in the text above says computer programs
can only be infringed by similar computer programs.

195. But see Dennis S. Karjala, Copyright, Computer Software, and the New Protection-
ism, 28 JURIMETRICS J. 33, 87-92 (1987).

Fall, 1991] Copyright or Patent or Both 195

Clearly, the level of expression that the author uses to express the algo-
rithm, which is in effect the literal code, is protected from copying. The
translation of this code into a more detailed level of expression by a
computer’s compiler is a copy of the program: It is necessary to do so to
run the program, and the low-level code results directly from the
programmer’s expression. The high-level description of the algorithm,
which a computer cannot execute without the further efforts of 2 pro-
grammer, should not be regarded as a copy of the program. This expres-
sion is not a computer program, but an idea for a computer program.
Any computer program that uses that high-level algorithm should not
breach the copyright of another program that uses the same algorithm.
For programs where the levels of expression differ but the algorithms
used are the same, the test of substantial similarity should ask whether
the differences in level of expression are such that the expressions them-
selves are different. This test is one of degree.

The test implicitly takes into account the idea-expression distinction.
In difficult cases, the court should first determine the algorithm each pro-
gram uses. If the algorithms are different, the inquiry should end there:
There is no similarity of expression as what is being expressed is dif-
ferent. If the algorithms are the same, the court then decides at what
level of abstraction they are the same. If it is at such a high level of
abstraction that when the algorithm is expressed a computer could not
execute the algorithm without the assistance of a programmer refining
the level of abstraction, what the court is comparing for copying is not
expression, but idea. Thus, there is no copyright infringement. If the
algorithms are the same at a level of abstraction that a programmer can
directly use to write the same program, without substantially changing
the level of abstraction, then the two programs have expressed the same
algorithm, although in different languages or styles. Thus, there is sub-
stantial similarity.

E. The Proposed Test in Action

Under such a regime, Autodesk is an easy case. There is no copyright
infringement. The defendant’s lock is hardware only, and cannot
infringe the copyright of the piaintiff’s computer program. Secondly, the
algorithm the deferdant used was different, so even if the locks each
coentained a computer program, they are not substantially similar so as to
result in a finding of infringement.

What about Whelan?!% There the court held that copyright

196, Whelan Assocs. v. Jaslow Dental Lab., Inc,, 797 F.2d 1222 (3d Cir. 1986), cert.
denied, 479 U.8. 1031 (1987). :

196 Harvard Journai of Law & Technology [Vol. 5

protection of computer programs may extend beyond a program’s literal
code 10 its structure, sequence, and organization.'”’ A wimess for the
plaintiff testified that the file structures and screzn outputs of the two
programs were virtually identical and that five important subroutines
within both programs performed almost identically in both programs. A
witness for the defendant testified that there were substantive differences
in programming structure, in algorithms, and in data structure, but that
both programs had overall structural similarities.”®® The court regarded
the programs as utilitarian works and decided to treat as irrelevant to its
inquiry (as heing idea) the purpose and function of the programs and
everything necessary to that purpose or function.!”® But the evidence the
court quotes?® does not make it clear that the court did look at the struc-
ture of the programs rather than the function certain parts of the pro-
grams performed.?®! Further, the court did not examine the two works in
whole, but only those parts identified as being similar by the plaintiff.2%?
The Third Circuit decided that the programs were substantially similar.
The strongest case for the plaintiff is that the two programs used the
same high-level algorithm for the programs’ overall design, and the
same algorithm in five pasts of the programs. Even if these five subrou-
tines were copied, that is not enough to show that the defendant breached
the copyright in all of the plaintiff’s program: It would only be so if
those five parts were a substantial part of the work as a whole. Secondly,
the evidence was that the basic structures of the two programs were the
same, but that the algorithms differed substantively. What this may
mean is that, at a very high level, the programs performed the same tasks
in the same order and that the algorithms in their most abstract form
were similar. That being the case, on the above analysis, there is no
copyright infringement. The structure of a program (in this case another
name for the high-level algorithm) must be refined before a program can
be written, and so both programs having the same high level algorithm

197. Id. at 1237--38; see Peter S. Mencll, An Analysis of the Scope of Copyright Protec-
tion for Application Programs, 41 STAN. L. REV. 1045, 1084 (1989) (“{T]he Whelan court
naively reasoned that because a function could be performed in more than one way, its
structure, sequence, and organization is expressive and therefore copyrightable.”),

198, See Wkeian, 797 F.2d at 1228,

199, Seeid. at 1235-38.

200. Seeid. at 1246—48 (the court highlighting the testimony *if we look at the functions
done by the programs in order, we find that they are the same”).

201. See Walter, supra note 38, at 132-33.

202. Whelan, 797 F2d at 1245-46. Cf. Atari Games Corp. v. Oman, 838 F.2d 878,
882-83 (D.C. Cir. 1989) (rejecting compoenent by component analysis and ruling that the
court must focus on the “work as a whole”).

Fall, 1991] Copyright or Patent or Both 197

but different expressions of that algorithm are not substantially similar.
Therefore, there is no infringement.

The Eastern District of New York recently refused to follow the
Whelan test for substantial similarity, calling it “inadequate and inaccu-
rate.”20% The court instead applied what it called the “abstractions test,”
examining each level of generality of the alleged infringing computer
program (the object code, the source code, and the “generzal outline™) for
substantial similarity with the same level of generality as the copyrighted
program.Z** Where the program was found te be substantially similar at
any level of generality, the court then examined that level to see if it was
“important.”203 If not, the court decided that there was no substantial
similarity.206

The court was correct to abandon the Whelan test. The reasoning of
the court was, first, that a program covld include more than one idea.2??
Thus, determining what was non-esseniial or unnecessary to that idea
might be impossible. In addition, each program was made up of subpro-
grams which had separate ideas and could be individuvally copyrighted.
Thus, the court discredited the. use of the merger doctrine in computer
software cases. Secondly, the court divided “the structure of the pro-
gram,” a term used in the Whelan decision, into two components: the
static structure (the struciure of the program as text) and the dynamic
structure (the order of execution of the program’s instructions).2%® The
court decided to examine only the static structure of the program—the
dynamic structure being equivalent to a “process, system, for] method of
operation,” which under section 102(b) does not receive copyright pro-
tection. 20 .

In examining the static structure of the program, the court looked for
substantial similarity at each level of generality. One version of the
defendant’s program directly copied thirty percent of the plaintiff’s
source code. Infringement was found.?'® With regard to a second ver-
sion of the defendant’s program, rewritten to avoid direct copying, the

203. Computer Assoc. Int’l, Inc. v. Altai, Inc., 1991 Copyright L. Rep. (CCH) 426,783,
24,611 (EDN.Y. Aug. 9, 1985).

204. id. at 24,612 (citing Nichols v. Universal Pictures, 45 F.2d 119, 121 (2d Cir. 1930),
cert. denied, 282 U.S., 902 (1931)).

205. Id. at 24,613,

206. Id. at 24,614,

207. Seeid. ar124,611.

208, Id. at24,611-12.

209, Id. at 24,612,

210. Seeid.

198 Harvard Journal of Law & Technology [Vol. 5

court found no infringement.2!! When looking at the source code, the
importance of the code copied, and not the number of lines copied, was
examined. However, as the defendant had rewritten the code, there were
no lines of code identical to those in plaintiff’s program. The court
therefore found no similarity at this level.212 At the next level of gen-
erality, the interface with the operating system, the court found similari-
ties, but held them to be “dictated by external factors” and not infring-
ing.21® Finally, the high-level structure was not substantially similar as
“it was not important, because it was so simple and obvious to anyone
exposed to the operation of the program,™?i4

The court should not have limited itself to examining whether the
lines of code were identical. A work may be substantially similar even
though there is no literal copying of any particular element of the work.
By ignoring the flow of control (the dynamic structure) of the program,
the court ignored an important factor in determining the quality of the
parts copied. It was as if the court, in determining whether a piece of
music was copied, ignored the sound produced and only looked at the
way the notes were arranged on the sheet music. When there is no literal
copying, the flow of control, or more precisely, the algorithm of the pro-
gram, must be considered. If it is the same, there may be copying of
expression. As the algorithin was expressed at the same level in each
program, the court should have determined, first, if it was the same algo-
rithm being expressed, and second, if the expression was substantially
similar, not if the expression was identical.

The court should net have considered whether the higher-level
features copied were simple, obvious, or dictated by external factors
while determining if what was copied was substantial. The words of a
song may be simple, and a map may be dictated by external factors, but
literal copying of those works is copyright infringement. When examin-
ing the high-level structure of the program (the high-level algorithm) the
court would have been more correct if it found non-infringment on the
ground that the high-level structure was an unprotected idea. That is,
the court could have determined that since the algorithm required more
refinement before a program could be written, the high-level structure
was akin to idea, rather than expression.

211, Seeid. at24,613-14.
212, Seeid.

213. Id.at24,613.

214. Id.

Fall, 1991} Copyright or Patent or Both 199

IV. APPLICATION OF THE NEW TEST

A. Uiser Interfaces

This Section uses the foregoing analysis and proposed test to address
legal protection of user interfaces. The first Subsection defines user
interfaces and distinguishes between interface specifications and inter-
face implementations. Succeeding Subsections describe an example of a
copyright dispute conceming a user interface and explore various
rationales for providing user interfaces with copyright protection. The
final Subsection applies the proposed test and concludes that only user
interface implementations should be accorded copyright protection.

1. User Interfaces Defined

A user interface is a set of rules or conventions allowing a human to
communicate with a computer program. In analyzing user interfaces, it
is important to distinguish between interface specifications and interface
implementations. To illustrate the distinction, consider a user working
with a word processing or spreadsheet program.

The interface specification is a set of abstract rules that might be
implemented in any number of ways. For example, a rule that pressing
the F1 key causes the word processor or spreadsheet to save a file to disk
is an element of an interface specification. This rule is general; it says
nothing concerning how the user’s pressing the F1 key is processed by
the word processor or spreadsheet. An interface implementation, on the
other hand, is the computer code that translates the interface
specification rules into action. The interface implementation is itself a
computer program that stands between the human user and the word pro-
cessar or spreadsheet. 215 When the user presses the F1 key, the interface
impl:mentation translates that action in @ particular way into commands
that cause the word processor or spreadsheet to save the file to disk.26

215. Besides user interfaces, there are several other types of interface programs which
act as intermediaries between different components of a computer system. For example,
communications interfaces allow remotely situated computer systems to communicate by
setting a common communications protocol. See Fujitsu Australia Lid,, submission 1o
ACLR, Collection, supra note 57, at 127,

216. The distinction between interface specificaiion and interface implementation can be
central in resolving disputes between parties concemning rights o user interfaces. One
example is the IBM-Fujitsu operating system dispute. The dispute was resolved by arbitra-
tion on Nevember 29, 1988, allowing Fujitsu 1o derive specifically defined interface infor-
mation from new IBM programming materials, in return for payment of an annual access
fee. Fujitsu was given access only to interface information (to allow it to design applica-
tion programs for the [BM operating system environment) that describes the program’s
funcrion, not its implementation. The specifications shared “do not describe the Program’s

200 Harvard Journal of Law & Technology [Vol. 5

As the interface implementation will work to translate the user’s
pressing the F1 key into the “save to disk” command with either the
word processor or the spreadsheet, it is independent of those pro-
grams.2!'? The interface specification, which is the set of rules or princi-
ples underlying the interface, defines the operation of the interface
implementation, which is the code used to implement the interface
specification.?!® This Article concludes that only the implementation
deserves copyright protection, the specification being non-protected
idea.2!?

B. Legal Protection of User Interfaces: The Lotus Case

The extent to which the law should protect user interfaces has been
highly controversial. This Subsection will focus on the copyright dispute
concerning the user interface of the popular spreadsheet program “Lotus
1-2-3." In the Lotus case, the District Conrt of Massachusetts ruled that
the defendants were liabie for breach of copyright because they “copied
protected nonliteral elements of expression in the user interface and the
underlying computer program.” According to the plaintff, the user
interface of the program inclueded such elements as “the menus (and their
structure and organization), long prompts, the screens on which they
appear, the function key assignments, [and] the macro commands and
language.”?? The court explicitly stated that it did not hold the defen-
dants liable for copying the screen displays of the spreadsheet.

To resolve the issue of copyrightability, the court examined the work

structural or detailed design, internal component or module interfaces or other implementa-
tion details.” Unpublished Arbitration Decision at 3. The decision also states if “an operat-
ing system’s interfaces have been clearly defined, then relatively little information beyond
that defined by one vendor as its products’ customer interface specifications may be needed
10 independently develop a compatible operating system that allows customers to run exist-
ing application programs written for the original operating system.” id. at 11.

217. “For the most part, interfaces are defined at design levels higher than and mdcpen-
dent of a product’s implementation in detailed design or code.” /d. a1 12.

218. ‘The ruies contained in the interface specification convey no information about the
contents of a particular interface implementation. For example, AT&T, SYSTEM V
INTERFACE DEFINITION MANUAL (freely made available by AT&T) says “The System V
Interface Definitions specifies an operating system environment that allows users to create
application software that is independent of any particular hardware. ... The functionality
of components is defined, but the implementation is not.”

219. See. e.g., Wendy J. Gordon, Merits of Copyright, 41 STAN. L. REvV. 1343,
144648 (1590).

220. Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 80 (D. Mass. 1990).
Note that Lotus based its program on that of Visicalc, whose copyright was obtained by
purchasing the corporation owning the Visicalc copyright. See SAPC, Inc. v. Lotus Dev.
Corp., 921 F.2d 360, 361 {1st Cir. 1990). '

Fall, 1991] Copyright or Patent or Both 201

to see where along the scale of abstraction of ideas the idea of the work
fell. The court then determined whether the expression of that idea
inciuded elements of expression not essential to every expression of the
idea, and if those elements were a substantial part of the work. The
court did not nse the “look and feel” concept to distinguish between non-
literal elements of a computer program that are copyrightable and those
that are not; “Look and feel” is a conclusion, the court said, not a test.22!
The court considered a number of ideas in the work, including ideas such
as “an electronic spreadsheet,” “a two line moving cursor,” and the
“designation of a particular key as a command key.”??? The ideas of an
electronic spreadsheet, a structured menu, and a two line moving cursor
may be expressed in numerous ways. These ideas were functional, obvi-
ous. and widely used. However, because the ideas may be expressed in
a variety of ways, the court concluded that particular expressions of
those ideas are copyrightable.??3 The designation of a /™ as 2 command
key and the resemblance of the screen display to a paper spreadsheet,
however, were present in most expressions and thus not “a copyrightable
element of a computer program,”224

The court did not look at the algorithm that the plaintiff’s program
used to implenent these features, Instead, certain features of the out-
ward appearance of the program when rupning were said to be original
expression, As they were essential to a user’s operation of the program,
these features were copyrightable. Here the court treated the implemen-
tation of several of the features of the user interface as part of a literary
work. Using this reasoning, a new type of lens for a movie projector,
designed for 2 movie filmed in a particular way, is only one of the many
lenses that could be used in a projector, and would be copyrightable
because it is essential to the showing of a particular motion picture. The
Lotus court was not concerned that the interface was not itself a literary
work or independent computer program,.??s

Nor did the court decide if the literary work, the spreadsheet program
itself, was copied. The plaintiff’s program and the defendants’ programs
both had the same command tree and similar menu structures, and the
court concluded that the deferdants copied the expression embodied in

221. Lotus, 740 F. Supp. at 62-63.

222. Id. at 65-68.

223. Id. at 66-67. The court also said *“That the defendants went to such trouble to copy
[the user interface] is a testament to its substantiality,” Lorus, 740 F. Supp. at 68.

224, Id. at 66.

225. Cf. Computer Edge Pty. Lid. v. Apple Computer Inc., 161 C.L.R. 171, 214 (1986)
(Executing the program’s instructions does not reproduce or adapt the actual written pro-
gram in which copyright subsists.).

202 Harvard Journal of Law & Technology [VolL 5

the Lotus 1-2-3 menu hierarchy.??¢ The court did not, however, analyze
the program implementing the menu heirarchy or other features of the
interface. As the AutoCAD case demonstraies, a similarity of function
does not necessarily imply a similarity in implementation. Thus, the
Lotus defendants may have used completely different algorithms and
programs to implement the interface features of Lotus 1-2-3. Although
the defendants used Lotus’s interface specification, the court did not
determine whether they copied Lotus’s interface implementation.

C. Rationales for Legal Protection of User Interfaces

A complex user interface contains much original expression, takes
many hours to develop, and is essential to the operation of a sophisti-
cated computer system. This does not, however, lead to the conclusion
that the copyright of the program producing and using that interface has
been violated when its interface specification is copied.??’

Since the Lotus decision, there has been much debate in the software
industry as to whether user interfaces should be legally protecied at all.
Apart frorn where the computer code of the interface implementation has
been directly copied, many software producers believe that a user inter-
face is public property. This Subsection examines justifications for
legally protecting user interface specifications.

1. Protection Needed to Promote Development

One argument for protecting interface specifications is that much
work is put into designing such specifications and that consumers place a
high value on good specifications in selecting programs. Much of the
cost of creating a user interface is incurred in formulating the
specification.??® Only twenty percent of the cost of creating a computer

226. Lotus, 740 F. Supp. at 70. The menu hierarchy is one element of the Lotus 1-2-3
user interface. .

227. A Lotus employee, referring to the Lotus 1-2-3 user interface, stated the work “is
in the detail and the degree.” The implementation of the interface, rather than its func-
tionality, he said, should be protected. The Lotus court did not look at the program imple-
menting the interface to see if jt was copied. Frank Ingari, Forum at MIT on Intellectual
Protection of Software (Oct. 30, 1990). At the same forum, the chief counsel of Lotus said
Lotus only sued people who copied the whole interface.

228. See Lotus Dev. Corp., submission to ACLR, Collection, supra note 57 (“[Jt is
widely recognized that the design of the user interface is a task which often requires greater
creativity, originality and insight than the actual writing of the code. To deny copvright
protection for the user interface would allow the misappropriation of those aspects of the
computer program which entail the greatest investment in material and intellectual
resources and which, in the case of Lotus 1-2--3, are the elements which have most contri-
buted to its success.”). See alsa Lotus, 740 F. Supp. at 68.

Fall, 1991] Copyright or Patent or Both 203

program (including the program’s user interface component) is spent
expressing the algorithm in the form of computer code.??

One response is that much effort is put into writing a history book.
Indeed, it may take considerably more time and effort to do the research
than actually to write the book, Nevertheless, it is only the book itself
(the expression) and not the research effort that copyright protects.?0
Protection of a user interface presents a somewhat more difficult prob-
lem, however, because screen displays and other components of inter-
face specifications give computer users information in a particular way
about how 1o use a computer program. Because the information could
be expressed in a different way, part of the interface specification is in
fact an expression of a particular method of interaction between the pro-
gram and the user.

2. The Need for Incentive

Another argument for legal protection of user interface specifications
is that if such protection is not given, the incentive to develop new inter-
faces will decline sharply.??! The plaintiffs in the Lotus case assert that
“the tremendous growth and success of the U.S. software industry is the
direct result of the creative and original efforts of its software develop-
ers, laboring under the protection of the copyright laws. Innovation has
been the key to market success”? The plaintiffs also argued that
the copyright laws protect “the lonely and defenseless developers work-
ing out of their dens and basements™>*? from having their work purloined
by heartless corporations. Thus, the argument runs, if user interfaces are

229. WERNER L. FRANK, CRIMICAL ISSUBS IN SOFTWARE: A GUIDE TO
SOFTWARE ECONOMICS, STRATEGY, AND PROFITABILITY 22 (1983). ‘

220. See, e.g., Miller v. Universal City Studios, Inc., 650 F.2d 1365 (5th Cir. 1981);
Nash v. CBS, Inc., 899 F.2d 1537 (7th Cir. 1990); International News Serv. v. Associated
Press, 248 U.8. 215 (1918); Nichols v. Universal Pictures Cerp., 45 F.2d 119 (2d Cir.
1930). Cf. Jarrold v. Houlstor.. 69 Eng. Rep. 1294, 1298 (Chancery 1857).

231. See generally Australian Information Industry Association, submission to ACLR,
Collection, supra note 57 (“Intellectual property primarily results from the application of
human capital. . . . [Clopyright is related to improving market mechanisms by ensuring that
owners or licensees of intellectual property achieve an adequate return on investment and
effort. If protection were not provided, market mechanisms may not produce an adequate
or desirable amount of intellectual property. ... [T]he critical downstream impact on the
economy of software as a production tool would be lost.”).

232. Plaintiff’s Post-Trial Brief at 75, Lorus, 740 F. Supp. 37, It adds, ‘““The history of
this industry has been ane of creative designers who identify an unfilled need in the market
and then design and build a superior product to fill that need. ... [T)he developers’ ability
to realize substantial rewards for their creative efforts has depended entirely upon the legal
protection copyright has afforded their work.”

233. Id

204 Harvard Journal of Law & Technology [Vol. 5

not pratected, the biggest losers would be the small developers.

This argurnent is not entirely satisfactory, however, because whether
or not copyright laws have encouraged software innovation generally,?*4
they are far from the only incentive that software developers have for
creating novel user interface specifications and implementations. Many
improvements in interface design have been prompted not by copyright
protection but instead by advances in hardware technology. The
development of mouse-based graphic user interfaces, for example,
depended on the availability of the high-resolution display screen.?s
Moreover, some computer users may value the interface specification
more highly than the underlying algorithm of the program.?¢ Therefore,
competition among software developers to sell programs would provide
incentive to create more attractive user interface specifications and
implementations, independent of copyright law. Two competing
software developers with equivalent programs would innovate interface
specifications to gain a competitive edge.?%’

In response, an advocate of copyright protection for interface
specifications might argue that without legal protection, competition
among developers will not result, Consider the situation in which two
developers each design programs performing the same function, but
using different algorithms. Assume that each developer has used pre-
cisely the same amount of resources in developing its program. Suppose
further that the second developer copies the first’s interface specification
(but nothing else) and thus incurs only the costs associated with integrat-
ing the interface specification into its own program. The first developer
has expended resources innovating the interface specification, while the
second is a free-rider. Having incurred no costs in developing a new
interface specification, the second developer may now sell its product

Z234. See, e.g., Gordon, supra note 219, at (44648,
235. Bill Curtis, Engineering Computer “Look and Feei,” 30 JURIMETRICS J. 51, 77
. {1989).

236. This valuation does not itself provide a reliable indicator of the desirability of
copyright protection. The mere fact that a consumer values a particular aspect of a com-
puter program has not traditionally been used to determine the availability of legal protec-
tion. For example, consumers value program upgrades and clear reference manuals, which
copyright laws protect. On the other hand, most consumers also value the accuracy of a
pragram’s results, its speed, and the reputation of its manufacturer, which copyright laws
do not proteci. :

237, Bult HN Informarion Systems claims that having standard operating sysiem inter-
faces increasas competition, by allowing users 1o be able to choose computer elements from
different suppliers and stil) be able to have them work as an integrated system, preventing
the user from being tied involuntarily to one supplier. See submission to ACLR, Collec-
tion, supra note 57, at 4. A similar argument is that retraining costs involuntarily tie a user
to one software-user interface, decreasing competition.

Fall, 1991] Copyright or Patent or Both 205

more cheaply, thereby gaining a price advantage in the market. The first
developer would therefore rationally divert resources to other program
features which are harder to copy or which are legally protected. 28
Therefore, without copyright protection of interface specifications, new
programs will be produced, but they will contain no improvements in
user interface design.?*

This reasoning is superficially plausible, but it ignores several factors,
First, although the costs of program design significantly exceed the costs
of program implementation, it may be that the costs of interface design
are only a small portion of the costs of developing a new program.240
Thus, any price advantage gained by a developer copying another’s
interface specification may be small. This advantage would be reduced
or even eliminated if a developer copying an interface specification
incurs greater costs in creating a corresponding interface implementation
than the creator does.

The creator of the specification also obtains lead-time advantages. By
being the first to iarket, the creator will, for some period, enjoy a mono-
poly on sales of the new user interface. Moreover, the creator indirectly
benefits if its interface specification becomes the industry standard
because of the larger market acceptance of its product and its enhanced
reputation.*! Thus, a desire to sell more copies of a new program, the
opportunity to reap additional profits while other software companies
play “catch-up,” and the minimal advantage accorded free-riders all
encourage innovation of new user interface specifications independent of

238, Note that this argument would apply even if demand for the new program or inter-
face were created by the innovation of computer hardware. Once high-resolution screens
are invented, for example, it still pays the second developer to wait for the first developer to
innovate a new interface specification.

239. A similar line of reasoning is used to justify giving copyright to derivative works.
An author wriles a novel due to the incentive of film, play, and other derivative rights:
Without the possibility of these rights the author would not have bothered to even write the
book, See Ginsburg, supra note 82, at 1910-11. With interfaces the situation is distin-
guishable: Programs need interfaces to operate, but a book is a work in itself.

240. “In fact, the effory spent designing the user interface of a computer program is usu-
ally small compared 10 the cost of developing the program itself.” THE LEAGUE FOR
PROGRAMMING FREEDOM, AGAINST USER INTERFACE COPYRIGHT 4 {Sept. 24, 1990)
(unpublished paper).

241, Tt is interesting to note that IBM allows 15,000 third partics to write application
programs for its MVS operating system. See Arbitration Dacision, supra note 216, at 28,
IBM Australia claims that copyright owners “have significant incentives to publish, and do
publish interfaces 1o encourage others 1o wrile application programs for their systems.
IBM, for example, has published 300-400 interfaces....” IBM, submission to ACLR,
Collection, supra note 57, at 9. IBM, along with DEC and Hewlett-Packard, established
the Open Systems Foundation in 1988 in order to develop an open software environment.

206 Harvard Journal of Law & Technology [Vol.5

copyright law.2*2 Even in the sbsence of any copyright protection for
user interface specifications, some level of innovation would be
expected, 24

3. Protection Needed to Increase the Number of Interfaces

Even if some level of innovation could be expected without legal pro-
tection of interface specifications, the advocate of such protection might
argue that legal protection will result in a greater number of interfaces on
the market. If a programmer is prevented from copying another's inter-
face, the programmer will expend creative effort trying to design a better
interface, This will lead to more interfaces for the community to choose
from, and hopefully each will be an improvement over the last. Insisting
on the use of creative effort in this case is different from the case where
energy is used fruitlessly inventing around a successful, but protected,
product: The users of interfaces are humans, each of whom may prefer a
different way of communicating with a computer. It is not obvious until
tried whether a user will like an interface, so the more created the
betier, 24

In response, it may be argued that at least some degree of standardiza-
tion of user interfaces is desirable.?*5 Consistency in interfaces promotes
ease of use and reduces the casts of retraining when new application pro-
grams are released that use a preexisting interface.?*0 As more users are

242, The distinction between interface specifications and implementations is particularly
important in this context. Prolection of interface implementations is desirable even when
interface specifications are not protected, A competitor could very quickly and inexpen-
sively copy an interface implementation simply by copying the computer code itself.
Allowing such copying would greatly increase a copier’s price advantage in the market and
wauld virtually eliminate the creator's lead-time advantage,

243. For example, Lots markets its programs with the same interface in countriés such
as Germany, where there is no interface protection. See also David W. Kaye, Caolloguy on
Copyright Protection of Computer Software, 31 JURIMETRICS J. 165, 169 (1990)
(“Exploiting a copyright is, no doubt, an incentive, but is is hardly the only incentive. If o
competitor comes up with a significantly better interface on ity program, then it can sell
more of its product.”).

244, Apple would not have invented and successfully marketed its Macintosh interface
if it followed the industry standard or if all consumers wanted one interface. Other inter-
faces apart from indusiry standards succeed.

245. Cf Landes & Posner, supra note 90, at 352 (“The mere fact that a particular set of
symbols has become the industry standard is a tribute to the expressive skills of the particu-
lar manufacturer and should not be deemed to convert expression into iden.”). Bur see
Kaye, supra note 243, at 169 (“[I}t is not the success of the preduct that precludes the copy-
right. It is the nawre of the product.”).

246, A user interface is a method of communication with & computer program, not a
literary work. Reading the book is the point of the book. Leaming an interface is done as a
means of operating a program. A familiar book is not re-read but an interface is only usefui
when familiar,

Fall, 1991] Copyright or Patent or Both 207

trained on a given computer system, more software is likely to be written
for 'that system.?*” If interface specifications are protected by copyright
law, developers other than the creator are forbidden to use any imple-
mentation of the interface’s features. Such a prohibition means that only
the inventor may produce products with the interface’s unique features
angd that other developers must expend resources to create entirely new
and incompatible interface specifications.?*® In contrast, if only interface
implementations are protected, each developer may develop its own
implementation of an industry standard user interface specification.
Such a developer will only need to write and improve the implementa-
tion of a common specification. This, in tumn, will reduce developers’
costs, reduce barriers to entry, and provide users with a wider variety of
products compatible with their existing interface.

As users invest considerable resources in training, they are less likely
to change to a new product that uses a different, but superior, user inter-
face. Many users will value compatibility over the benefits of the new
standard. This may be seen as a negative effect of standardization.?*?
However, 10 a lesser degree, permitting copyright protection of interface
specifications will achieve the same result. The term of protection
expires, but the other producers who were forced to develop incompati-
ble products in the meantime will not easily change to the superior inter-
face, or convince their customers to change, when the copyright period
ends. Those who argue for a shorter period of protection for interfaces
ignore the problem that users will be locked into the incompatible non-
standard interface from the moment of initial purchase.

Customers who have decided on a user interface will want a continu-
ing supply of products compatible with that interface. If the software
developer is given a legal monopoly on all implementations of an inter-
face, it may charge monopoly prices for all new products with the inter-
face. The customer would prefer new developers to be in competition
with the original supplier. Merely allowing cross-licensing of user inter-

247. Joseph Farrell, Srandardization and Intellectual Property, 30 JURIMETRICS J. 35,
36 (1989).

248. But see Lotus Dev. Corp. v. Paperback Software In1’l, 740 F. Supp. 37, 77-79 (D.
Mass. 1990), where the court rejected the standardization argument, stating that the defen-
dants could have sought 2 license for the Lotus interface or sold their advanced features
directly to Lotus, but then said Lotus could arbitrarily refuse such schemes. It was also
suggested that the defendants market their product as an “add-in,” causing users to purchase
two products instead of ane,

249, Menell, supra note 197, at 1070, states that this inertia can retard innovation and
slow or prevent adoption of improved interfaces.”

208 Harvard Journal of Law & Technology fVol. 5

face specifications may result in cartel-like price fixing or tacit price
cooperation among competitors.”?

Moreover, the existence of an industry standard user interface
specification does not mean that there will be only one available inter-
face. Because consumers have different preferences, there will be
‘demand for different user interfaces. Users desiring an interface that
does not use a mouse or pull down menus will create a market for that
product. The result will be a proliferation of different interfaces to
attract consumers with different needs. Industry standard interface
specifications will also result in competition in interface implementa-
tions. Users of the industry standard interface will want faster imple-
mentations of the industry standard.

In addition, consumers who do not wish to relearn 2 new interface for
each application program they use will benefit from the ability to pur-
chase an implementation of a standard user interface. Such consumers
will not be tied to one software developer. However, a user who decides
on an interface that does not become a standard will find its network
benefits diminishing as innovation in products with the standard interface
increases. Finally, as described above, the developer of a user interface
that becomes an industry standard will suffer little detriment and may in
fact realize benefits from creating a widely used interface specifica-
tion.3!

Overall, it is a reasonable assumption that users have invested more
money leaming to use the interface than deveiopers have creating it.
Society would be better off allowing interface standards.”? Many in the

4

250, See United States v. General Elec. Co., 272 U.S. 476 (1926) (allowing a patent
licensing agreement 1o set a price schedule for sale of the product); United States v. Line
Material Co., 333 U.S. 287 (1948) (holding that two patentees cross-licensing their inter-
dependent patents to secure additional mutual benefits violates the Sherman Act); United
States v. United States Gypsum Co., 333 U.S. 364, 400-01 (1948) (holding that indusiry-
wide license agreements under which price contral was exercised established a prima facie
case of conspiracy). Cf. Kaplow, supra note 84.

251. One solution to encourage standardization and still provide an incentive to produce
is the compulsory license. It is a solution somewhar similar to that arrived at in the IBM-
Fujitsu arbitration. See SCHERER, THE ECONOMIC EFFECTS OF COMPULSORY LICENS-
ING (1977); Venit, Technology Licensing in the EC, 59 ANTITRUST L.J. 485, 496 (1991).
In antitrust litigation, compulsory licensing of patents is an available remedy. See
Hartford-Empire Co. v. United States, 323 U.S. 386, 417 (1945); United Siates v. Glaxo-
Group, 410 U.S. 52 (1973); see generally AREEDA & KAPLOW, supra note 80, §1 150,
284.

252. For an economic analysis of the tradeoff between production costs and consumer
value, see William W. Fisher, III, Reconstructing the Fair Use Docrrine, 101 HARV. L.
REV. 1659, 1703-04 (1980).

Fall, 1991] Copyright or Patent or Both 209

computer indusiry do not want interface protection.>> They believe that
use of an industry standard would be more beneficial for everyone.

D, Applying the Proposed Test

Analysis of the justifications for copyright protection of interface
specifications indicates that copyright law should not pro.ide monopoly
power to the creator of a new specification. Although protection for
interface specifications might increase the incentives for innovation,
such innovation would continue even without legal intervention. More-
over, refusing to protect interface specifications would allow develop-
ment of industry standard interfaces, with all the attendant benefits of
standardization.2%

These conclusions do not dictate that no protection be afforded to user
interfaces. Instead, the proposed test focuses on expression. The inter-
face specification is a set of rules, independent of expressive content
untif implemented in a particular way. Thus, the proposed test would not
exterd copyright protection to interface specifications. The interface
implementation, however, is composed of computer code. It is a specific
expression of the ideas embodied in the specification and should there-
fore receive copyright protection.2

»Therefore, if a software developer obtains a compuier program from a
rival and decides to integrate the interface into its own program, it could
carry out the following procedure?® without infringing the other

253. For example, firms such as Unisys (advocating specific exemptions in copyright
legislation for interface specifications), Sun Microsystems {submitting that the “look and
feel” of a program should not be protected by copyright), Fujitsu (arguing for an explicit
“interface™ exclusion), Bull HN Information Systems (recommending that interface
specifications should not be protected by copyright and copying of these specifications
should be permissible), McDonnell Douglas (concluding that extension of copyright pratec-
tion to specification of interfaces would have a devastating effect on industry development).
Submissions to ACLR, Collection, supra note 57. See afso Pamela Samuelson & Robert J.
Glushko, Comparing the Views of Lawyers and User Interface Designers on the Software
Copyright “Look and Feel” Lawsuits, 30 JURIMETRICS J. 121, 121 (1989} (79% of indus-
try respondents opposed to “look and feel” protection).

254 For a summary of the adverse impacts of permitting protection of user interface
specifications, see Menell, supra note 197, at 1071.

255. A similar analysis would be used in applying the proposed test to any individual
element of the user interface. A screen display, for example, is part of a user interface.
However, it is an element of the specification because the specification dictates the layout
of elemenis onto the screen. Thus, the screen display itself is not protected. Under the pro-
posed test, if programmer A uses a screen design from programmer B, programmer A has
not violated programmer B’s copyright,

256. A clean room procedure is used to develop a clone of a program where the pro-
gramming team independently develops a complete program. The procedure described
above is different from the expensive clean room described in David 8. Elkins, A Guide to
Using “Clean Room" Procedures as Evidence, 10 COMPUTER L.J. 453, 480 (1990). See

i

210 Harvard Journal of Law & Technology [Vol.5

developer’s copyright. The developer wishing to create a new interface
implementation would create two teams of programme:s. One team
would decompile the rival’s program and determine the interface
specifications. This teamn would then pass the specifications on to the
second team. The second team would, without any knowledge of the
interface implementation used by the rival, code an implementation of
the rival's interface specification. The new implementation could then
be integrated into new programs.2’

This procedure would pass the proposed test since only the non-
protected interface specification is duplicated; the protected interface
implementation is not. This solution does result in some inefficiencies.
If stzndardization is beneficial, why have firms independently exerted
effort to recreate an existing interface implementation? The answer is
pragmatic. There must be incentive to motivate creation of new user
interface implementations. Developers spend time and effort expressing
an interface in error-free code. If that code is protected, the first firm to
innovate a new interface specification will get a head-start in the
market.>*® Rivals will incur costs in coding and testing new implementa-
tions of the standard interface specified and will receive decreased price
advantages over the specification’s creator. Application of this solution
fits neatly into the copyright scheme, as all computer code can be equally
protected. It is a solution that balances the need to provide incentives for
development with the desire for the benefits of standardization.

E. Conclusion on Copyright

This Section has proposed a scheme to solve copyright problems
involving computer programs. It is a scheme that can be applied to the
current problems in this area: protection of interfaces, ouiput, and func-
tion. It can be applied in Australia, and alse in the United States instead
of the merger doctrine,

To consolidate, the scheme is as follows. Computer programs should

also Jorge Contreras et al., Recent Development, NEC v. Intel: Breaking New Ground in
the Law of Copyrighr, 3 HARV. J. L. & TECH. 209, 218-21 (1990) (describing the costs of
clean rooms).

257. Similarly, if a programmer designed a program with expression substantially simi-
lar to another imterface without any knowledge of it, there is no copyright infringement.
See alse Conference, Last Frontier Conference Report on Copyright Protection of Com-
puter Sofrware, 30 JURIMETRICS J. 15, 23 (1989).

258, Cf. Vance F. Brown, The Incompatibiiiry of Copyright and Computer Saftware: An
Economic Evaluation and a Proposal for a Marketpiace Solution, 66 N.C. L. REV. 977,
1009 (1988) {Protection of software should provide monopoly protection only for the
developer’s legitimate lead time.).

Fall, 1991] Copyright or Patent or Both 211

be separate works under the Copyright Act.?® Computer programs can
only infringe the copyright in other computer programs. Only computer
programs can be derivative works of computer programs. If a form of
expression is not detailed enough for a computer to execute it withaut
further human intervention, it is not a computer program. To determine
if there is copying, the expression to be examined is the algorithm in the
form of computer code. Function, output, and specifications are to be
ignored. Literal copying is infringement.20 A low-level version of the
code that a compuler uses to execute the program is protected: Copying
this would infringe the copyright in the programmer’s code. When exa-
minirig code expressed in different languages, the algorithms expressed
as code at a level of abstraction comparable to that chosen by the pro-
grammer to express the algorithm must be substantially similar. If dif-
ferent algorithms are used to achieve the same result, or if the algorithms
are similar only when expressed at a level far higher than the code at
issue, then there is no infringement. These tests assist in the application
of the idea-expression distinction to computer programs. 'In the end, in
hard cases, the question is one of degree: At what level of absiraction
should the algorithms be examined to see if they are the same? The dis-

259. Buat cf. Glynn S. Lunney, Jr., Capyright Protection for ASIC Gate Configurations:
PLDs, Custom and Semicustom Chips, 42 STAN. L. REV. 163 (1989) (There should be no
difference in hardware and software protection so the market can control levels of invest-
ment in each.).

260. Menell, supra note 197, at 1082, concludes that “legal protection for application
programs should not extend much, if at all, beyond protection against literal capying,
except for new, useful, and nonobvious improvements.” The main reason for such protec-
tion, he states, is similar to that given above: to ensure that the lead time will be significant
to recaver development costs. fd. at 1086. Instead of extending protection beyond literal
copying to copying of the underlying algorithm, Menell has imported the patent standard
into copyright law. The problems that patent law faces using this test have been discussed
above. Importing the patent requirement of novelty and nonobviousness is described as
“simpleminded’ in Wiley, suprq note 34, at 145, See also Fred Fisher, Inc. v. Dillingham,
298 F. 145, 150 (5.D.N.Y. 1924) (Hand, J., distinguishing copyright from patent).

Menell elaborates the test, stating that limiting copyright to expression means that the
expressive aspects of the structure of the program that are not functional atiributas should
be protected. The court is required to separate the functional aspects from a program's
expressive aspects. Menell, supra note 197, at 10B5. Under this test, only comments
directed to the programmer would be protected-——all error-free computer programs are func-
tional, Menell says his test is consistem with copyright 1es1s for architectural plans, busi-
ness forms, and game rules. . at 1085 n.231. This is not so. Architectural works are pro-
tected by copyright, as are forms if they convey information. These works are functional.
Rules of a game, as long as they are written down, are copyrightable regardless of whether
they describe a game that is functional, efficient, fair, or foolish. Expression that allows a
function to be carried out, such as a recipe or a computer program, is copyrightable. Copy-
ing the resuit of carrying out the instructions, the cake or the user interface, is not an
infringement of the instructions,

212 Harvard Journal of Law & Technology [Vol. 5

tinctions that a judge would have to make would be no different from
those made in deciding other difficult copyright cases.

CONCLUSION

This Article has examined patent and copyright protection of algo-
rithms expressed as computer programs. The focus was on applying a
knowledge of algorithms to issues currently in dispute. It was assumed
that protection of some sort is needed for computer programs’ intellec-
tual components. As copyright is the preferred vehicle for protection
internationally, and has been so for a number of years, the scope of
copyright protection was examined. The idea-expression distinction was
applied to determine what should be protected as a computer program
and what should constitute copying.

The inquiry into patent law was different. The Article examined the
objections currently made by software developers to the patenting of
computer programs and concluded that those objections were no dif-
ferent from objections that could be made to the patent system generally,
albeit in a more extreme form in some instances, Secondly, as a com-
puter program is both expression of a process and the means to carry out
the process, the Article showed that the patent rules come close to pro-
tecting what copyright protects, expression. If high-level algorithms are
not protected (being abstract ideas) and protection is not given to algo-
rithms expressed directly in computer code (being the domain of copy-
right), then patent is left to protect algorithms where a computer is the
desired processor but the algorithm is expressed in such a way that it
could be used in many programming applications and various program-
ming languages. The court would then have to determine whether a
program'’s coding used that algorithm. On this Article’s proposed test of
substantial similarity, the courts would use a similar analysis to decide
whether there is breach of copyright. In other words, copyright and
patent would cover the same subject matter. Copyright does it more
efficiently.

No patent protection should be provided for computer software.
Copyright protection is adequate. It would be inefficient to have dual
coverage of one product to achieve the one goal of promoting innova-
tion. Protection is needed to stop rivals from taking the intellectual
effort in the software created and using it in a similar product sold at a
reduced price. The copyright system can more efficiently and fairly pro-
vide the protection needed.

Fall, 1991] Copyright or Patent or Both 213

First, the copyright system has fewer formalities. No registration or
disclosure is required. There is no waiting period.

Secondly, the copyright system is fairer. There is no fight to deter-
mine who was first. If two people independently code a program in the
same way, as is likely to occur in coding algorithms in computer
languages, both are protected. No monopoly is granted, which in a
rapidly expanding field seems like a lottery prize to the lucky program-
mer with the best lawyer. People are encouraged to create, knowing that
what they create wili be protected,

Thirdly, the patent system cannot efficiently decide whether an algo-
rithm or program is novel. Most programs written are not novel and are
obvious. Less than one percent of computer programs, it is claimed, are
patentable.?6! It would be an expensive and far-reaching inquiry to
determine if an aigorithm is novel and noncbvious, as algorithms have
existed for centuries and are used in a variety of fields. With so much w0
examine, a wrong result is likely in many cases. Assume that a limita-

tion was put on the search, so that only the application of the algorithm
had to be novel. To computer scientists, using an algorithm in a com-
puter program is always obvious. Additionally, protection would be
- given to the application of the algorithm, in this field, the expression of
the algorithm as a computer program. Isn’t that what copyright protects?

Fourthly, programs have a short life, but the algorithms used in a pro-
gram can be used repeatedly in a variety of applications. Alg -ithms are
the building blocks of computer science. Lock up algorithms and
development will cease. One need only protect the preduct and not the
tools in order to encourage creation of the product.

Fifthly, if new algorithms continue to be discovered as long as sci-
ence endures, what need is there for incentive? The incentive should
promote application of the algorithm. If applied in a computer program,
the expression is protected. Inventions and processes do not “contain”
any expression for copyright to protect, so alternative protection, gen-
erally that of patent, is required. For example, in the creation of a better
mousetrap there is no expression to protect. The opposite is always the
case for computer programs.

The copyright regime gives adequate protection to encourage innova-
tion and reward inventors. What is valuable in software is its use; unlike
in other areas, the form of expression is used directly to perform a task,
There is no need to give additional protection to the algorithm if the most
valuable form of the algorithm, the computer program, is protected.

261. See Duncan M. Davidson, Protecting Computer Software: A Comprehensive
Analysis, 23 JURIMETRICS J. 339, 357 (1983).

214 Harvard Journal of Law & Technology [Vol.5

Copyright does not go too far, so as to protect function. To do so would
be to provide patent-like protection with less stringent tests. As con-
cluded in the user interface area, some protection is needed, and that is
provided by giving protection to the expression implementing the inter-
face. As can be seen in the large amount of public-domain software
available, over which no copyright is asserted, providing copyright pro-
tection to software to encourage innovation may be erring on the side of
caution.

The legal rules necessary to implement this proposal are simple.
Copyright will be given to computer programs as a separate category of
works within the copyright system. Patent coverage will be denied for
such programs. Any algorithm expressed as a computer program will
not be patentable. An algorithm may be patented where no software is
involved. That patent cannot be infringed by using the algorithm in a
computer program. The simple result: Patent law will protect hardware,
and copyright law will protect software.

