
Harvard Journal of Law & Technology

Volume 29, Number 2 Spring 2016

SOFTWARE, ABSTRACTNESS, AND SOFT PHYSICALITY

REQUIREMENTS

Shane D. Anderson*

TABLE OF CONTENTS

I. INTRODUCTION .. 567

II. SOFTWARE PATENT HISTORY AND PROBLEMS 569
A. Current Standards .. 571
B. Software Patent Problems .. 574

1. The Patent System Does Not Suit Software 575
2. The USPTO Is Ill-Equipped .. 576
3. Software Patent Thickets ... 577
4. Software Patents Are Easily Abused 578

III. SOFT PHYSICALITY REQUIREMENTS AND SOFTWARE 580

IV. SOFT PHYSICALITY IN OPERATION ... 583
A. Precedent and Soft Physicality ... 586
B. Tailored Standards in Other Jurisdictions 588

V. ARGUMENTS AGAINST SOFT PHYSICALITY REQUIREMENTS 590
A. Not All Software Is Abstract ... 591
B. The Alice Framework Is Sufficiently Limiting 592

VI. CONCLUSION .. 593

I. INTRODUCTION

Many commentators claim the fundamental problem with soft-

ware patents is their low quality, which facilitates abuse. 1 Patent

trolls, which are generally described as entities that assert patent in-

* Harvard Law School, Candidate for J.D., 2016. B.Sc. in Electrical Engineering, Uni-

versity of Calgary, 2009. Prior to law school Shane worked for five years: one year in an
undergraduate internship at Uzushio Electric Co., Ltd. in Imabari, Japan where he worked

on embedded systems and developing simulators; two years at Telvent Canada in Calgary,

Canada developing SCADA systems; and two years teaching English in Yoshinogari, Japan.
His primary interests are in patent law, the high-tech and software industries, and the role

patent law plays in promoting innovation and scientific and technological development.

Shane would like to express his deep gratitude for the generous support and guidance from
Professor Mark Wu and invaluable input from Professor John Golden, as well as for all of

the hard work put in by Article Editor Brendon Vetter and the entire editing team at the

Harvard Journal of Law & Technology.
1 . See, e.g., Jack G. Abid, Software Patents on Both Sides of the Atlantic, 23 J.

MARSHALL J. COMPUTER & INFO. L. 815, 835 (2005); Cheryl Milone, Stopping Abusive

Patent Litigants, Not Innovation: Judicial Tools That Do No Harm, FED. LAW., Oct.–Nov.
2013, at 40.

568 Harvard Journal of Law & Technology [Vol. 29

fringement claims but do not produce or commercialize the patented

inventions, are often the ones that abuse low quality patents.2 Scholars

and legislators alike have proffered solutions to curb abuse by patent

trolls.3 These attempts, however, may simply act to soothe the symp-

toms of a more fundamental illness.

The patent troll problem has been characterized as stemming from

software patents.4 A study by the Government Accountability Office

found that from 2007 through 2011 the number of defendants in pa-

tent lawsuits more than doubled, and software patents accounted for

eighty-nine percent of the increase.5 To combat this problem, some

have advocated completely barring software patents.6 However, such

visceral reactions may stem from focusing too much on the fact that

the actors abusing software patents are frequently patent trolls, which

obscures the root problem that the low quality of many software pa-

tents is what makes them easy to abuse.7

This Note argues that the problem arises from insufficient legal

guidance. The United States Patent and Trademark Office (“USPTO”)

should proactively address this issue by adopting soft physicality re-

quirements for the approval of software patents. This proposal allows

for the patenting of certain software, but forces the patentee to limit

the scope up front by requiring a tie into essential hardware or compu-

ting platform(s). Other highly innovative nations have similarly used

special industry-specific hurdles to software patenting.8 Accordingly,

2. See, e.g., John R. Allison, Mark A. Lemley & Joshua Walker, Extreme Value or Trolls

on Top? The Characteristics of the Most-Litigated Patents, 158 U. PA. L. REV. 1, 24 (2009).

Other definitions of what constitutes a patent troll exist. The scope of the definition largely
depends on how strictly one believes that a patent holder should commercialize or practice

patents held. For example, many would not consider a non-practicing university holding a

patent to be a patent troll while others, essentially using “patent troll” as a synonym for
“non-practicing entity,” would. See, e.g., Sannu K. Shrestha, Trolls or Market-Makers? An

Empirical Analysis of Nonpracticing Entities, 110 COLUM. L. REV. 114 (2010). Others take

a narrower approach and tie patent trolls to their behavior directly relating to research and
development, defining them as “companies that use patents primarily to obtain license fees

rather than to support the development or transfer of technology.” Colleen V. Chien, Pre-

dicting Patent Litigation, 90 TEX. L. REV. 283, 292 (2011).
3. See, e.g., Tracie L. Bryant, Note, The America Invents Act: Slaying Trolls, Limiting

Joinder, 25 HARV. J.L. & TECH. 673, 674 (2012) (arguing that the enactment of the America

Invents Act was animated at least in part to curb infringement suits by patent trolls); Abid,
supra note 1, at 836–37.

4. See James Bessen, The Patent Troll Crisis Is Really A Software Patent Crisis, WASH.

POST (Sept. 3, 2013), http://www.washingtonpost.com/blogs/the-switch/wp/2013/09/03/the-
patent-troll-crisis-is-really-a-software-patent-crisis/ [https://perma.cc/5Z4S-VPL3].

5. U.S. GOV’T ACCOUNTABILITY OFF., GAO-13-465, INTELLECTUAL PROPERTY:

ASSESSING FACTORS THAT AFFECT PATENT INFRINGEMENT LITIGATION COULD HELP

IMPROVE PATENT QUALITY 21 (2013).

6. See Andrew Nieh, Software Wars: The Patent Menace, 55 N.Y. L. SCH. L. REV. 295,

330 (2010–2011).
7. See infra Part II.B.

8. For example, until October 1, 2015, patentees in Japan had to show that “information

processing by software is concretely realized by using hardware resources” in order to re-
ceive a patent. See JAPAN PATENT OFFICE, EXAMINATION GUIDELINES FOR PATENT AND

No. 2] Soft Physicality Requirements 569

this Note will also discuss the Japanese patent system and explore

what lessons can be learned from that model.

The Note begins by discussing the history, current eligibility

standards, and problems associated with software patents in Part II. In

Part III, the specific proposal is developed and described. The merits

of the proposal and precedential support are discussed in Part IV. Crit-

icism is briefly discussed in Part V. Part VI concludes.

II. SOFTWARE PATENT HISTORY AND PROBLEMS

In the late 1960s, the USPTO took a hard anti-software stance, is-

suing examination guidelines in 1968 that held computer programs

generally unpatentable.9 A programmed computer, however, could be

part of a patentable process10 if combined with unobvious elements to

produce a physical result. 11 Despite the strong directive from the

USPTO on the ineligibility of software patents, the Court of Customs

and Patent Appeals (“CCPA”)12 held in favor of the patentability of

software.13 With this tension, the Supreme Court intervened in a pair

of landmark cases during the 1970s: Gottschalk v. Benson and Parker

v. Flook.14

In Benson, the Court fell back on precedent, holding that phe-

nomena of nature, mental processes, and abstract ideas are unpatenta-

ble 15 and finding that the claim in question was “so abstract and

sweeping as to cover both known and unknown uses” of the mathe-

matical algorithm in question.16 A primary concern of the Court was

UTILITY MODEL IN JAPAN Part VII, Chapter 1, 10 (2011),

http://www.jpo.go.jp/tetuzuki_e/t_tokkyo_e/Guidelines/7_1.pdf [https://perma.cc/JVQ6-
KDX3] [hereinafter JPO EXAMINATION GUIDELINES].

9. See Diamond v. Diehr, 450 U.S. 175, 197–98 (1981) (summarizing the 1968 guide-

lines).
10. 35 U.S.C. § 101 defines what constitutes patentable subject material and includes

“any new and useful process, machine, manufacture, or composition of matter, or any new

and useful improvement thereof.” 35 U.S.C. § 101 (2012). “Process” is defined in 35 U.S.C.
§ 100 as, circularly, a “process, art or method, and includes a new use of a known process,

machine, manufacture, composition of matter, or material.” 35 U.S.C. § 100 (2012).

11. See Diehr, 450 U.S. at 198.
12. The CCPA was abolished in 1982 by the Federal Courts Improvement Act of 1982,

which created the United States Court of Appeals for the Federal Circuit, the successor court

to the CCPA.
13. See, e.g., In re Prater, 415 F.2d 1378, 1389 (C.C.P.A. 1968) (reversing a rejection by

the Patent Office Board of Appeals on a claim that involved a programmed digital comput-

er); In re Bernhart, 417 F.2d 1395, 1400 (C.C.P.A. 1969) (stating that a machine “pro-
grammed in a certain new and unobvious way” is “physcially [sic] different from the

machine without that program,” resulting in a “new and useful improvement” of the unpro-

grammed machine, thus rendering it patentable subject matter under 35 U.S.C. § 101).
14. Gottschalk v. Benson, 409 U.S. 63, 64 (1972); Parker v. Flook, 437 U.S. 584, 585

(1978).

15. Benson, 409 U.S. at 67.
16. Id. at 68.

570 Harvard Journal of Law & Technology [Vol. 29

that granting such a patent would “wholly pre-empt” use of the formu-

la and allow for its monopolization.17

The patent in Flook covered a method of updating alarm limits

that relied on a mathematical formula.18 The Court, after announcing

that the case “turns entirely on the proper construction of § 101” of

Title 35,19 proceeded to treat the mathematical formula as if it “were

well known” for the purposes of analysis20 and ruled it out of the

§ 101 analysis.21 The Court then found the application contained “no

claim of patentable invention” because the remaining “invention,” an

algorithm, was directed essentially to a mathematical formula and was

thus unpatentable.22 After Benson and Flook, many doubted whether

software could be patented at all.23

The Supreme Court reversed its position in the 1981 case Dia-
mond v. Diehr in which the Court analyzed a patent on a process that

utilized a computer program to cure rubber.24 The majority differenti-

ated Diehr from Benson and Flook on the grounds that the patent in

Diehr involved a physical transformation; the Court then stated that

physical transformation is “the clue to the patentability of a process

claim that does not include particular machines.”25 In the years fol-

lowing Diehr the confusion surrounding software patents lead to re-

peated attempts by the courts to formulate standards and tests, often

with the Supreme Court and lower courts conflicting. An example of

this is the Supreme Court’s denouncement of the Federal Circuit’s

application of the machine-or-transformation test as the sole test for

patent-eligible subject matter, discussed in the next paragraph.

17. Id. at 71–72.

18. Flook, 437 U.S. at 585.

19. Id. at 588.
20. Id. at 592.

21. See supra note 10. Under the § 101 analysis, the court is to focus on the subject mat-

ter of the claimed invention itself and determine whether it falls within one of the enumerat-
ed categories of “process, machine, manufacture, or composition of matter, or any new and

useful improvement thereof.” 35 U.S.C. § 101 (2012).

22. Flook, 437 U.S. at 594–95. The patentee took issue with the Supreme Court’s analy-
sis and, as the Court recorded, “argue[d] that this approach improperly imports into § 101

the considerations of . . . §§ 102 and 103.” Id. at 592. This is a reasonable view as the ap-

proach requires first finding the “point of novelty” in a claimed invention and then analyz-
ing the remaining “inventive” components in isolation under § 101. This can bias the

analysis, as seen in Flook, in that there is a diminished frame of reference for the breadth or,

more importantly, the narrowness of a given patent that uses a component that is ineligible
subject matter.

23. See, e.g., David A. Piehler, Patent Law – Subject-Matter Patentability – Process Pa-

tents – The Patentability of Computer Software, 1979 WIS. L. REV. 867, 869 (1979). But see
David A. Blumenthal & Bruce D. Riter, Statutory or Non-Statutory?: An Analysis of the

Patentability of Computer Related Inventions, 62 J. PAT. OFF. SOC’Y 454, 518–20 (1980)

(arguing that software patents may be statutorily acceptable after Benson and Flook if the
patent is drafted appropriately).

24. In re Diehr, 602 F.2d 982, 983 (C.C.P.A. 1979).

25. Diamond v. Diehr, 450 U.S. 175, 184 (1981) (quoting Gottschalk v. Benson, 409 U.S.
63, 70 (1972)) (emphasis added).

No. 2] Soft Physicality Requirements 571

After the Federal Circuit denounced the Freeman-Walter-Abele

test (formulated in the early 1980s) as “inadequate” in Bilski,26 the

Federal Circuit designated a separate “machine-or-transformation

test” as the determinative “test for patent-eligible subject matter.”27

The machine-or-transformation test dictates that a “process patent

must either be tied to a particular machine or apparatus or must oper-

ate to change articles or materials to a ‘different state or thing.’”28 The

Supreme Court quickly introduced more confusion by pulling back

and announcing that “the machine-or-transformation test is a useful

and important clue.”29 This was a nod to the role that physicality —

the tying of the idea embodied by the patent’s claims to the construct

by which it is to be realized — plays in indicating the patent eligibility

of a given invention.

After Diehr, the Federal Circuit continued the expansion of soft-

ware patenting in its 1998 decision State Street Bank & Trust Co. v.
Signature Financial Group by holding that a patent on a processing

system implementing an investment structure was valid as a statutory

machine claim.30 The Court also supported patenting so-called “busi-

ness methods,”31 opening another scheme through which software can

be patented. In the year immediately following the State Street deci-

sion, the number of business method patents more than doubled.32

A. Current Standards

The concern animating the machine-or-transformation test, as ex-

plained by the Federal Circuit in In re Bilski, is that a given patent

may wholly preempt fundamental principles.33 This would prevent the

use of the principles in further innovation and development. The

preemption concern is still prominent and is used by courts to declare

26. In re Bilski, 545 F.3d 943, 959 (Fed. Cir. 2008).

27. Id.
28. Benson, 409 U.S. at 71.

29. See Bilski v. Kappos, 561 U.S. 593, 604 (2010) (emphasis added).

30. See State St. Bank & Trust Co. v. Signature Fin. Grp., 149 F.3d 1368, 1370 (Fed. Cir.
1998).

31. Id. at 1375. The Supreme Court in Bilski v. Kappos supported the Federal Circuit and

declared that “a business method is simply one kind of ‘method’ that is . . . eligible for
patenting under § 101.” 561 U.S. at 607. As is typical of the Supreme Court, it declined to

accurately define what a business method is and instead relied on a definition in the pre-

America Invents Act version of 35 U.S.C. § 273, which indicated that “method” means “a
method of doing or conducting business.” Id. Some have noted that prior to the State St.

ruling the USPTO had granted patents on business methods. Kevin Schubert, Should State

Street Be Overruled? Continuing Controversy over Business Method Patents, 90 J. PAT. &

TRADEMARK OFF. SOC’Y 461, 462 (2008).

32. See Kevin M. Baird, Business Method Patents: Chaos at the USPTO or Business as

Usual?, 2001 U. ILL. J.L. TECH. & POL’Y 347, 354.
33. See In re Bilski, 545 F.3d 943, 963 (Fed. Cir. 2008).

572 Harvard Journal of Law & Technology [Vol. 29

patents invalid.34 Beyond this basic concern, the Federal Circuit has

been faced with the task of applying a multitude of tests with little

guidance as to the weight or relevance of each test. These tests arise

from the principle that “laws of nature, natural phenomena, and ab-

stract ideas,” including mathematical algorithms, are unpatentable

subject matter.35 The tests applied by the courts in the years since Bil-

ski v. Kappos include:

(1) The Mental Steps Exception: This test involves ascertain-

ing whether an invention encompasses only methods that

may be carried out in the human mind.36 Such a method “is

merely an abstract idea and is not patent-eligible under

§ 101.”37 The motivating sentiment behind this test is the

unease felt toward a scheme that effectively makes a

thought process legally protected.

(2) Flook-like Inventive Concepts (“point of novelty”): This

analysis is similar to that done when looking for meaningful

limitations to a possibly preemptory invention. There is,

however, a subtle difference in formulation. Under this test,

non-inventive concepts are first eliminated from the scope

of the invention. The remaining components are assumed to

be the invention for which protection is sought and they are

what is analyzed under § 101.38 This test has been chastised

for bringing an inherent § 103 non-obviousness analysis39

into the § 101 patentability analysis.40

(3) The Machine-or-Transformation Test: Although the Su-

preme Court relegated this test to a lower status, it remains

a useful indicator of patentability.41

34. See, e.g., Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347, 2358 (2014) (stat-

ing that the “pre-emption concern . . . undergirds [the] § 101 jurisprudence”); Accenture

Global Servs. v. Guidewire Software, Inc., 728 F.3d 1336, 1344–46 (Fed. Cir. 2013).

35. See Diamond v. Diehr, 450 U.S. 175, 185 (1981).
36. CyberSource Corp. v. Retail Decisions, Inc., 654 F.3d 1366, 1373 (Fed. Cir. 2011);

see also, e.g., PerkinElmer, Inc. v. Intema Ltd., 496 Fed. Appx. 65, 70–72 (Fed. Cir. 2012).

37. Id.
38. See, e.g., Ariosa Diagnostics, Inc. v. Sequenom, Inc., 788 F.3d 1371, 1377 (Fed. Cir.

2015) (stating that for processes encompassing unpatentable natural phenomenon, “the

[patentable] process steps are the additional features that must be new and useful”).
39. Section 103 states that “[a] patent for a claimed invention may not be obtained . . . if

the differences between the claimed invention and the prior art are such that the claimed

invention as a whole would have been obvious before the effective filing date of the claimed
invention to a person having ordinary skill in the art to which the claimed invention per-

tains.” 35 U.S.C. § 103 (2012).

40. The Supreme Court acknowledged such criticism in Flook. See Parker v. Flook, 437
U.S. 584, 593 (1978).

41. See, e.g., PerkinElmer, Inc., 496 Fed. Appx. at 72–73; CyberSource Corp., 654 F.3d

at 1371. The machine-or-transformation test was expressed in Benson as the following: a
“process patent must either be tied to a particular machine or apparatus or must operate to

No. 2] Soft Physicality Requirements 573

(4) Preemption and Meaningful Limitations: This two-step

test involves evaluating whether the patent too broadly

preempts any further use of a natural law, natural phenome-

na, or abstract idea due to a lack of meaningful limita-

tions.42 First, a court determines whether the patent is drawn

to one of the previously mentioned exceptions; second, a

court asks if there are meaningful limitations that would

prevent wholesale preemption.43 Some preemption is a nat-

ural result of giving a monopoly on the practice of an inven-

tion. The purpose of this analysis, however, is to ensure that

the preemption does not restrict future innovation too ex-

pansively.44

The primary problem is the vagueness regarding how patent eli-

gibility under § 101 should be analyzed in light of these multiple tests.

This vagueness leaves the Supreme Court with an incredible amount

of flexibility to abruptly change course. The Federal Circuit is in the

difficult position of stitching together vague and inconsistent prece-

dent while knowing it can easily be rebuked. The USPTO has a ten-

dency to err on the side of granting patents,45 which means that this

vagueness leads to a proliferation of low quality patents and produces

a host of problems associated with software patents. These problems

are described in Part II.B.

However, the USPTO may be able to utilize this same vagueness

when analyzing software patents to screen out low quality patents. A

necessary commonality between the tests is that they attempt to tease

out whether a software invention is an unconstrained abstract idea and

is thus unpatentable.46 Another commonality is that they embody a

preference for physicality.

The Supreme Court most recently addressed the issue of software

patents in Alice Corp. Pty. v. CLS Bank International.47 In Alice, the

Supreme Court invalidated patent claims for a method of performing

hedging under § 101 because the claims were “directed to an abstract

idea”48 and there was no inventive step transforming that idea into a

change articles or materials to a ‘different state or thing’” to be patent eligible. See
Gottschalk v. Benson, 409 U.S. 63, 71 (1972).

42. See, e.g., Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347, 2357–60 (2014).

43. See id.
44. See id.

45. See, e.g., Jonathan Masur, Patent Inflation, 121 YALE L. J. 470, 474, 505 (2011).

46. Care must be taken in considering patentability and abstractness. A patentable inven-
tion may contain abstract ideas. See, e.g., Diamond v. Diehr, 450 U.S. 175, 187 (1981);

Mackay Radio & Telegraph Co. v. Radio Corp. of America, 306 U.S. 86, 94 (1939). Indeed,

determining if a broad preemptory claim contains a “meaningful limitation” or some “in-
ventive step” essentially involves analyzing whether an invention or claim containing an

abstract idea is sufficiently constrained.

47. Alice, 134 S. Ct. at 2347.
48. See id. at 2356.

574 Harvard Journal of Law & Technology [Vol. 29

patent-eligible invention.49 The Supreme Court held that “the mere

recitation of a generic computer cannot transform a patent-ineligible

abstract idea into a patent-eligible invention.”50 In rendering its deci-

sion in Alice, the Court refrained from positing a forward-looking

standard. Instead, the Court determined that what was being patented

was a “fundamental economic practice,” analogized to the abstract

concept that faced the court in Bilski, and held the patent claims in

question to be abstract.51

Although the Supreme Court would not directly say so, the result

in Alice may be interpreted as a resurgence of support for an altered

machine-or-transformation test. The computer (or other electronic

device capable of running software), however, is a machine and is the

sole environment in which software operates. It is thus intrinsically

tied to software, making futile any attempt to separate software from a

computer for the purpose of patent analysis. Furthermore, the basic

components of computers themselves have been sufficiently patented

already. Therefore, the only remaining part to be patented in this ma-

chine-plus-software combination is the software. If only software re-

mains to be patented, however, and the only machine that can

operationalize software is a computer, then software itself is unable to

meet the machine prong of the machine-or-transformation test. This is

an example of the difficulties presented by the multitude of incon-

sistent and vague tests surrounding software patent eligibility. The

existence of so many vague tests requires us to instead think norma-

tively about software patent eligibility.

B. Software Patent Problems

The fundamental problem that policy makers and scholars express

regarding software patents is that they hinder innovation,52 in direct

49. See id. at 2357–58. Note that the Preemption and Meaningful Limitations test de-

scribed above comes from the framework, established in Alice, of first finding whether the
invention is drawn to an abstract idea, and second, finding whether it is limited enough to

avoid preemption of the entire application of that idea.

50. Id. at 2358.
51. See id. at 2355–57; Annal D. Vyas, Alice in Wonderland v. CLS Bank: The Supreme

Court’s Fantastic Adventure into Section 101 Abstract Idea Jurisprudence, 9 AKRON

INTELL. PROP. J. 1, 13–15 (2015). Numerous litigators, patent prosecutors, in-house counsel,
and others embroiled in the issues surrounding software patents have echoed concerns re-

garding the lack of guidance provided by the Supreme Court’s Alice decision. See Where Do

We Stand One Year After Alice?, LAW360 (June 17, 2015 8:27 PM),
http://www.law360.com/articles/668773/where-do-we-stand-one-year-after-alice [https://

perma.cc/DB6X-2LAV].

52. See, e.g., FED. TRADE COMM’N, TO PROMOTE INNOVATION: THE PROPER BALANCE

OF COMPETITION AND PATENT LAW AND POLICY ch. 3 at 56 (2003),

http://www.ftc.gov/os/2003/10/innovationrpt.pdf [https://perma.cc/3KF7-ALJ4]. Some

simply find no evidence of a net benefit provided by software patents. See James Bessen, A
Generation of Software Patents, 18 B.U. J. SCI. & TECH. L. 241, 261 (2012).

No. 2] Soft Physicality Requirements 575

opposition to the Constitution’s directive. 53 Some even argue that

most software firms would be better off without patents.54 A number

of reasons have been proffered as to why patenting software is not

ideal.55 Below are four of the most prominent arguments.

1. The Patent System Does Not Suit Software

Software simply does not fit the patent system. The development

and lifecycle of most software is short and technologies are quickly

supplanted,56 whereas patent prosecution is extremely slow, taking

years.57 Furthermore, the twenty-year term of most patents58 is mas-

sively disproportionate to the lifespan of most software.59 This works

as a barrier to innovation by locking up ideas from those who could

contribute to follow-on innovation.

53. See U.S. CONST. art. I, § 8, cl. 8 (stating that the purpose behind authorizing Congress

to construct the patent system is “[t]o promote the Progress of Science and useful Arts”).
54. See, e.g., JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE 16 (2008) (con-

cluding that after considering the effect of other patent owners and the risk of litigation, the

average public firm “outside the chemical and pharmaceutical industries would be better off
if patents did not exist”).

55. For example, Google produces a new version of its Android mobile operating system

and related Software Development Kit each year, sometimes twice in one calendar year. See
Sarah Mitroff & Jessica Dolcourt, The Android Era: From G1 to Lollipop, CNET (May 8,

2014 1:00 PM), http://www.cnet.com/news/history-of-android [https://perma.cc/

49TR-44CC].
56. See, e.g., Eric Goldman, The Problems with Software Patents (Part 1 of 3), FORBES

(Nov. 28, 2012 2:53 PM), http://www.forbes.com/sites/ericgoldman/2012/11/28/the-
problems-with-software-patents; U.S. GOV’T ACCOUNTABILITY OFF., supra note 5, at 30

(stating that product development process at start-up company interviewed can be “as short

as 2 months”).
57 . See U.S. PATENT & TRADEMARK OFFICE, PERFORMANCE AND ACCOUNTABILITY

REPORT FOR FISCAL YEAR 2013, at 21 tbls. 2–3 (2013), http://www.uspto.gov/about/

stratplan/ar/USPTOFY2013PAR.pdf [https://perma.cc/4NAR-AUCT] (showing that patent
prosecution usually takes over two and a half years); Goldman, supra note 56 (stating that it

takes four or more years to fully resolve a patent prosecution). The recent changes intro-

duced by the America Invents Act exacerbated the problem by imposing measures that
prolong the time it takes to acquire a patent, such as a provision allowing third parties to

introduce prior art during examination and challenge a patent early on. See 35 U.S.C.

§§ 122(e), 321–329 (2012). This has stretched an already unsuitably long process into a
process that takes so long that Apple could develop the next two versions of its OS X oper-

ating system during its pendency.

58. See 35 U.S.C. § 154(a)(2) (2012).
59. It is informative to use the length that software enjoys support by its developer as a

proxy for how quickly the software industry moves. Cisco’s End-of-Life Policy shows that

the scope of its support narrows each year following the end-of-sale date, with all support
terminating after a scant five years. See End-of-Life Policy, CISCO

http://www.cisco.com/c/en/us/products/

eos-eol-policy.html [https://perma.cc/4WXP-EVYQ]. Microsoft does not have a strict
lifecycle policy governing all of its products, but the end-of-support date for its operating

systems generally hovers around ten years — half of a patent term. See Windows Lifecycle

Fact Sheet, MICROSOFT, http://windows.microsoft.com/en-us/windows/lifecycle
[https://perma.cc/2KMK-JMC3].

576 Harvard Journal of Law & Technology [Vol. 29

The software industry was “highly innovative and growing rapid-

ly” prior to software patents becoming commonplace.60 Scholars have

found that the discontent of innovators themselves, particularly in the

high-tech and software sector,61 leads them to ignore patents when

innovating and perform a scatter-shot of patent filings later.62 Patent

law is intended to foster innovation and scientific progress by provid-

ing inventors with a safe way to disclose their inventions, contribute

to society’s pool of knowledge, and thus spur further innovation.63

Because innovators tend to ignore patents, they fail to make efficien-

cy-maximizing decisions regarding research and development

(“R&D”) efforts and risk wasteful spending on recreating the wheel.64

Considering this poor fit, it should come as little surprise that

most software firms do not patent at all.65 James Bessen noted that

from 1996 to 2006 the number of patent-holding startup firms — the

same firms often thought of as the champions of innovation — de-

clined.66 This decline occurred at a time when it was well understood

that software, including broad business methods such as the one in

State Street,67 is patentable. It likely shows that these innovators un-

derstand that patents and software often do not work well together or

that patents are unnecessary for software innovation.

2. The USPTO Is Ill-Equipped

The examiners at the USPTO are not properly equipped to deal

with the explosion in software patenting.68 The USPTO itself is over-

worked and underfunded.69 Software patent applications are among

60. James Bessen & Robert M. Hunt, An Empirical Look at Software Patents, 16 J.

ECON. & MGMT. STRATEGY 157, 162 (2007).
61. See Bessen, supra note 52, at 242 (identifying a survey in which most software de-

velopers indicated opposition to software patents).

62. See, e.g., U.S. GOV’T ACCOUNTABILITY OFF., supra note 5, at 31; Mark A. Lemley,
Ignoring Patents, 2008 MICH. ST. L. REV. 19, 21; TOM KRAZIT, Why Tech Companies Want

Engineers to Ignore Patents When Designing Products, GIGAOM (Nov. 2, 2011, 6:00 AM),

https://gigaom.com/2011/11/02/419-why-tech-companies-want-engineers-to-ignore-patents-
when-designing-prod [https://perma.cc/6TZY-AKMK].

63. This fundamental concept of patent law is also a reason why novelty and non-

obviousness are requirements for patentability. See, e.g., DAN HUNTER, INTELLECTUAL

PROPERTY 95, 98 (Dennis Patterson ed., 2012).

64. See Chien, supra note 2, at 294.

65. See Bessen, supra note 52, at 255.
66. See id. at 255 tbl.1.

67. See supra Part II.

68. See Bessen, supra note 52, at 253 fig.1 (showing that in 2009 alone about 40,000
software patents were issued — a large increase from the roughly 2000 issued in 1980).

This should not be construed as a statement that the USPTO examiners are not well inten-

tioned or hard working. It is simply a statement that examiners are overworked and given
insufficient legal tools and institutional support.

69. See, e.g., Joshua L. Sohn, Can’t the PTO Get a Little Respect?, 26 BERKELEY TECH.

L.J. 1603, 1623 (2011); Michael H. Davis, Patent Politics, 56 S.C. L. REV. 337, 370 n.131
(2004).

No. 2] Soft Physicality Requirements 577

the most complex patents the USPTO has to examine.70 Some have

also claimed that the USPTO simply does not staff examiners with the

knowledge required to parse software patents.71 Beyond these institu-

tional shortcomings, there is the more critical issue of insufficient le-

gal tools.

The lack of legal guidance takes the form of a vague set of prece-

dent given by the courts for interpreting a statutory regime that does

not discuss software.72 Although the USPTO has some autonomy in

developing its own examination guidelines, such guidelines must fit

within the legal framework. Without the requisite institutional and

legal tools, it is virtually inevitable that large swaths of low quality

software patents will find their way out the USPTO’s door.

3. Software Patent Thickets

A patent thicket is “an overlapping set of patent rights requiring

that those seeking to commercialize new technology obtain licenses

from multiple patentees.”73 Thickets cause undue hold-up at firms,

increase the cost of entry for new players, increase the cost of R&D,

and suppress innovation.74 While some have asserted that thickets are

natural and not particularly concerning,75 their arguments fail to rec-

ognize the software industry’s uniqueness.

Software firms are sensitive to delays, and the first-mover market

advantage gained by a firm is extremely important; it is often a suffi-

cient incentive by itself to promote R&D.76 Software patents generally

have broad claims that are fuzzy and ambiguous, and thus do not give

70. Software patents often contain more claims than other patents. See Bessen & Hunt,

supra note 60, at 170 tbl.2 (showing that software patents contain thirty-three percent more
claims than other patents on average). Considering the incredible rate at which software

patents have been filed, prior art searches have turned into an even more complicated and

difficult process in the software realm. See FED. TRADE COMM’N, supra note 52, ch. 3, at
45–46 (noting that increased software patenting has “presented challenges in locating the

relevant prior art”).

71. Examiners also lack experience in and have trouble examining business methods,
which are another vehicle through which numerous software patents arise. See Baird, supra

note 32, at 355.

72. See supra Parts II & II.A.
73 . Carl Shapiro, Navigating the Patent Thicket: Cross Licenses, Patent Pools, and

Standard Setting, 1 INNOVATION POLICY AND THE ECONOMY 119, 119 (Adam B. Jaffe et al.

eds., 2001).
74. See id. at 124–26; Nieh, supra note 6, at 318–19; Shrestha, supra note 2, at 124–25.

75. See Sir Robin Jacob, Judge of the Court of Appeals of England and Wales, Patents

and Pharmaceuticals — A Paper Given on 29th November at the Presentation of the Direc-
torate-General of Competition’s Preliminary Report of the Pharma-sector Inquiry (Nov. 29,

2008), http://ec.europa.eu/competition/sectors/pharmaceuticals/inquiry/jacob.pdf [https://

perma.cc/R8A5-FMZP] (stating that thickets are “in the nature of the patent system itself”
and that the thicket phenomenon “should happen and . . . has always happened”).

76. See Robert E. Thomas, Debugging Software Patents: Increasing Innovation and Re-

ducing Uncertainty in the Judicial Reform of Software Patent Law, 25 SANTA CLARA

COMPUTER & HIGH TECH. L.J. 191, 215 (2008).

578 Harvard Journal of Law & Technology [Vol. 29

clear notice of either the claimed invention or the patentee’s rights.77

Fuzzy and ambiguous claims increase costs imposed by the thicket

because they increase the chance of a software developer paying the

cost of either licensing or being litigated against for infringement of a

patent that may not even cover the software created by the developer.

The time sensitivity and patent-related transaction costs present in the

software industry further deepen the effects of the patent thicket.

Many point out that the thicket problem “arises from the flood of

patents that are granted by the USPTO each year.”78 Intuitively, hav-

ing more patents results in a higher probability of overlaps — particu-

larly when many innovators remain willfully ignorant of what is

patented.79 Considering that software patents are not generally re-

quired to incentivize software firms to innovate, the natural solution is

for the USPTO to grant fewer software patents and diminish the grow-

ing thicket.

4. Software Patents Are Easily Abused

Several issues combine to make software patents relatively easy

to abuse.80 The primary reasons include the unclear and fuzzy bounda-

ries of the property rights set by overly broad claims81 and the ability

of malicious litigators to take these patents and assert them systemati-

cally, efficiently, and cheaply.82 Patent abuse is manifested in differ-

ent ways. Abusers often instigate a barrage of litigation against

numerous defendants — even those working on tangentially related

subject matter.83 Others essentially extort high licensing fees for bad

patents on fundamental concepts that somehow passed muster during

77. See id. at 217–18; U.S. GOV’T ACCOUNTABILITY OFF., supra note 5, at 28–30.
78. Shrestha, supra note 2, at 125.

79. See supra note 62.

80. I define the abuse of software patents as the assertion of a patent in an attempt to pri-
marily restrict the R&D or innovative abilities of another party rather than for the purpose of

protecting any property rights enshrined in the patent. This definition may be challenging to

apply as it is based on the intent of the patent holder. However, there is little reason to lump
innovators such as university research groups that may be more than happy to enter into

mutually beneficial licensing agreements into the same group as those seeking to suppress

competition or sit on low quality and overbroad patents in order to rent-seek.
81. See U.S. GOV’T ACCOUNTABILITY OFF., supra note 5, at 28.

82. See Chien, supra note 2, at 292.

83. Patent-holding company Soverain used U.S. patents 5,715,314, 5,909,492, and some-
times 7,272,639, whose pertinent claims covered the idea of a “shopping cart,” to sue a long

list of online retailers. See Joe Mullin, How Newegg Crushed the “Shopping Cart” Patent

and Saved Online Retail, ARS TECHNICA (Jan. 27, 2013, 4:00 PM),
http://arstechnica.com/tech-policy/2013/01/how-newegg-crushed-the-shopping-cart-patent-

and-saved-online-retail/ [https://perma.cc/Y8DK-JSXT]. After extracting $40 million from

Amazon and an undisclosed amount from Gap, see id., online retailer and defendant
Newegg stood up and fought back. The Federal Circuit found that the claims encompassing

the “shopping cart” idea in the ‘314 and ‘492 patents — in addition to other claims — were

invalid and vacated the finding of infringement against Newegg. See Soverain Software
LLC v. Newegg Inc., 705 F.3d 1333, 1341, 1344, 1346 (Fed. Cir. 2013).

No. 2] Soft Physicality Requirements 579

the examination process at the USPTO.84 Ultimately, the victim inno-

vator must pour resources into licensing or litigating against bad pa-

tents rather than into socially beneficial innovation.

Such abuse is pronounced in the software industry because of the

instability of the law. Parties are unsure as to the boundaries of the

patentee’s rights and what a court will construe falls within the claims

of the abuser’s patent. 85 This results from the insufficient legal

framework given by Congress and the courts regarding software pa-

tents, as examined in Parts II and II.A.

In addition to being able to bundle their claims,86 patent trolls

have more flexibility in litigating because they need not fear retaliato-

ry litigation. They are not focused on commercializing technology of

their own.87 These abusers often exert great pressure upon software

innovators.88 The combination of this pressure and the quick devel-

opment cycles with resultant sensitivity to hold-ups often forces soft-

ware developers to settle quickly to avoid costly litigation and

delays.89 A fundamental change is required to tackle the software pa-

tent problem.

84. An example is the litigation between Research in Motion (RIM) and non-producing

patent-holding company NTP, Inc., in which RIM settled out of court by paying over $600

million to NTP for patents that were largely invalidated years later by the USPTO. See Rob
Kelley, BlackBerry Maker, NTP Ink $612 Million Settlement, CNN MONEY (Mar. 3, 2006,

7:29 PM), http://money.cnn.com/2006/03/03/technology/rimm_ntp/ [https://perma.cc/

YE6K-C974]; Ex parte NTP, Inc., No. 2008-004602, 2011 Pat. App. LEXIS 23859
(B.P.A.I. Dec. 21, 2011); Ex parte NTP, Inc., No. 2008-001116, 2011 Pat. App. LEXIS

23900 (B.P.A.I. Dec. 20, 2011); Ex parte NTP, Inc., No. 2008-004606, 2010 Pat. App.

LEXIS 15609 (B.P.A.I. Feb. 4, 2010).
85. See U.S. GOV’T ACCOUNTABILITY OFF., supra note 5, at 28–32 (mentioning that pa-

tentees of software patents often use overly broad functional claims that bring into the scope

of the patent unimagined technologies not contemplated at the time of invention).
86. See Chien, supra note 2, at 292. “Between 2007 to 2011, 64 percent of defendants

were sued over software-related patents, and these patents were at issue in the lawsuits that

accounted for about 89 percent of the increase in defendants over this period.” U.S. GOV’T

ACCOUNTABILITY OFF., supra note 5, at 21. Non-practicing entities asserted software pa-

tents to a “much greater extent,” and when grouping suits by defendant, “software-related

patents were used to sue 93 percent of the defendants in PME suits.” Id. at 21–22. This is a
far cry from the 46 percent of defendants sued under software-related patents by operating

companies. See id. at 22.

87. See Chien, supra note 2, at 292–93.
88. See generally Krish Gupta, Patent Trolls Stifle Innovation and Business Investment,

EMC REFLECTIONS BLOG (June 26, 2014), http://reflectionsblog.emc.com/patent-trolls-

stifle-innovation-business-investment/ [https://perma.cc/9Z38-WY93] (discussing the pres-
sure patent trolls put on technology-producing corporations such as EMC).

89. See generally Lemley, supra note 62 (discussing hold-ups and sensitivity to “millions

of dollars per case in legal fees”); Mullin, supra note 83 (explaining that “defendants tend to
be driven to settle”).

580 Harvard Journal of Law & Technology [Vol. 29

III. SOFT PHYSICALITY REQUIREMENTS AND SOFTWARE

One of the root causes of the software patent issue is the vague

and generally uninformative legal framework given to the USPTO.90

As an executive agency lacking substantive rulemaking authority, the

USPTO is largely bound by the existing legal framework. The exist-

ing framework’s vagueness, however, could allow the USPTO to be

more proactive in denying software patents as impermissibly abstract.

My proposal is to leverage this flexibility, as well as the Supreme

Court’s Alice decision, to introduce a requirement of soft physicality

to software patent eligibility analysis. The proposal aims to alleviate

the problems presented by software patents while allowing innovators

that rely on patents, including software patents, to make use of the

patent system.91

Some commentators have advocated for the return of physicality

requirements in the claims or specifications of patents,92 in line with

now-outmoded tests.93 Strict physicality requirements naturally pro-

vide much clearer guidance for USPTO examiners while working to

prevent many impermissibly abstract software patents. This, however,

may be too inexact a fit for the entirety of software-based inventions.

Instead, I propose applying physicality standards that have been up-

dated to be more appropriate in the context of software and current

precedent.

Much of the discussion regarding the patent eligibility of software

dances around the inherent abstractness of software.94 The Merriam-

Webster Dictionary defines “abstract” as something “relating to or

involving general ideas or qualities rather than specific people, ob-

jects, or actions.”95 In the legal interpretation of abstractness applied

to software, software patents are considered abstract. While some ar-

gue that software itself is not abstract,96 that view is at odds with

90. See supra Part II.A.

91. Striking this balance is critical as research has indicated that, while there are numer-
ous problems with software patents in the software industry, it is at least possible that soft-

ware patents are beneficial to hardware innovators that obtain software patents. See Bessen,

supra note 52, at 261.
92. See, e.g., Thomas, supra note 76, at 238–41.

93. For example, the Federal Circuit’s In re Bilski decision expounding the machine-or-

transformation test as the sole test for the eligibility of a process under § 101 can effectively
be read as requiring physicality: a tie into a physical machine or the physical effect of trans-

forming an article. See supra Parts II & II.A.

94. See, e.g., Bessen & Meurer, supra note 54, at 187; Alice Corp. Pty. Ltd. v. CLS Bank
Int’l, 134 S. Ct. 2347, 2360 (2014) (holding that the claims are abstract and thus cover non-

statutory material although they include a computer system).

95 . Abstract, MERRIAM-WEBSTER ONLINE DICTIONARY, http://www.merriam-webster.
com/dictionary/abstract [https://perma.cc/RDS8-EQER].

96. See, e.g., Seong-hee (Emily) Lee, Software Patent Eligibility: A Call for Recognizing

and Claiming Concrete Computer Programs, 95 J. PAT. & TRADEMARK OFF. SOC’Y 402,
403–05 (2013).

No. 2] Soft Physicality Requirements 581

scholars that maintain software is fundamentally abstract.97 Indeed, it

may be said that the actual written source code that embodies the idea

protected by a software patent is tangible, that code falls within the

domain of copyright law, not patent law. More fundamentally, how-

ever, the abstractness of software itself is not the issue — the issue is

whether the claimed invention is abstract.

Software code is an abstraction of the physical working of the

computer upon which the software runs; the processes of software

generally do not relate to specific tangible objects or actions. Howev-

er, software patents may be embodied as a process or a business

method, and, because they represent software, these are patents that

by necessity must be enabled through a physical apparatus, i.e., the

computer. Nevertheless, the processes and methods underpinning

software do not necessarily need to be claimed abstractly. It is possi-

ble to specify the software with varying levels of abstraction, with

corresponding levels of specificity as to the mode of implementation.

Thus, the abstractness of claims for software patents cannot be evalu-

ated in isolation but rather requires reference to the specificity of its

implementation. This effectively collapses the Alice two-step analysis

into one step.98

Unfortunately, the courts have not provided a metric by which we

can ascertain abstractness itself. Rather than giving a test, the courts

generally follow a “we know it when we see it” totality-of-the-

circumstances approach to finding abstractness.99 It was against this

uncertain backdrop that the USPTO and lower courts have had to ana-

lyze patents. Physicality requirements applied by the courts against

software patents, such as those found in the machine-or-

transformation test in In re Bilski, arose from simply applying re-

quirements formulated and used in situations preceding the infor-

mation technology revolution.100

97. See Bessen & Meurer, supra note 54, at 201–03.
98. This two-step analysis is used to determine if a patent claims patent-eligible applica-

tions of laws of nature, natural phenomena, and abstract ideas. First, the court finds whether

the claim fits into one of those categories, and second, finds whether there is a limiting
“inventive concept” in order to prevent preemption. This analysis given by the Supreme

Court’s decision in Mayo is summarized by the Court in Alice. See Alice, 134 S. Ct. at 2355.

This is the Preemption and Meaningful Limitations test discussed in Part II.A, supra.
99. The courts often look to factors such as whether the patent encompasses “fundamen-

tal” ideas or commonly used principles and discusses preemptory concerns in finding that a

patent is abstract. See, e.g., Alice, 134 S. Ct. at 2356–57.
100. For example, the Benson court pointed to Cochrane v. Deener, 94 U.S. 780 (1876)

(holding that patents covering a flour-sifting apparatus were valid), when laying the founda-

tion for the transformation prong of the machine-or-transformation test. See Gottschalk v.
Benson, 409 U.S. 63, 69–70 (1972). The foundation for the machine prong of the modern

form of the test was laid by references in Benson to processes being “tied to a particular

machine,” see id., at 70–71, and opinions such as Smith v. Snow, 294 U.S. 1 (1935) (holding
that a patent for an improved apparatus and method for incubating eggs was valid).

582 Harvard Journal of Law & Technology [Vol. 29

Prior to the information technology revolution, there were fewer

developments worth patenting within the gray area found between

abstract inventions and concrete, useful inventions.101 It was easier to

declare a patent missing a physical component as not deserving of

patent protection, as the risk of impeding innovation was low. This

gray area has expanded with the development of the market for elec-

tronics and information technology, almost all of which is controlled

in some regard by software, but the legal standards from a bygone era

were simply transplanted without sufficient adaptation to the new con-

text.102

With all the problems facing software patents, they should un-

doubtedly be required to meet higher standards than patents given in

other fields103 so that only those that are likely to promote innovation

are permitted. The USPTO’s adoption of translated physicality re-

quirements to software will provide a much-needed hurdle to prevent

innovation-sapping software patents from being granted. Although

some have argued that Alice is too limiting on software patents — and

it is true that many software patents have been invalidated in the wake

of Alice — the Supreme Court’s failure to provide a principled rule as

to the patent eligibility of software is problematic.104

These translated soft physicality requirements, as I call them,

mandate that to be statutorily eligible under § 101 and prevent a find-

ing of impermissible abstractness, the claimed invention must contain

a tie to the specific hardware or computing platform(s), whichever

operates at the highest level yet still defines operationalization,105 that

101. Although there were patents granted well before the software patent boom for things

that could be described as having fuzzy boundaries, such as mechanical devices or chemi-
cals, the nature of these inventions necessarily limited the scope of their protection by virtue

of being represented in a definite physical form, chemical structure, or otherwise. See Bes-

sen, supra note 4. Because software itself is conceptual and abstract, the patents covering
software must allow for abstractness and must allow for more vagueness and fuzzier bound-

aries. See id.

102. See, e.g., Benson, 409 U.S., at 69–71; Diamond v. Diehr, 450 U.S. 175, 181–84
(1981).

103. Pharmaceutical patents are often contrasted with software patents, with the pharma-

ceutical industry acting as an example of an industry that fits well with patent law. See, e.g.,
Bessen, supra note 52, at 249. Patent law provides a large incentivizing push to innovate

and develop new drugs and technologies in the pharmaceutical industry largely due to char-

acteristics vastly different from the software industry, including the large amount of time
and capital necessary to innovate in the pharmaceutical industry. One recent study found it

takes $2.6 billion to develop and market a new drug. See Cost to Develop and Win Market-

ing Approval for a New Drug Is $2.6 Billion, TUFTS CENTER FOR THE STUDY OF DRUG

DEVELOPMENT, (Nov. 18, 2014), http://csdd.tufts.edu/news/complete_story/

pr_tufts_csdd_2014_cost_study [https://perma.cc/5GTT-PCZS].

104. See infra Part V.B for a more complete discussion.
105. “Highest level” refers to the level of distance away from the physical hardware of

the device or system running the software in terms of a dependency chain. For example, a

tie to a platform such as an operating system like Windows, OS X, or Linux is at a “higher
level” than the hardware of the computer itself. Furthermore, a computing platform tie to a

No. 2] Soft Physicality Requirements 583

the patentee intends the software to run upon. The innovation in this

proposal is in the treatment of these platforms as equivalently limiting

as physical hardware in the pre-information-technology world. This

allows for the patenting of software in line with current standards.

The term “computing platform” has numerous definitions. For

example, the Merriam-Webster Dictionary uses the rather narrow def-

inition of “computer architecture and equipment using a particular

operating system.”106 The meaning of computing platform I prefer to

use, however, encompasses the hardware configuration, operating

system, and other fundamental pieces of software that are required for

the invention to operate.107

This proposal follows naturally from this definition of a compu-

ting platform. The platform or hardware upon which the software

functions effectively gives the software functional or “practical” drive

and is the vehicle through which the software is actualized. The re-

quirement that patentees tie their inventions to the platform or hard-

ware that enables practical use of the abstract software code gives

three primary benefits.

First, it explicitly allows for software patents while preventing

overly broad preemptive claims. Second, it allows others to contribute

follow-on innovation without being blocked by preemptive software

patents. Soft physicality requirements would drastically reduce the

probability of a given patent preempting all possible uses for funda-

mental developments that could otherwise be utilized in further inno-

vation. This is because requiring an explicit tie to current platforms

necessarily prevents the patent from covering new and unanticipated

technologies. Finally, and important for its own operationalization,

explicitly formalizing soft physicality requirements will give the

USPTO examiners the legal tools to quash innovation-stifling soft-

ware patents before they enter the thicket.

IV. SOFT PHYSICALITY IN OPERATION

Following the Supreme Court’s Alice decision, the Federal Circuit

in Content Extraction & Transmission LLC v. Wells Fargo Bank, Na-

tional Ass’n upheld a ruling that four patents which covered nothing

more than the “abstract idea of extracting and storing data from hard

service such as the Apache Web Server is at a higher level than that of an operating system

as such software runs on top of an operating system.
106. Platform, MERRIAM-WEBSTER DICTIONARY, http://www.merriam-webster.com/

dictionary/platform [https://perma.cc/KLC9-Q25M].

107. Cf. Platform, FREE ON-LINE DICTIONARY OF COMPUTING (Dec. 7, 1994),
http://foldoc.org/platform [https://perma.cc/EE6X-WZSK].

584 Harvard Journal of Law & Technology [Vol. 29

copy documents” are invalid as patent-ineligible under § 101.108 This

is representative of the kind of poor quality patents granted by the

USPTO as a result of the inadequate legal tools at its disposal. Under

the Alice framework, the Federal Circuit found the patents wanting for

more concrete limitations, holding that “the mere recitation of a ge-

neric computer” is insufficient.109

Similarly, in buySAFE, Inc. v. Google, Inc. the Federal Circuit af-

firmed a ruling that a patent covering the concept of “a third party

guarantee of a sales transaction” and simply applying it “using con-

ventional computer technology and the Internet”110 is invalid under

§ 101.111 The Federal Circuit, again relying on Alice, noted the insuf-

ficiency of “merely requir[ing] generic computer implementation.”112

The Court went on to explain that the usage of a generic computer

adds no inventive concept to the abstract idea, and does not sufficient-

108. Content Extraction & Transmission LLC v. Wells Fargo Bank, Nat’l Ass’n, 776

F.3d 1343, 1349 (Fed. Cir. 2014). The representative claim of the patents in question is as

follows:

A method of processing information from a diversity of types of hard
copy documents, said method comprising the steps of:

receiving output representing a diversity of types of hard copy docu-

ments from an automated digitizing unit and storing information from
said diversity of types of hard copy documents into a memory, said

information not fixed from one document to the next, said receiving

step not preceded by scanning, via said automated digitizing unit, of a
separate document containing format requirements;

recognizing portions of said hard copy documents corresponding to a

first data field; and
storing information from said portions of said hard copy documents

corresponding to said first data field into memory locations for said
first data field.

Id. at 1345.

109. Id. at 1348 (quoting Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347, 2358
(2014)).

110. buySAFE, Inc. v. Google, Inc., 765 F.3d 1350, 1352 (Fed. Cir. 2014) (quoting

buySAFE, Inc. v. Google, Inc., 964 F. Supp. 2d 331, 335–36 (D. Del. 2013)).
111. Id. at 1355. The representative claim of the patent in question is as follows:

1. A method, comprising:

receiving, by at least one computer application program running on a
computer of a safe transaction service provider, a request from a first

party for obtaining a transaction performance guaranty service with

respect to an online commercial transaction following closing of the
online commercial transaction;

processing, by at least one computer application program running on

the safe transaction service provider computer, the request by under-
writing the first party in order to provide the transaction performance

guaranty service to the first party,

wherein the computer of the safe transaction service provider offers,
via a computer network, the transaction performance guaranty service

that binds a transaction performance guaranty to the online commer-

cial transaction involving the first party to guarantee the performance
of the first party following closing of the online commercial transac-

tion.

Id. at 1351–52.
112. Id. at 1354 (quoting Alice, 134 S. Ct. at 2357).

No. 2] Soft Physicality Requirements 585

ly limit the concept in the patent such that it may receive patent pro-

tection.113

With the framework I propose, the USPTO would have been

equipped with the proper legal tools not only to strike these patents

down during examination, but also to give clearer guidance to appli-

cants regarding the rejections. The patent in question in Content Ex-

traction fails to meet soft physicality requirements because references

to such things as “digitizing units” and “memory” are extremely

vague.114 Indeed, it also used typical circular descriptions for an “ap-

plication” comprising a “processor” that processes information and a

“formatter” for “formatting.”115 Such claims would fail the test for

lacking specifics on the hardware and platform required for operation.

The level of specification should be such that it provides an ordinary

artisan the ability to understand the scope of the invention and how it

is actualized. The claims in the patent in question in Content Extrac-
tion only give a generic theoretical operation, leaving an incredibly

broad range of possibilities for actualization; they do not allow the

ordinary artisan to glean much useful information regarding scope.

This proposal also balances the hardware manufacturers’ need to

patent inventions that encompass embedded software. 116 Hardware

manufacturers are a group of innovators that are generally thought of

as being able to appropriately leverage patent law to further innova-

tion.117 By requiring patentees to specify the required hardware or

computing platform(s), hardware manufacturers may still obtain pa-

tents by including the platform the software was designed to operate

upon.

113. See id. at 1354–55.

114. See U.S. Patent No. 5,258,855, claim 70 (filed Mar. 20, 1991). A digitizing unit is a

term for any device that takes as input an analog signal, which is a signal that exists on a
continuous spectrum of voltages, and transforms it into a digital signal that ideally only

contains two voltage levels representing binary 0 and 1. Thus, the term “digitizing unit” is a

gloss that covers the behavior of numerous physical devices without giving any information
as to implementation, operable voltage levels, efficiency, or any other relevant design fea-

tures that may distinguish one digitizing unit from another digitizing unit.

115. See id.
116. Software that is embedded into a hardware device such as a television, optical disc

drive, television remote control, etc., in persistent memory which performs functions that

are generally much more limited in scope than the general pool of software available for and
used on a general-purpose computer is referred to as “firmware.” See Firmware,

TECHOPEDIA, http://www.techopedia.com/definition/2137/firmware [https://perma.cc/

52EK-F74S]. Firmware is generally very application-specific and thus has a closer tie to the
hardware platform into which it is embedded, easily satisfying soft physicality requirements.

117. See, e.g., Bessen, supra note 52, at 261 (stating that although software patenting is

concerning, “software patents might be highly beneficial to the various hardware industries
that obtain large numbers of software patents”). Due to the increased time and capital in-

vestment typically involved in the research, development, design, and manufacturing of

hardware, there is likely to be a larger incentivizing role for patent law to approve such
investments.

586 Harvard Journal of Law & Technology [Vol. 29

A. Precedent and Soft Physicality

Soft physicality fits within the ambiguities of the legal framework

given by the Federal Circuit and the Supreme Court. As an executive

agency, the fundamental job of the USPTO is to execute the law as

laid out by the legislature and interpreted by the judiciary.118 Howev-

er, the USPTO lacks the broad substantive rulemaking authority that

many other agencies, such as the Securities and Exchange Commis-

sion, enjoy.119 More precisely, the USPTO lacks “the capacity to issue

binding substantive rules,”120 in large part because the USPTO gener-

ally does not receive the weighty Chevron deference to its rulemak-

ing.121 Nevertheless, when the law is vague, as is the case here, the

USPTO has some flexibility in interpreting the bounds of the ambi-

guity and may even be able to rely on the deference it does receive

from courts to shape substantive patent law.122

In Alice, the Supreme Court made it clear the primary motivating

sentiment underlying the exclusion of abstract ideas is “one of pre-

emption.”123 The Court went on to find that the abstract invention in

Alice was not sufficiently limited by the use of a general-purpose

computer124 — in other words, a general-purpose computer did not

constitute an appropriate “inventive concept” that would have ren-

dered the patent eligible under § 101.125 Nearly all software, with the

exception of software intrinsically tied to the hardware upon which it

is affixed (i.e., firmware), runs upon general-purpose computers or

similar. To say that it is insufficient to take software, itself abstract,126

and apply it to a computer implies a requirement to tie the patent for

such software, or the process embodied by the software, to the animat-

ing framework which the software runs upon.

In Bilski, the Supreme Court relied on Diehr but instructed, how-

ever, that patentees may not circumvent the prohibition against patent-

ing abstract ideas by the simple addition of “insignificant postsolution

activity” or by “limiting the use of an abstract idea ‘to a particular

118 . While delegated legislative authority is another angle through which executive

agencies may operate slightly outside the legal framework given by the judiciary and legis-

lature, the USPTO lacks substantive rulemaking authority, which makes such an argument a

non-starter. See John M. Golden, The USPTO’s Soft Power: Who Needs Chevron Defer-
ence?, 66 SMU L. REV. 541, 542 (2013).

119. See, e.g., id.

120. Id. at 545.
121. See id. at 550–51.

122. See id. at 553–58.

123. Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347, 2354 (2014).
124. The patent encompassed the idea of reducing settlement risk through intermediated

settlement. Id. at 2356.

125. Id. at 2357.
126. See supra Part III for the discussion of the abstract nature of software.

No. 2] Soft Physicality Requirements 587

technological environment.’”127 The addition of “insignificant postso-

lution activity” suggests an analysis under the non-obviousness and

inventive step requirement of § 103.128 Indeed, the Supreme Court’s

Alice decision fails to elaborate on this point. Furthermore, this was

made as an offhand remark in the dicta of the Diehr opinion, from

which the Bilski Court cited. 129 The requirement of including the

hardware or platform(s) relied upon by the invention dovetails with

this prohibition and acts as a litmus test to show whether the patentee

truly has only trivial “insignificant postsolution activity.”

The Supreme Court’s unfavorable view of limiting a patent

through ties to a “particular technological environment”130 is rooted in

a concern about preemption. In Alice, the Supreme Court explicitly

noted that this and the previously discussed concern with postsolution

activity “accords with the pre-emption concern that undergirds [the]

§101 jurisprudence.”131 The best reading of the Supreme Court’s dis-

missive reaction in Alice to the patentee’s attempt to gain approval for

its abstract patent by implementing it on a computer is that recitation

of a general-purpose computer as a limiting environment is insuffi-

cient. It should not be read to mean that any recitation of specific

technological environments is categorically insufficient.

Indeed, this must be true when embedding patentable processes

and business methods in software because these ideas are naturally

tied to the technological environment of software. The Supreme Court

explicitly stated that an application of an abstract idea may receive

patent protection if the claims “supply a ‘new and useful’ application

of the idea.”132 The “‘new and useful’ application of the idea” is pre-

cisely how the software is implemented: it specifies what hardware

and computing platforms the software runs on and in what manner the

hardware and computing platforms interact with the software.

The question then is how narrow the limitation must be. Put an-

other way: how limiting must the “environment” be? Requiring a pa-

tentee to specify in the claims the envisioned hardware or platform(s)

used to operationalize the invention, and their interactions, furnishes a

sufficient limitation on the patent while still allowing for appropriate

software patents. Whether the usage of the hardware and platform(s)

is novel or is something well-understood and routine would then be

properly asked under the § 103 non-obviousness analysis.133

127. Bilski v. Kappos, 561 U.S. 593, 610–11 (2010) (quoting Diamond v. Diehr, 450

U.S. 175, 191–92 (1981)); Alice, 134 S. Ct. at 2358 (quoting Bilski, 561 U.S. at 610–11).

128. For the text of § 103, refer to supra note 39.

129. See Diehr, 450 U.S. at 191–92.
130. See id.

131. Alice, 134 S. Ct. at 2358.

132. Id. at 2357 (quoting Gottschalk v. Benson, 409 U.S. 63, 67 (1972)).
133. See 35 U.S.C. § 103, supra note 39.

588 Harvard Journal of Law & Technology [Vol. 29

The theoretical underpinning of the Supreme Court’s current

framework in Alice supports soft physicality. The analysis of patent

eligibility under § 101 for software patents can be collapsed into a

single test due to software’s inherent abstractness and because the test

naturally checks for such abstractness. Furthermore, soft physicality

requirements work to address the fundamental issue of preemption

and ensure that only appropriate software patents are given patent

protection.

The Japanese patent system, discussed in the following Part,

slowly expanded to cover software-related inventions like its Ameri-

can counterpart. In Japan, a series of examination guidelines equip the

Japan Patent Office (“JPO”) to efficiently examine software patents.

Although the USPTO produces guidelines, they are not on the same

level of specificity and utility.134 The USPTO should similarly take a

stronger stance when interpreting the legal framework to bolster its

examiners’ legal toolkit.

B. Tailored Standards in Other Jurisdictions

The purpose of the Japanese patent system is to leverage innova-

tion to contribute to the development of industry.135 Under Japanese

patent law, an invention must be a “highly advanced creation of tech-

nical ideas” that “utilize[s] the laws of nature”136 to be statutorily eli-

gible for patent protection. 137 Further, an invention must also be

“industrially applicable.”138 Software patenting may seem difficult to

achieve given these requirements.139 Japan, however, has followed the

Western trend of increasingly providing protection for software, albeit

at a slower pace.140

Most of the rules regarding how software patents are examined in

Japan have been laid down by a series of Examination Guidelines.

134. The USPTO examination guidelines after the Alice decision simply recite the salient

information from that decision and analogous details from previous decisions. See USPTO,

2014 INTERIM GUIDANCE ON PATENT SUBJECT MATTER ELIGIBILITY (Dec. 2014),
http://www.gpo.gov/fdsys/pkg/FR-2014-12-16/pdf/2014-29414.pdf [https://perma.cc/

XMC5-X4JB]. The outgoing JPO examination guidelines, however, offered standards that

were useful when applied to unforeseen technologies or during claim construction. See JPO

EXAMINATION GUIDELINES, supra note 8, at 10–13.

135. See Tokkyohō [Patent Act], Law No. 121 of 1959, art. 1 (Japan).

136. See id. art. 2, para. 1.
137. Scholars have taken this requirement to mean that an invention must use the laws of

cause and effect that lie behind natural phenomena. See NOBUHIRO NAKAYAMA,

TOKKYOHŌ 98 (2nd ed. 2012).
138. See Tokkyohō, supra note 135, art. 29, para. 1.

139. In fact, one of the preeminent scholars of Japanese patent law, Nobuhiro Nakayama,

has said that computer software may be the area that presents the most problems in deter-
mining whether or not developments “utilize the laws of nature.” See NAKAYAMA, supra

note 137, at 103.

140. See ROBERT P. MERGES & JOHN F. DUFFY, PATENT LAW AND POLICY: CASES AND

MATERIALS 199 (6th ed. 2013).

No. 2] Soft Physicality Requirements 589

The first Guidelines arrived in 1975 and noted that software is “ex-

ceedingly abstract” and outside the bounds of protection.141 Ultimate-

ly, software patents were allowed if the software was embedded as

part of a patent-eligible method or product. 142 The acceptance of

granting patents over software gradually increased,143 and two guide-

lines published in 1997 and 2000 established the modern approach.

The revised 2000 Examination Guidelines for Patent and Utility

Model is the current version. This revision of the Guidelines effective-

ly marked the point at which software is rendered eligible for patent

protection.144 An amendment of the Patent Act in 2002 codified the

stance taken by the 2000 Guidelines and extended protection to digi-

tally distributed software.145 The standard used for examinations con-

ducted until October 1, 2015 states that a software-related invention is

covered by statute if “information processing by [the] software is con-

cretely realized by using hardware resources.”146 Under this tailored

standard it becomes necessary to specify the “inputs, outputs, hard-

ware resources as actors such as CPU, memory, computer and server

and how to process the inputs by the hardware resources to generate

the outputs for all elements” in a claim.147 This requirement, tailored

by the JPO for use when examining software patents, is similar to, yet

weaker than, the proposal of soft physicality requirements.

With the clarifications the Guidelines offer,148 examiners are bet-

ter able to strike down ineligible patents.149 Furthermore, the Japanese

141. JAPAN PATENT OFFICE, KONPYŪTA PUROGURAMU NI KANSURU HATSUMEI NITSUITE

NO SHINSAKIJUN (SONO1) [Examination Guidelines for Inventions Related to Computer

Programs, Part 1] 22 (Dec. 1975), http://www.furutani.co.jp/office/ronbun/soft-standard-

1.pdf [https://perma.cc/5J8W-JD3F] (describing software as “極めて抽象的”).

142. See NAKAYAMA, supra note 137, at 104. Allowing a patent in this way ensured that

even inventions containing software — an abstract component — would adhere to the re-
quirement that a law of nature be utilized.

143. In the decades following the 1975 Examination Guidelines, two subsequent guide-

lines were issued, each liberalizing the patenting of software. The December 1982 Applica-
tion Guidelines on Inventions Related to Microcomputer Technology and the Treatment of

Examination of Operating System-Related Technologies gave inventions related to micro-

computers patent protection. See id. The July 1993 Examination Guidelines for Patent and
Utility Model stated that, either when data processing using a natural law is performed by

software or when hardware resources are used, the invention would be eligible for protec-

tion. See id. The 1993 Guidelines effectively allowed for software such as word processors
to become patent-eligible. See James S. Sfekas, Controlling Business Method Patents: How

the Japanese Standard for Patenting Software Could Bring Reasonable Limitations to Busi-

ness Method Patents in the United States, 16 PAC. RIM L. & POL’Y J. 197, 206 (2007).
144. See Kazuyuki Motohashi, Software Patent and Its Impact on Software Innovation in

Japan, RIETI Discussion Paper Series 09-E-038 4 (2009), http://www.rieti.go.jp/jp/

publications/dp/09e038.pdf [https://perma.cc/8BUU-JTQK].
145. See id.; Tokkyohō, supra note 135, art. 2, para. 3; NAKAYAMA, supra note 137, at

105.

146. JPO EXAMINATION GUIDELINES, supra note 8, at 10.
147. ZENTARO KITAGAWA, 3-6 DOING BUSINESS IN JAPAN § 6.02(6)(a)(v)(A) (2016).

148. The outgoing examination guidelines on software-related inventions is seventy-

seven pages and contains numerous examples of when software patents should and should
not be granted. See generally JPO EXAMINATION GUIDELINES, supra note 8.

590 Harvard Journal of Law & Technology [Vol. 29

system shows that software-related patents can be treated differently

from other patents in an innovative country with a modern legal sys-

tem. The stricter requirements for software patents have not brought

about a precipitous fall in the patenting of all software-related inven-

tions. In fact, Japan has issued increasing numbers of patents that en-

compass software inventions. 150 What the system does provide,

however, is a clear set of tools for examiners to use that are tied to

standards tailor-made to fit an industry in which patents are an uneasy

fit and often do not provide much additional incentive to innovate.151

Tailored standards allow for patents on appropriate inventions

while also giving examiners the ability to reject patents that are un-

likely to promote innovation. The USPTO should implement (as Ja-

pan has) a higher bar for software-related patents to ensure that what

is patented is worth “the embarrassment of an exclusive patent.”152 As

discussed in Part II.A, there is much room for case law interpretation

to achieve this end due to the multitude of patent-eligibility tests,

which are particularly vague and inconsistent when applied to soft-

ware patents. The USPTO should leverage this vagueness and, to pre-

vent a disconnect between the USPTO’s practice and the expectations

of inventors, issue policy guidelines indicating that they will take a

more stringent stance on software patents in line with a requirement of

soft physicality.

V. ARGUMENTS AGAINST SOFT PHYSICALITY REQUIREMENTS

Two fundamental criticisms that may be levied against the pro-

posal of soft physicality are briefly discussed below.

149. See, e.g., id. at 42–50 (showing examples of hypothetical inventions and how the

Guidelines regarding software-related inventions should be applied in rejecting or accepting

certain claims).

150. Most software patents are contained within the G06 subdivision of the International
Patent Classification. While not necessarily encompassing only software-related patents, the

number of patents awarded under this category roughly correlates with the number of soft-

ware-related patents. In 2013 alone the JPO awarded over 18,000 patents under the G06
subdivision, up from around 5000 per year between the years 2000 to 2005. See JAPAN

PATENT OFFICE, TOKKYO GYŌSEI NENJIHŌKOKUSHO 2014 NENBAN (TŌKEI・SHIRYŌHEN)

[2014 Annual Administrative Patent Report (Data & Statistics Section)] 21 (2014),

http://www.jpo.go.jp/shiryou/toushin/nenji/nenpou2014/toukei/dai-2.pdf [https://perma.cc/

KF6G-DLZQ]; Japan Patent Office, TOKKYO GYŌSEI NENJIHŌKOKUSHO 2004 NENBAN

(TŌKEI・SHIRYŌHEN) [2004 Annual Administrative Patent Report (Data & Statistics Sec-

tion)] 3 (2004), http://www.jpo.go.jp/shiryou/toushin/nenji/nenpou2004_pdf/toukei/02-04-
02.pdf [https://perma.cc/BJL7-Y7W3]. This uptick can be attributed to the more liberal

stance taken toward patenting software that picked up steam in the early 2000s via the 2000

Examination Guidelines revision and the 2002 amendment to the Patent Act.
151. Cf. Motohashi, supra note 144, at 13.

152. Graham v. John Deere Co. of Kansas City, 383 U.S. 1, 10–11 (1966) (quoting

Thomas Jefferson, Letter to Isaac McPherson (Aug. 13, 1813), in 13 THE WRITINGS OF

THOMAS JEFFERSON 326, 334–35 (Andrew A. Lipscomb ed., 1903)).

No. 2] Soft Physicality Requirements 591

A. Not All Software Is Abstract

Some argue that software is not inherently abstract.153 It would be

difficult, however, to find someone who would argue that a novel’s

story is not abstract. Conversely, the pages, ink, and exact arrange-

ment of words within the book are a physicality implementing the

story. The processes and methods embodied in a software patent are

equivalent to the story of a novel; the software code and computer

hardware is the paper, ink, and expression. Those arguing software is

not abstract effectively argue that a story is self-actualizing.

These commentators claim that software is not abstract, despite

the fact that it is essentially a set of instructions, because in reality

software is confined by various limitations, such as hardware con-

straints, compatibility requirements, and human-introduced re-

strictions.154 This, however, ignores the reality that a computer system

may be precisely reduced in a simulator because these digital systems

are well defined.155 Thus, digital systems should not be thought of as

intractable in the same sense that we might think of applications of the

sciences as intractable. While in practice software might not operate

exactly as the developer envisioned, the fact remains that the develop-

er, if given enough time, could fully predict the operation of software

prior to runtime. By contrast, the application of hard sciences is in-

tractable because we simply do not have a perfect understanding of

the natural world due to limitations in both human knowledge and

measurement. It is conceivable that in the future we might have per-

fect conceptual knowledge of all scientific principles employed in the

applied sciences like engineering, but, unlike the operation of soft-

ware, we currently do not.

Abstract ideas must be actualized; that is the nature of abstract-

ness. Soft physicality requirements ensure that such abstract ideas are

pulled closer to actualization before they are patentable. Soft physical-

ity leaves patent claims that are sufficiently actualized untouched by

153. See, e.g., Lee, supra note 96, at 403–05 (arguing that software is not abstract be-

cause, unlike a mathematical formula, its behavior becomes increasingly unpredictable as it

grows in complexity).

154. See, e.g., id.
155. For example, the MIPS processor architecture is a popular architecture to use for

teaching computer design, digital systems, and assembly language (the lowest level pro-

gramming language besides coding directly in binary). As a result there are numerous simu-
lators of MIPS processors such as SPIM, see James, Larus, SPIM: A MIPS32 SIMULATOR,

http://spimsimulator.sourceforge.net/ [https://perma.cc/8Y89-G7N6], and MARS, see MARS

(MIPS Assembler and Runtime Simulator), MO. ST. U., http://courses.missouri-
state.edu/kenvollmar/mars/index.htm [https://perma.cc/MG5V-5XRW] (last modified Oct.

28, 2014). Other architectures and digital systems are similarly reducible, but there is gener-

ally not such a great commercial need for simulation and emulation and the speed of simu-
lated architectures generally pales in comparison to the native hardware performance.

592 Harvard Journal of Law & Technology [Vol. 29

referencing appropriately limiting hardware or platforms.156 Thus, soft

physicality operates only against bare abstract patents that seek to

broadly cover the story of an invention.

B. The Alice Framework Is Sufficiently Limiting

Some pro-patent commentators have denounced Alice as having

overstepped in restricting legitimate software patents.157 Others may

decide that the Alice framework sufficiently limits software patents.

Those commentators would likely suggest that soft physicality re-

quirements are unnecessary. It is true that Alice has been a critical

element contributing to the current wave of invalidations of software

patents.158 From a consequentialist point of view, this what we should

primarily be concerned about. However, the consequentialist over-

looks the utility of having clear positive standards.

The Supreme Court in Alice reached the proper decision, but the

explanation given was insufficient.159 Ultimately, the Court in Alice

failed to provide a principled reason for why and when software pa-

tents are invalid. The Court gave no forward-thinking guidance and

simply stated that recitation of generic components of a general-

purpose computer used trivially is not sufficient to make an abstract

idea patentable.160 While this provides another stepping stone to sup-

port the invalidation of improvident software patents, such guidance

framed in the negative only provides a sole data point rather than a

generally applicable rule or framework.

What the USPTO needs, and what lower courts will benefit from,

are positive rules. Soft physicality provides a positive rule, comports

with the Supreme Court’s preemption anxiety and latent fixation on

physicality, and will assist the USPTO’s examiners in ascertaining

whether a given software patent is likely to foster or suppress innova-

tion. Not only will such a positive rule provide a more principled

means by which software patents may be challenged, such a rule will

156. Again, “appropriately limiting” means that an ordinary artisan would be able to

glean from the claims the intended modes of implementation and thus the intended scope of

the patent.
157. See, e.g., Gene Quinn, A Software Patent Setback: Alice v. CLS Bank,

IPWATCHDOG.COM (Jan. 9, 2015), http://www.ipwatchdog.com/2015/01/09/a-software-

patent-setback-alice-v-cls-bank/id=53460/ [https://perma.cc/S68E-JKDQ].
158. See Jasper L. Tran, Software Patents: A One-Year Review of Alice v. CLS Bank, 97

J. PAT. & TRADEMARK OFF. SOC’Y 532, 539–41 (2015).

159. Others have likewise noted that the Alice decision provided very little in the way of
positive tests for determining the abstractness of an invention. See Erika Harmon Arner,

Elliot C. Cook & C. Gregory Gramenopoulos, IP Update: Alice Corp. v. CLS Bank: The

Supreme Court Weighs In on Patent–Eligibility, FINNEGAN (June 20, 2014),
http://www.finnegan.com/IPUpdateAliceCorpvCLSBankTheSupremeCourtWeighsInOn

PatentEligibility/ [https://perma.cc/DJ8J-UKP4] (noting the court “expressly refrained from

providing a test for determining whether an invention is directed to an ‘abstract idea’”).
160. See supra Part II.A, specifically note 51.

No. 2] Soft Physicality Requirements 593

also create more certainty for patent holders and innovators seeking to

patent inventions encompassing software while simultaneously in-

creasing the quality of granted software patents.

The ambiguity surrounding the patent eligibility of software may

also be viewed by some as a variant of beneficial or necessary flexi-

bility. Although software patents may require flexible standards that

can keep pace with the high-speed technological progress that soft-

ware undergoes, the utility of that approach depends ultimately on the

parties implementing the standards. As some scholars have pointed

out, the USPTO generally errs on the side of improperly granting pa-

tents.161 Thus, the USPTO will use flexible standards in a way that

increases improperly granted patents. The USPTO’s proactive adop-

tion of a robust and forward-thinking positive standard — the adop-

tion of soft physicality requirements — will give the USPTO a tool to

determine the patentability of software in a more predictable and prin-

cipled manner. Furthermore, a clearer standard will cut off the risk of

granting improper patents due to the agency’s natural inclination to

stretch flexible standards towards being too permissive of low quality

software patents.

VI. CONCLUSION

It is no secret that software patents present unique problems given

their abstractness and ease of abuse. The USPTO and various courts

have played tug of war over the formulation of standards, leaving pa-

tent examiners and lower courts with an inconsistent, unclear, and

fundamentally deficient legal toolbox. Although the courts have thus

far been reluctant to explicitly state that software is a unique industry

requiring custom-tailored patent standards, this is precisely what must

be done. The USPTO has the opportunity to take the first step by

adopting soft physicality requirements during examination. While

traditional physicality requirements are indeed improper for software,

the tailored requirement of soft physicality will help correct the root

problems of software patents and ensure that only software patents

that truly “promote the Progress of Science and useful Arts” are

granted.162

161. See Masur, supra note 45, at 474.
162. U.S. CONST. art. I, § 8, cl. 8.

