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I. INTRODUCTION 

Much recent debate over patents has focused on their ability to 
act as brakes as well as stimulants to innovation. Theoretical studies 
have described how patents can impede innovation, whether by gen-
erating an “anticommons”1 or by otherwise taxing, complicating, or 
outright blocking the efforts of later developers.2 In books with such 
foreboding titles as Patent Failure3 and Innovation and Its Discon-
tents,4 commentators have argued that these undesirable theoretical 
capacities are being realized and that patents, government grants 
meant to stimulate technological progress, might be instead doing 
much to hold it back.5 

The recognized tension between patents’ capacities to stimulate 
and to slow technological progress highlights an important point. 
Whether patents serve their constitutionally specified role of “pro-
mot[ing] . . . Progress”6 depends significantly on the dynamics 
through which that progress occurs. For any given field of technolo-
gy, these dynamics determine whether patents’ innovation-stimulating 
effects outweigh their innovation-impeding effects. Moreover, the 
trajectory of technological progress that these dynamics generate can 
have significant implications for patent policy.7 Papers by Polk Wag-
                                                                                                                  

1. Michael A. Heller & Rebecca S. Eisenberg, Can Patents Deter Innovation? The Anti-
commons in Biomedical Research, 280 SCIENCE 698, 698–99 (1998) (describing “two 
mechanisms” that can generate an “anticommons” in which “multiple owners each have a 
right to exclude others from a scarce resource and no one has an effective privilege of use”).  

2. See, e.g., STEVEN SHAVELL, FOUNDATIONS OF ECONOMIC ANALYSIS OF LAW 148 
(2004) (“[T]he broader the protection granted to first innovations, the lower the incentives 
of others to generate second innovations.”); Robert P. Merges & Richard R. Nelson, On the 
Complex Economics of Patent Scope, 90 COLUM. L. REV. 839, 843 (1990) (“[T]he notion of 
a patent’s social costs should include its potential to reduce competition in the market for 
improvements to the patented technology.”). See generally SUZANNE SCOTCHMER, 
INNOVATION AND INCENTIVES 127 (2004) (“The problem introduced for incentive mecha-
nisms is how to make sure that earlier innovators are compensated for their contributions, 
while ensuring that later innovators also have an incentive to invest.”). 

3. JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE: HOW JUDGES, 
BUREAUCRATS, AND LAWYERS PUT INNOVATORS AT RISK 141 (2008) (“[W]e can safely 
conclude that during the late 1990s, the aggregate costs of patents exceeded the aggregate 
private benefits of patents for United States public firms outside the chemical and pharma-
ceutical industries.”). 

4. ADAM B. JAFFE & JOSH LERNER, INNOVATION AND ITS DISCONTENTS: HOW OUR 
BROKEN PATENT SYSTEM IS ENDANGERING INNOVATION AND PROGRESS, AND WHAT TO 
DO ABOUT IT 2 (2004) (“[T]he patent system . . . is generating waste and uncertainty that 
hinders and threatens the innovative process.”). 

5. DAN L. BURK & MARK A. LEMLEY, THE PATENT CRISIS AND HOW THE COURTS CAN 
SOLVE IT 30 (2009) (“At least three major economic studies in the last five years have sug-
gested that the patent system may actually do more harm than good to innovation . . . .”). 

6. U.S. CONST. art. I, § 8, cl. 8. 
7. Policymakers and their advisors have long recognized the importance of having some 

sense of the likely trajectory of technological progress. Cf. SUBCOMM. ON TECH., NAT’L 
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ner and Dennis Karjala suggest that, if the growth of technological 
information is fundamentally exponential in time, the extent to which 
patents impede patentable technologies’ use and availability might be 
less of a concern than if the growth of technological information is 
essentially linear.8 More generally, commentators commonly assume 
one or another form for “natural” patent dynamics when they suggest 
that the significant growth in the number of patent applications and 
issued patents over the last few decades indicates a fundamental prob-
lem, rather than plausibly reflecting such presumed social goods as 
increased technological progress or increased success in the patent 
system’s promotion of technological disclosure as an alternative to 
secrecy.9 

But any assumptions that we know the “natural” form of techno-
logical progress in one or another field, or as a whole, seem prema-

                                                                                                                  
RES. COMM., TECHNOLOGICAL TRENDS AND NATIONAL POLICY vii (1937) (“The large 
number of inventions made every year shows no tendency to diminish . . . . No cessation of 
social changes due to invention is to be expected.”). 

8. Compare R. Polk Wagner, Information Wants To Be Free: Intellectual Property and 
the Mythologies of Control, 103 COLUM. L. REV. 995, 1018 (2003) (postulating that infor-
mation grows exponentially with time), with Dennis S. Karjala, Does Information Beget 
Information?, 2007 DUKE L. & TECH. REV. 1, 8–10 (arguing that Wagner’s use of an expo-
nential-growth model is substantially responsible for Wagner’s conclusion that more control 
over information is likely to lead to the generation of more freely available information). 
But cf. Jonathan Huebner, A Possible Declining Trend for Worldwide Innovation, 72 
TECHNOLOGICAL FORECASTING & SOC. CHANGE 980, 980 (2005) (contesting an alleged 
“general consensus that technology is advancing exponentially”). 

9. See, e.g., BURK & LEMLEY, supra note 5 at 22 (“Even if the world is more innovative 
than it used to be, we doubt it is four times more innovative than . . . in the 1980s, or . . . 
nearly twelve times as innovative as the 1870s . . . . The more logical explanation is that it is 
simply easier to get a patent today than it used to be . . . .”). More sophisticated analyses 
have not cited raw growth rates as evidence of patent numbers’ disconnect from actual rates 
of technological progress, but have instead focused on an apparent discontinuity in the 
growth rate of U.S. patent applications in the early 1980s, which approximately coincided 
with the creation of the U.S. Court of Appeals for the Federal Circuit. See Bronwyn H. Hall, 
Exploring the Patent Explosion, 30 J. TECH. TRANSFER 35, 46 (2005) [hereinafter Hall, 
Exploring] (reporting “clear evidence of a structural shift to a higher growth rate in overall 
patenting in the United States between 1983 and 1984”); Bronwyn H. Hall, Patents and 
Patent Policy, 23 OXFORD REV. ECON. POL’Y 568, 578 (2007) (associating “a structural 
break in 1984” in U.S. patent numbers with “changes in the US patent system”); F.M. 
Scherer, The Political Economy of Patent Policy Reform in the United States 28 (John F. 
Kennedy Sch. Of Gov’t Faculty Research Working Papers Series, Paper No. RWP07-042, 
2007), available at http://ssrn.com/abstract=963136 (associating “a distinct and statistically 
significant break in [patent numbers] at the year 1983” with “the creation of the [Federal 
Circuit]”). At least two commentators have argued, however, that the acceleration of patent-
ing during this period and its aftermath largely reflected “increases in innovation and[] 
improvements in the management of R&D.” Hall, Exploring, supra, at 35; see Samuel 
Kortum & Josh Lerner, Stronger Protection or Technological Revolution: What Is Behind 
the Recent Surge in Patenting?, 48 CARNEGIE-ROCHESTER CONF. SERIES ON PUB. POL’Y 
247, 251–52 (1998) (“tentatively conclud[ing]” that “the increase in patent activity [in the 
United States] seems to be a consequence of a world-wide increase, along with a recent 
improvement in the relative performance of U.S. inventors,” and positing “that much of the 
increase may be due to improvements in the management or automation of the innovation 
process”). 
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ture. Like the understanding of entrepreneurial dynamics,10 the under-
standing of innovation dynamics appears to be in its infancy. Indeed, 
“infancy” is perhaps too generous a term. Understanding of innova-
tion dynamics might be better characterized as embryonic. 

Prior theoretical work has often focused on how patents or other 
incentives or impediments to innovation might affect discrete deci-
sions about whether, and with what level of resource commitment, to 
pursue a particular line of research.11 Although such decision models 
can be instructive, their isolated-decision-point structure tends to re-
sult in their neither suggesting a particular trajectory for progress nor 
directing empirical work in a way likely to lead to deeper understand-
ing of innovation dynamics.  

This Article steps into the breach by presenting a fluid-
mechanics-inspired model for innovation dynamics. The model pro-
vides a relatively straightforward framework for considering the in-
teraction between potential “pushes” that tend to accelerate innovative 
progress and potential “drags” that tend to decelerate it. Within the 
model, a particular policy could contribute to both progress-
promoting pushes and progress-impeding drags. Thus, for example, a 
move toward construing patents’ scope more broadly can act as a 
push by increasing patent-associated rewards for innovators.12 On the 
other hand, that same move can also act as a drag by increasing fol-
low-on innovators’ costs for reviewing and clearing patent rights 
owned by others.13 The model’s combination of push and drag terms 
in one dynamic equation makes the model a good vehicle for consid-
ering this double-headed character of patents as both potential stimu-
lants and potential brakes to innovation. 

The model also provides an opportunity to study positive and 
negative feedbacks in technological development. Through incorpora-

                                                                                                                  
10. See JOSH LERNER, BOULEVARD OF BROKEN DREAMS: WHY PUBLIC EFFORTS TO 

BOOST ENTREPRENEURSHIP AND VENTURE CAPITAL HAVE FAILED — AND WHAT TO DO 
ABOUT IT vii (2009) (observing that “economists have turned only recently to the question 
of how to boost entrepreneurship”). 

11. See, e.g., ROBERT PATRICK MERGES & JOHN FITZGERALD DUFFY, PATENT LAW AND 
POLICY: CASES AND MATERIALS 696–99 (4th ed. 2007) (presenting a “two-step decision 
model” “[t]o explore the effects of the nonobviousness standard on the incentives facing a 
prospective researcher/inventor” (emphasis omitted)); SCOTCHMER, supra note 2, at 136–41 
(presenting a model for “[t]he strategic environment of licensing” in which actors make 
discrete decisions in accordance with expected payoffs). 

12. See SCOTCHMER, supra note 2, at 97 (“[I]ntellectual property is an important incen-
tive mechanism.”); Merges & Nelson, supra note 2, at 871 (discussing how, according to 
Edmund Kitch’s “‘prospect theory’ of patent rights,” a broad, early patent “allows ‘breath-
ing room’ for the inventor to invest in development”). 

13. See Merges & Nelson, supra note 2, at 870 (contending that “broad patents could dis-
courage much useful research” in follow-on innovation); cf. Ariad Pharms., Inc. v. Eli Lilly 
& Co., 598 F.3d 1336, 1353 (Fed. Cir. 2010) (en banc) (acknowledging that denial of patent 
protection for “research hypotheses . . . possibly results in some loss of incentive,” but 
countering that “claims to research plans also impose costs on downstream research, dis-
couraging later invention”). 
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tion of such feedback effects, the model generates a rich array of 
functional behaviors from a relatively small number of terms. Distinct 
circumstances and time scales correspond to different forms of func-
tional behavior, such as exponential, linear, or higher-power-law 
growth. A given form of functional behavior is commonly transient, 
ultimately undercutting its own existence by causing a previously 
negligible form of feedback to become significant.  

The model thus confirms common intuitions that processes of in-
novation are highly context-dependent. More specifically, the model 
suggests that there is no single “natural” form for the time-dependent 
behavior of technological progress. Indeed, within this model, the 
exponential growth posited by Wagner14 prevails under only a rela-
tively exceptional and unstable set of circumstances. In contrast, for a 
wide variety of circumstances, some form of power-law growth seems 
likely to prevail. But the particular exponent characteristic of such 
power-law growth is not a universal constant. Instead, it depends 
strongly on the nature of the dominant pushes and drags.  

Moreover, elaborations of the model’s basic form show how a pe-
riod of rapid technological progress can end when progress encoun-
ters a technological “wall” or “bottleneck.” Such an impediment 
might eventually be overcome or circumvented, leading to a resump-
tion of rapid growth that continues until a new wall or bottleneck is 
encountered. Over very long time scales, the resulting trajectory of 
technological progress might feature a series of S-like shapes marking 
successive cycles of acceleration and deceleration. 

Such complexity does not mean, however, that efforts to develop 
useful intuitions about how to promote progress are hopeless. Because 
the model commonly generates phases of power-law behavior, analyt-
ic devices such as log-log plots might provide fruitful ways to com-
pare the model’s predictions to empirical data. Further, the model 
suggests the potential utility of dynamic-elasticity or “double ratio” 
tests, according to which a policy’s efficacy in promoting progress is 
indicated by comparison of the percentage changes in push and drag 
parameters that the policy generates. The repeated emergence of such 
tests in different parameter regimes15 suggests the possibility that the 
extent to which an incremental policy change speeds or slows innova-
tive progress might commonly turn not as much on the absolute 
amounts by which the policy change alters one or another push or 
drag parameter, but more fundamentally on ratios between those ab-
solute amounts of alteration and the parameters’ pre-policy values. 

                                                                                                                  
14. See Wagner, supra note 8, at 1018 (positing that the amount of “open information” 

produced in a given time period is proportional to a weighted sum of amounts of infor-
mation already in existence). 

15. See infra text accompanying notes 118–22. 
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Double-ratio tests enrich intuitions about when patents or other 

policy instruments are most likely to promote rather than to impede 
progress. Indeed, these tests suggest that the effects of patent policy 
are even more fundamentally heterogeneous than commentators have 
previously appreciated. Suggestions that software and pharmaceutical 
patents tend to impose different magnitudes of costs on innovation 
might be correct,16 and yet might also understate the heterogeneity of 
patents’ effects. According to a double-ratio test, even if software 
patents increase a drag coefficient by the same absolute amount as 
pharmaceutical patents do, the negative effect on the software indus-
try from that increase will be much greater if the percentage increase 
of the drag coefficient experienced by the software industry is much 
greater than the percentage increase experienced by the pharmaceuti-
cal industry. Hence, double-ratio tests can provide deeper insight into 
the often contrary views of members of different industry groups re-
garding the desirability of strong and broad patent rights.17 

Part II of this Article presents the intuitive bases and mathemati-
cal structure of the model. Part II first addresses the threshold ques-
tion of what is meant by “innovative progress.” Part II then explains 
how forces promoting or impeding such progress might be expected 
to depend on such social factors as patent rights, the cumulative store 
of available knowledge, and the rate at which progress occurs. 

Part III analyzes in detail the operation and implications of Part 
II’s model for innovation dynamics. Part III shows how, according to 
this model, the behavior of innovative progress responds both to ex-
ternally determined push and drag parameters, and also to positive 
and negative feedback from the speed or accumulated volume of in-
novative progress. 

Part IV emphasizes how even Part II’s relatively simple model 
indicates the improbability of there being a universal, natural form for 
the trajectory of technological progress. Further, Part IV discusses 
how elaborations of the model can yield the kind of S-shaped trajecto-
ry for technological progress that is commonly thought typical. Part 
IV then discusses how the repeated occurrence of such S-shaped be-
havior over finite time intervals can generate a form of “stacked tech-

                                                                                                                  
16. See BESSEN & MEURER, supra note 3, at 192 (“Clearly, software and business-

method patents are different from most other patents, both in their litigation rates and fre-
quency of claim-construction problems.”); id. at 153 (“Although chemical and pharmaceuti-
cal firms also obtain patents covering other technologies (for example, medical 
instruments), the clear boundaries provided by patents on chemical structures and composi-
tions explain the overall superior performance of the patent system in these industries.”). 

17. Cf. BURK & LEMLEY, supra note 5, at 3–4 (describing how representatives of the 
pharmaceutical industry and the information-technology industry tend to perceive “two 
different patent systems”); John M. Golden, Principles for Patent Remedies, 88 TEX. L. 
REV. 505, 507–08 (2010) (discussing the differing views of coalitions representing, among 
others, prominent pharmaceutical and information-technology companies, respectively). 
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nological growth” that exhibits a leading-order, long-term behavior 
qualitatively different from that observed at shorter time scales. 

Part IV also provides an example of how log-log and semi-log 
plots can be used to examine time-dependent data for the sort of pow-
er-law behavior that Part II’s model often predicts. In particular, Part 
IV shows how the cumulative number of U.S. utility patents has ex-
hibited substantially constant power-law behavior over decades-long 
time scales. 

Finally, Part IV shows how Part II’s model yields dynamic-
elasticity or double-ratio tests that can help address the question of 
whether a particular policy, such as an extension or strengthening of 
patent rights, will speed or slow innovation. Part IV explains how 
such double-ratio tests help both to confirm and to enrich significant 
intuitions about when patents are most likely to promote technological 
progress and when they are most likely to impede it. 

II. A MODEL FOR INNOVATION DYNAMICS 

A. Threshold Concerns in Constructing a Model for Innovation 
Dynamics 

A threshold question for the construction of a model of innova-
tion dynamics is which characteristics of those dynamics the model 
should attempt to describe. For purposes of this Article, it is assumed 
that the relevant policy goal is to increase the rate of technological 
progress through innovation. This goal is consistent with the common 
view that technological progress is generally desirable. Of particular 
relevance for intellectual property law in the United States, this goal 
is consistent with the mandate in the United States Constitution that 
patents operate “[t]o promote the Progress of Science and useful 
Arts.”18 

Undoubtedly, there are significant grounds for debate about what 
constitutes “technology,” what constitutes “technological progress,” 
and what the metric for any particular brand of “technological pro-
gress” should be. Economist Brian Arthur suggests that, consistent 
with much conventional understanding, technology can be reasonably 
defined as substantially human-developed “means to fulfill a human 
purpose”19 that rely significantly on the understanding, operation, or 
manipulation of physical phenomena external to human beings.20 
                                                                                                                  

18. U.S. CONST. art. I, § 8, cl. 8. 
19. W. BRIAN ARTHUR, THE NATURE OF TECHNOLOGY: WHAT IT IS AND HOW IT 

EVOLVES 28 (2009) (emphasis omitted). 
20. See id. at 46 (“A technology is always based on some phenomenon or truism of na-

ture that can be exploited and used to a purpose.”); see also id. at 49 (“Phenomena are simp-
ly natural effects, and as such they exist independently of humans and of technology.”); cf. 
John R. Thomas, The Patenting of the Liberal Professions, 40 B.C. L. REV. 1139, 1175 
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Likewise, a definition of technological progress as the development of 
new external, physical means to fulfill human ends seems likely to be 
relatively uncontroversial, at least in part because the definition seeks 
to be essentially objective and value-neutral.  

Trickier, however, is the question of the proper metric for techno-
logical progress. Even assuming perfect knowledge of all technologi-
cal means available at a particular point in time, the question of how 
to measure technological progress presents fundamental difficulties, 
in substantial part because such measurement requires settlement on 
an approach to assigning relative values to different technologies.21 

On the other hand, such measurement problems are far from 
unique. Despite well-known problems with defining and measuring 
social wealth or welfare,22 economic and legal literature is awash in 
analysis predicated on a goal of social-wealth or social-welfare max-

                                                                                                                  
(1999) (describing technology as “knowledge that is applied toward material enterprise, 
guided by an orientation to the external environment and the necessity of design”). Like 
Arthur, I concede that an acceptable broader definition could view technology as encom-
passing any means to fulfill a human purpose, whether through politics, law, musical com-
position, reality television, or otherwise. See ARTHUR, supra note 19, at 54–56 (discussing 
“nontechnology-like technologies,” such as “[b]usiness organizations, legal systems, mone-
tary systems,” and musical compositions, that “we can prefer to think of as purposed sys-
tems, more like first cousins to technology, even if formally they qualify as technologies”). 
Much of the analysis and argument that follows might apply to “technology” even when so 
broadly conceived. Cf. id. at 129 (“That origination in science or in mathematics is not 
fundamentally different from that in technology should not be surprising . . . . They exist 
because all three are purposed systems — means to purposes, broadly interpreted — and 
therefore must follow the same logic.”). 

21. See generally G.M. PETER SWANN, THE ECONOMICS OF INNOVATION: AN 
INTRODUCTION 35–36 (2009) (describing approaches to measuring innovation — such as 
surveys, patent counts, and investment in research and development — and their shortcom-
ings). The economist William Baumol has acknowledged this problem of measurement 
even while writing extensively about innovation, saying: “[T]he very nature of the subject 
condemns the evidence [for proffered hypotheses] to be spotty and unsystematic, for how 
can one really hope to prove what has stimulated such things as invention and entrepreneur-
ship, when neither of these can even be measured?” WILLIAM J. BAUMOL, THE FREE-
MARKET INNOVATION MACHINE: ANALYZING THE GROWTH MIRACLE OF CAPITALISM 296 
(2002); cf. Ola Olsson, Knowledge as a Set in Idea Space: An Epistemological View on 
Growth, 5 J. ECON. GROWTH 253, 253 (2000) (explaining that “thinking about knowledge 
and technology is complicated by the fact that ideas . . . . are practically impossible to 
measure and often even difficult to define”). 

22. See, e.g., Antony Page, Has Corporate Law Failed? Addressing Proposals for Re-
form, 107 MICH. L. REV. 979, 991 (2009) (“Aggregate social welfare, including all external-
ities, is difficult to measure, potentially yielding widely varying estimates — and so diffi-
difficult to maximize accurately.”); Eric A. Posner & Adrian Vermeule, Emergencies and 
Democratic Failure, 92 VA. L. REV. 1091, 1108 (2006) (“Defining a social welfare function 
that aggregates across persons is notoriously difficult . . . .”); Cass R. Sunstein, Willingness 
To Pay vs. Welfare, 1 HARV. L. & POL’Y REV. 303, 330 (2007) (“I have suggested that there 
are serious problems with the emphasis on economic growth as the measure of social wel-
fare . . . .”); cf. Richard S. Markovits, On the Relevance of Economic Efficiency Conclu-
sions, 29 FLA. ST. U. L. REV. 1, 4 (2001) (“In my experience, the vast majority of 
economists and law-and-economics scholars . . . conflate the economic efficiency of a poli-
cy option with its social desirability when testifying before Congress, state legislatures, and 
administrative agencies . . . .”). 
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imization. Presumably this at least partly reflects the fact that policy-
makers who would like to increase social wealth or welfare — or at 
least to be perceived as doing so — cannot wait for a definitive an-
swer on how to measure such quantities. The same seems likely to be 
true for policymakers who seek to increase — or to be perceived as 
increasing — the rate of technological progress. Given the circum-
stances under which legal policies and decisions are made, even a 
relatively crude approach to measuring technological progress might 
help improve on mere fumbling in the dark. 

At least as a theoretical matter, the measure of technological pro-
gress during a particular period of time probably should not be just 
the sheer number of new technological means for accomplishing hu-
man ends that have appeared during that period. Technological pro-
gress seems to require overcoming a technology-related limitation or 
barrier, whether through a flash of insight, a substantial targeted in-
vestment, or an effort to develop a market that will support a new 
technology’s diffusion and improvement. Many new technological 
means might fail to qualify as progress because, for example, they are 
virtually identical to others or easily developed from them. Thus a 
straightforward count of the number of new product lines, methods of 
manufacturing, or other technological means might entail substantial 
over-counting of instances of true technological progress.  

Further, some new technological means represent more signifi-
cant steps forward than others. United States patent law recognizes 
this fact through a requirement that a patentable invention not “have 
been obvious at the time the invention was made to a person having 
ordinary skill in the [relevant] art.”23 More subtly, U.S. patent law 
incorporates an effective judgment about such significance by gener-
ally restricting the prior art relevant for assessing novelty and nonob-
viousness to art that, by one or another specified point in time, was 
publicly known, publicly disclosed, or commercially exploited,24 or at 
least put on a path reasonably likely to yield such public knowledge, 
public disclosure, or commercial exploitation.25 Generally speaking, 
                                                                                                                  

23. 35 U.S.C. § 103(a) (2006). 
24. See 35 U.S.C. § 102(a) (2006) (defining prior art that can render an alleged invention 

anticipated as including matter “known or used by others in this country, or patented or 
described in a printed publication in this or a foreign country, before the invention thereof 
by the applicant for patent”); id. § 102(b) (treating as prior art matter “patented or described 
in a printed publication in this or a foreign country or in public use or on sale in this coun-
try, more than one year prior to the date of the application for patent in the United States”); 
MERGES & DUFFY, supra note 11, at 396 (observing the accepted U.S. understanding that 
“prior knowledge or use must be public in order to qualify as anticipatory”); id. at 730 
(“There has never been any doubt that . . . prior art [for the purpose of assessing nonobvi-
ousness] includes references under § 102(a), all of which are . . . publicly available.”). 

25. See 35 U.S.C. § 102(e) (treating matter in an issued U.S. patent or published U.S. pa-
tent application as prior art as of the date of U.S. filing); id. § 102(g)(2) (treating as prior art 
matter “made in [the U.S.]” and “not abandoned, suppressed, or concealed”); Flex-Rest, 
LLC v. Steelcase, Inc., 455 F.3d 1351, 1358 (Fed. Cir. 2006) (“There are two types of sup-
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the patent laws of other countries contain similar provisions.26 Hence, 
patent law generally reflects a judgment that the technological ad-
vances that matter most for purposes of measuring progress are those 
whose structure, operation, or benefits are made publicly available in 
some significant way.27 

Settlement on a meaningful quantitative measure of technological 
progress is likely to be even more difficult than the binary judgments 
of public availability and patentability that patent law tends to make. 
In general, one will likely have to use a measure that is at best a crude 
proxy for technological progress itself.28 For example, the number of 
patentable innovations generated during a given time period — 
whether ultimately patented or not — might be viewed as one meas-
ure of technological progress. But such a measure would be less than 
ideal.29 Some important innovations might not meet the threshold of 
patentability — for example, because they fall outside patent law’s 
subject-matter boundaries, or because they involve non-novel or ob-
vious variants of pre-existing products or processes that failed to 
achieve commercial success.30 Moreover, because patentable innova-

                                                                                                                  
pression or concealment: cases in which the inventor intentionally suppresses or conceals 
his invention, and cases in which a legal inference of suppression or concealment can be 
drawn based on an unreasonable delay in making the invention publicly known.”). 

26. See, e.g., GRAEME B. DINWOODIE, WILLIAM O. HENNESSEY & SHIRA PERLMUTTER, 
INTERNATIONAL AND COMPARATIVE PATENT LAW 120–21 (2002) (discussing definitions of 
prior art in Europe and Japan). 

27. Some economic models suggest that some degree of spillover-enabling public disclo-
sure might be crucial for sustaining economic growth. See GENE M. GROSSMAN & 
ELHANAN HELPMAN, INNOVATION AND GROWTH IN THE GLOBAL ECONOMY 57 (1991) 
(contending that, in accordance with certain models, full appropriation of research-and-
development returns “by the inventor” results in “the cessation of growth in the long run”). 

28. Cf. ÅKE E. ANDERSSON & MARTIN J. BECKMANN, ECONOMICS OF KNOWLEDGE: 
THEORY, MODELS AND MEASUREMENTS 56–57 (2009) (asserting that, in measuring 
“knowledge inputs,” “[t]he best one can do is using proxy variables such as the literature on 
a subject”); Christian Ghiglino, Balanced Growth with a Network of Ideas 2 (Dep’t of 
Econ., Queen Mary Univ. of London, Working Paper No. 546, 2005), available at 
http://ideas.repec.org/p/qmw/qmwecw/wp546.html (“[D]ata about the production of ‘ideas’ 
are impossible to obtain. The most closely related processes are the production of patents 
and the production of scientific articles.”). 

29. Presumably even less ideal would be a measure of progress based on raw numbers of 
issued patents, which are unlikely to reflect all innovations that, in principle, could have 
been patented, as various important innovations might have been either held as trade secrets 
or made freely available. Nonetheless, patent counts are commonly used as a crude measure 
of technological progress. See, e.g., Climbing Mount Publishable, THE ECONOMIST, No-
vember 13th–19th 2010, at 95, 96 (using patent counts as a measure of nations’ “success[] 
in using the knowledge they generate”). 

30. See ROGER CULLIS, PATENTS, INVENTIONS AND THE DYNAMICS OF INNOVATION: A 
MULTIDISCIPLINARY STUDY 6 (2007) (noting that “technical advances may fail to satisfy 
statutory tests for quantum of inventive step”). U.S. patent law considers the commercial 
success of a product or process incorporating a claimed invention to be potential evidence 
of the claimed invention’s nonobviousness, but that law also recognizes that such commer-
cial success can result from factors having little or nothing to do with the technological 
merit of the claimed invention. See, e.g., Ormco Corp. v. Align Tech., Inc., 463 F.3d 1299, 
1311–12 (Fed. Cir. 2006) (“Evidence of commercial success, or other secondary considera-
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tions can differ greatly in economic or technological significance, a 
simple count of patentable innovations can misrepresent the im-
portance even of the innovations counted.31 On the other hand, if the 
probability distribution of such innovations’ value or significance is 
relatively stable over time — i.e., if the percentage of innovations in a 
given time period that have a particular value or significance is essen-
tially constant — counts of patentable innovations might provide a 
reasonably good measure of technological progress. 

Alternatively, if one is concerned with progress in a specific 
technological field such as semiconductor chip production, one might 
define technological progress according to technical benchmarks, 
such as the number of transistors per unit area or the microprocessor 
speed achievable per dollar of production cost. But even if concern 
with progress is limited to a specific technological field, such a tech-
nical metric for progress is likely to be problematic. Progress accord-
ing to a technical metric does not necessarily bear any substantial 
correlation to the difficulty or social significance of the advance. 
Thus, however useful such metrics might be as a means of setting 
engineering goals within a firm, their use for purposes of setting so-
cial policy might arbitrarily shape perceptions of the state of techno-
logical progress and the dynamics behind it. For example, using the 
number of transistors on a semiconductor chip as a measure of pro-
gress would indicate that progress has proceeded exponentially with 
time.32 On the other hand, using a logarithm of the number of transis-
tors per unit area as the measure causes progress to look substantially 
linear.33 Moreover, any such metrics fail to shed much light on ques-
tions likely to be of much greater concern — such as how much effort 
or ingenuity was required to increase the density of transistors, or how 
much this achievement has improved workplace productivity, work-
ing or living conditions, or social capacity to address any of a number 
of human wants. 

                                                                                                                  
tions, is only significant if there is a nexus between the claimed invention and the commer-
cial success . . . . Thus, if the commercial success is due to an unclaimed feature of the 
device, the commercial success is irrelevant.”).  

31. Cf. CULLIS, supra note 30, at 11 (observing that patent office statistics do not “distin-
guish between ideas which make a significant contribution to scientific and economic pro-
gress and those which are mere paper proposals”); SWANN, supra note 21, at 35–36 (“[I]t is 
generally reckoned that most patents cover inventions of pretty low commercial value . . . . 
In short, the existence of patents does not necessarily imply innovation and the absence of 
patents does not necessarily imply the absence of innovation.”). 

32. See Robert Service, Intel’s Breakthrough: Its New Silicon Laser Could Add Decades 
to Moore’s Law, 108 TECH. REV. 62, 62 (2005) (discussing efforts to extend the period of at 
least approximate validity for “Moore’s Law,” a decades-old prediction “that the number of 
transistors on a computer chip would double every two years”). 

33. See Intel, Moore’s Law: Made Real by Intel Innovations, http://www.intel.com/ 
technology/mooreslaw/ (last visited Dec. 21, 2010) (showing how Moore’s Law of expo-
nential growth becomes a law of linear progress when a logarithm of transistor size is plot-
ted as a function of time). 
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With such concerns in view, one might assign a numerical value 

to an innovation that reflects what it generates: whether citations in 
relevant patent or academic literature, or some at least theoretically 
measurable economic surplus — perhaps ideally the net social surplus 
expected to result from the innovation.  

Given the pragmatic concerns of many U.S. legislators and citi-
zens, such an economically oriented approach to assigning value to 
innovation might seem desirable for purposes of developing U.S. in-
novation policy. But an effort at accurate economic assessment might 
raise intractable questions. For example, should the measure for inno-
vation reflect the extent to which the innovation’s value accrues to 
people in the United States alone? If an innovation saves lives, what 
are these savings worth?34 To what degree should we discount the 
economic value of an innovation that goes unrealized for decades?35 
Recognizing that the opportunity costs of an innovation’s develop-
ment and dissemination might involve foregone or delayed progress 
with respect to other innovations, entrepreneurial activity, or alterna-
tive social developments of uncertain value,36 how should we calcu-
late the total costs of an innovation? Moreover, how does one 
attribute economic value to particular innovations, given their fre-
quently cumulative or complementary nature? For example, if both 
new software and a more efficient design of internal circuitry are nec-
essary for the broad adoption of a new smartphone, and if neither that 
software nor that circuit design have significant uses outside of the 
smartphone, how does one determine how much of the smartphone’s 
value should be assigned to the new software and how much should 
be assigned to the new circuitry?37 For that matter, how much of the 
smartphone’s value should be attributed to prior innovations — such 
as commercializable cellphone technology, the transistor, and Max-
well’s laws of electromagnetism — whose great and lasting value has 
been further proven by the subsequent innovations that led more prox-
imately to the smartphone? 

In short, settling on a satisfactory measure of technological pro-
gress is difficult. Indeed, the nature of the best relevant metric seems 

                                                                                                                  
34. Cf. Frank Ackerman & Lisa Heinzerling, Pricing the Priceless: Cost-Benefit Analysis 

of Environmental Protection, 150 U. PA. L. REV. 1553, 1564 (2002) (“What can it mean to 
say that saving a life is worth $6.3 million?”). 

35. Cf. Cass R. Sunstein, Cost-Benefit Default Principles, 99 MICH. L. REV. 1651, 1711 
(2001) (“Perhaps the most difficult issue here, from the theoretical point of view, involves 
the selection of the appropriate discount rate.”). 

36. Cf. BAUMOL, supra note 21, at viii (“[W]hen institutional arrangements happen to of-
fer greater rewards to enterprising rent-seeking or to destructive activities such as warfare or 
organized crime than they offer to productive entrepreneurial activity, we can expect an 
economy’s entrepreneurial effort to be allocated away from the more productive undertak-
ings.”). 

37. See Golden, supra note 17, at 535–36 (discussing potential difficulties in assigning 
value to different parts of a multi-component technology). 
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likely to depend on the policy question at hand. The goals of ensuring 
the long-term survival of Homo sapiens or its possible descendants, 
the long-term continuance of the United States as an economic and 
military superpower, or the short-term prosperity of the United States’ 
voting public might lead to different preferred metrics for technologi-
cal progress. Nonetheless, the U.S. Constitution, by making an inter-
est in promoting progress the stated basis for enacting patent and 
copyright laws,38 implicitly presumes that policymakers can make 
rational judgments about what progress is and whether the current rate 
of progress is satisfactory. The model presented in Part II.B likewise 
presumes the existence of a rational metric for technological progress. 
Although the model does not require that any particular metric be 
used, it does reflect the previously discussed intuition that technologi-
cal progress involves overcoming a technology-related limitation or 
barrier.39 

B. The Basic Model and Its Explanation 

Assuming that we have settled on a measure of technological 
progress, what would we expect to accelerate or to decelerate such 
progress? Economic analysis of whether innovation is likely to occur 
typically considers whether the cost of an innovative step is likely to 
be outweighed by the benefit to one or more actors of completing that 
step. According to this view, innovation operates as a process that is 
fostered by incentives and slowed by costs. 

Building on this conventional view, this Article uses a model for 
innovative progress in which the rate of progress is determined by a 
combination of accelerant “pushes” and decelerant “drags.” Pushes 
can reflect increased or increasing demand for innovation, investment 
in innovation, or policies promoting such investment or demand. 
Drags can reflect any of a number of potential obstacles to the devel-
opment or deployment of innovation, such as the difficulty of solving 
a technological problem or a regulatory hurdle to distributing or using 
an innovation. A particular policy tool such as patent rights might 
contribute nonnegligibly to both pushes and drags.  

Consistent with the above, the model for innovation dynamics 
used here corresponds to a Newtonian equation of motion for a body 
that is propelled forward by pushes, but that also encounters re-
sistance in the form of velocity-independent and velocity-dependent 
drags. The basic mathematical formulation for the model used here is 
given by Equation 1 below: 

dv/dt = α + βxε – µ – γv – ξv1+η    (Eq. 1). 

                                                                                                                  
38. U.S. CONST. art. I, § 8, cl. 8. 
39. See supra text accompanying notes 22–23. 
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The elements of this equation can be described as follows: 
• The quantity x(t) is a function of time that represents the cu-

mulative amount of technological progress that has been 
achieved by time t, where such an amount is assumed to be 
nonnegative. 

• The quantity v(t) is a function of time, for purposes of sim-
plicity also assumed to be nonnegative, that represents the 
speed of technological progress, dx/dt, at time t. 

• The quantity dv/dt is a function of time that represents the ac-
celeration of progress — i.e., the rate at which the speed of 
progress is changing at a particular point in time. 

• The Greek letters ε and η represent dimensionless real num-
bers that are assumed here to be positive and constant in 
time.40 

• The letters α, β, κ, γ, and ξ are assumed to represent real val-
ues of appropriate dimensionality (i.e., units of technological 
progress divided by units of time squared for α) that are both 
nonnegative and, absent a policy change, constant in time. 

• The letter α represents the magnitude of the total push for-
ward that is not captured by the subsequent positive-feedback 
term. 

• The quantity βxε is a positive feedback term having 0 < ε ≤ 1 
and representing, to leading order in x, the extent to which 
the cumulative magnitude of past innovation drives further 
innovation. 

• The letter µ represents the magnitude of a drag on technolog-
ical progress that is analogous to a term of kinetic or static 
friction.41 

• The quantity γv captures the extent to which drags on innova-
tion increase linearly with the speed v at which innovation 
occurs. 

                                                                                                                  
40. The assumption of constant ε and η might be viewed as controversial. The assump-

tion is made here primarily for purposes of simplicity. Cf. ROBERT M. SOLOW, GROWTH 
THEORY: AN EXPOSITION 98, 181 (2d ed. 2000) (observing that models of economic growth 
have commonly treated parameters such as the rate of technological progress or population 
growth as exogenous, and arguing that such treatment is a proper “temporary designation” 
when there is insufficient understanding of how to incorporate such parameters in “a deter-
minate cause-and-effect model”). On the other hand, the time-dependence of the cumulative 
number of U.S. utility patents, discussed in Part IV, infra, suggests that an assumption that 
the exponents ε and η are constant over significant time periods might be reasonable. Over 
three decades-long time periods from 1790 through 2009, the cumulative number of U.S. 
utility patents has grown fairly consistently in accordance with constant-exponent power 
laws. See infra Figures 15–17 and accompanying text. 

41. See DOUGLAS C. GIANCOLI, PHYSICS: PRINCIPLES WITH APPLICATIONS 83–85 (3d ed. 
1991) (discussing kinetic and static friction). Like a force of static friction, µ takes the lower 
of the two values µs and α + βxε when the speed of progress v equals zero. See id. at 84–85. 
The term µ might have a different positive value µk when v is greater than zero. Cf. id. at 84. 
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• The quantity ξv1+η captures the leading supralinear depend-

ence of drags on the speed v.  
Significantly, the intuitions behind Equation 1’s two innovation-

accelerating terms, α and βxε, and Equation 1’s three innovation-
decelerating terms, –µ, –γv, and –ξv1+η, are relatively insensitive to the 
precise manner in which innovative progress is defined. As long as 
such progress tends to encounter regular resistance and responds to 
accelerants, the general intuitions behind these terms appear plausible. 
Discussion of these intuitions follows. 

The basic acceleration term α represents an x-independent push 
derived from the combined influence of any of a number of levers — 
e.g., investment in research and development, government provision 
of patent rights, or prizes and reputational benefits for discoverers and 
developers — that could either speed innovative progress or offset the 
decelerating effect of Equation 1’s drag terms. For example, provid-
ing a monetary reward for a particular technological advance is likely 
to accelerate innovation, whether by increasing the number of partici-
pants in a race to make that advance, or by increasing the investments 
of participants in such a race. Increased participation or investment in 
innovation will likely result in both faster and more certain success in 
the race.42 

The second acceleration term βxε demands more explanation. As 
indicated above, this term means that cumulative know-how and 
technological capacity has a positive feedback into the process of in-
novation itself, leading to an acceleration of innovation as society’s 
overall store of technology grows. Such feedback can occur in multi-
ple ways. First, technologies can generate enhanced economic growth 
that in turn supports or encourages: (1) increased direct investment in 
technological progress,43 (2) increased investment in the education of 
individuals who will be well-placed to use new technologies and to 
improve on them,44 and (3) increased wealth that can support broad-
based and well-financed demand for new technologies.45 Second, ex-

                                                                                                                  
42. See SCOTCHMER, supra note 2, at 112–13 (describing how “patent races can acceler-

ate progress” by increasing participation or investment in innovation). 
43. See BAUMOL, supra note 21, at 286 (observing that “[s]uccessful innovation . . . wid-

ens the acceptance of innovative products by business enterprise,” “makes entry into the 
activity [of innovation] more attractive to others, and makes it easier to raise the requisite 
capital”). 

44. Cf. id. at 13 (“Only the productive surpluses that innovation began to make possible, 
first in agriculture and mining and then in manufacturing, made feasible the enormous in-
creases in investment in inanimate and in human capital that are widely judged to have 
contributed greatly to economic growth.”). 

45. See ARTHUR, supra note 19, at 175 (“[B]ecause societies prosper as their technolo-
gies build out, our needs grow as technology builds out.”); cf. CULLIS, supra note 30, at 67 
(“As a result of the incandescent lamp people were active for a greater proportion of the 
day . . . . Clearly, a major effect of innovation is an overall growth in consumption.”); Mi-
chael Kremer, Population Growth and Technological Change: One Million B.C. to 1990, 
108 Q.J. ECON. 681, 681–82 (1993) (developing “a highly stylized model” in which “the 
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isting technologies can contribute to positive feedback by generating 
demand for new technologies to supplement, service, or otherwise 
improve existing technologies.46 For example, the development and 
popularization of the automobile has helped generate demand and 
support for any of a number of successive technological developments 
relating to aerodynamic design, passenger safety, automated wind-
shield wipers, bridge and highway construction, portable radar and 
radar detection, oil detection and extraction, and polymer design and 
manufacturing for the construction of tires.47 Finally, the magnitude 
of cumulative technological know-how can also help speed and even 
inspire further technological progress by providing a store of techno-
logical elements, tools, or techniques that are ready-made for use in 
the development of new patentable combinations.48 As society’s tech-

                                                                                                                  
growth rate of technology is proportional to total population” and “the growth rate of popu-
lation is proportional to the growth rate of technology”). 

46. See ARTHUR, supra note 19, at 175 (observing that “every technology requires sup-
porting technologies”); BAUMOL, supra note 21, at 285 (noting the phenomena of “one 
invention call[ing] for another to make it more effectively workable,” and of a “new prod-
uct . . . invit[ing] R&D devoted to [the product’s] improvement . . . or to the creation of 
superior substitutes . . . or even to improvement of an old product that is threatened with 
replacement”). 

47. Cf. ARTHUR, supra note 19, at 175–76 (contending that “[t]he vast majority of niches 
for technology are created not from human needs, but from the needs of technologies them-
selves,” and that “[t]echnologies often cause problems — indirectly — and this generates 
needs, or opportunities, for solutions”). 

48. See ARTHUR, supra note 19, at 21 (“These new technologies in time become possible 
components — building blocks — for the construction of further new technologies.”); 
BAUMOL, supra note 21, at 12 (observing that “one invention may . . . indicate ways to 
make it easier and less costly to manufacture other new products,” and that “the innovation 
process itself leads to improvements in the way R&D is carried out”); GROSSMAN & 
HELPMAN, supra note 27, at 17 (“[I]nnovation conceivably can be a self-perpetuating pro-
cess. Resources and knowledge may be combined to produce new knowledge, some of 
which then spills over to the research community, and thereby facilitates the creation of still 
more knowledge.”); Paul M. Romer, Endogenous Technological Change, 98 J. POL. ECON. 
S71, S83 (1990) (“[T]he larger the total stock of designs and knowledge is, the higher the 
productivity of an engineer working in the research sector will be.”); Martin L. Weitzman, 
Recombinant Growth, 113 Q.J. ECON. 331, 336 (1998) (developing a model for innovation 
based on a “combinatoric metaphor”). In reality, positive feedback from existing technolo-
gy’s utility as a toolkit or set of building blocks for further advance might be understood to 
operate in two different ways: (1) through existing technology effectively providing ideas 
and inspiration for new technological developments — e.g., the separate successes of 
handheld wireless phones and of the Internet suggesting the desirability of providing Inter-
net access through a wireless handheld — a “combinatorial mechanism” that would seem 
relatively naturally modeled by a positive-feedback term such as βxε, cf. ARTHUR, supra 
note 19, at 20 (“[T]he very cumulation of earlier technologies begets further cumulation.”); 
or (2) through existing technology making the process steps for developing a distinct new 
invention easier — e.g., graphical-design software lowering the costs of product design by 
reducing the need for handcrafted models — a “research-tool mechanism” that would seem 
more naturally modeled by a reduction in drag coefficients such as γ, see GROSSMAN & 
HELPMAN, supra note 27, at 58 (describing a model in which technological advances “re-
duce the labor requirements for designing new products”); Charles I. Jones, R & D-Based 
Models of Economic Growth, 103 J. POL. ECON. 759, 765 (1995) (“The discovery of calcu-
lus, the invention of the transistor, and the creation of semiconductors are all examples of 
major innovations that most likely raised the productivity of the scientists who followed.”). 
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nological toolkit grows, a developmental optimist might follow sug-
gestions from sociologist William Ogburn,49 economist Brian Ar-
thur,50 and legal scholar Polk Wagner51 and expect the rate of 
technological progress to accelerate ever more rapidly. 

On the other hand, Equation 1 departs from models developed by 
Polk Wagner and others by allowing the positive-feedback exponent ε 
to take on values other than one. Wagner’s model for information 
production assumes such linear feedback and, by further assuming the 
absence of supralinear negative feedback, predictably generates expo-
nential growth.52 Likewise, Brian Arthur53 and more effusive futurists 
such as Raymond Kurzweil54 have explicitly argued that exponential 
growth is a natural consequence of such feedback.55 Such positive-
feedback optimists might find support in the recent explosive growth 

                                                                                                                  
For purposes of simplicity, Equation 1 only models positive feedback in the manner of the 
first kind of mechanism. The second mechanism seems limited in the forms of behavior it 
can produce because the most that it can do is reduce the size of drag coefficients. Thus, the 
text focuses on the first mechanism, viewing this form of feedback as a potential contributor 
to the term βxε.  

49. See WILLIAM FIELDING OGBURN, SOCIAL CHANGE WITH RESPECT TO CULTURE AND 
ORIGINAL NATURE 104 (Peter Smith ed., 1964) (1922) (“It would seem that the larger the 
equipment of material culture the greater the number of inventions.”). 

50. See ARTHUR, supra note 19, at 173–74 (discussing Ogburn’s speculation about expo-
nential growth, and observing that “crude combinatorics demonstrate that if new technolo-
gies lead to further new technologies, then once the numbers of elements in the collective 
pass some rough threshold, the possibilities of combination begin to explode”). 

51. See Wagner, supra note 8, at 1018, 1021 (positing that the amount of “open infor-
mation” produced in a given time period is proportional to a weighted sum of amounts of 
information already in existence). 

52. See id. at 1018–22. 
53. See ARTHUR, supra note 19, at 173 (providing “theoretical reasoning to back [Og-

burn’s] exponential claim”). Although Arthur attributes to Ogburn a theory of exponential 
growth of technology, Ogburn in fact presents a more qualified model of exponential 
growth, for he explicitly recognizes the likelihood of progress-damping terms that will keep 
the sum total of what Ogburn calls “material culture” from growing exponentially for a very 
extended period of time. See OGBURN, supra note 49, at 113 (“In fact it is difficult to con-
ceive of any growth under actual conditions increasing for long according to the compound 
interest law . . . . Malthus said that population tended to increase in a geometric progression; 
but it is only a tendency for there are actual checks.”). 

54. See Ray Kurzweil, The Law of Accelerating Returns, KURZWEIL ACCELERATING 
INTELLIGENCE (Mar. 7, 2001) [hereinafter Kurzweil, Law], http://www.kurzweilai.net/the-
law-of-accelerating-returns  (“Exponential growth is a feature of any evolutionary process, 
of which technology is a primary example.”); cf. Ray Kurzweil, Making the World a Billion 
Times Better, WASH. POST, Apr. 13, 2008, at B4 (appearing more generally to restrict the 
claim of exponential growth to “information technology,” understood broadly to include 
nanotechnology and modern “biological technologies”). 

55. Cf. Graham Lawton, The Incredibles, NEW SCIENTIST, May 13, 2006, at 32, 35 
(2006) (“[M]ost technologies are advancing not linearly, but exponentially.”). But cf. Javier 
Carrillo-Hermosilla & Gregory C. Unruh, Technology Stability and Change: An Integrated 
Evolutionary Approach, 40 J. ECON. ISSUES 707, 727 (2006) (observing that, while positive 
feedback generating “[constant change and innovation] seems to accurately define techno-
logically dynamic sectors like computers and information technology, other industries are 
far more quiescent”). 
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of “digital information” generated each year56 or the semiconductor 
industry’s decades-long success in staying on track with Moore’s law 
for the development of increasingly complex computer chips.57 

There seems good reason to suspect, however, that — at least as 
the cumulative store of innovation becomes very large — positive-
feedback effects will typically be less than linear, and technology will 
periodically run into barriers or bottlenecks that cause a dramatic 
slowing of growth.58 As the store of cumulative technologies and 
knowledge grows, the spectrum of technologies and know-how might 
become more diverse, and the proportion of technologies or know-
how relevant to the development of any particular new technology 
might thus become smaller. Further, as the store of technologies and 
know-how grows, the chance that many past technologies will only 
make substantially redundant contributions to the development of a 
new technology is likely also to grow. Moreover, although technolog-
ical progress and the economic growth that it commonly promotes can 
increase demand for newer technologies, such demand might ulti-
mately become saturated with respect to a particular technology or set 
of technologies. 

Thus, for a variety of reasons and particularly when the develop-
ment of a specific set of technologies is at issue, a phenomenon of 
diminishing returns with respect to positive technological feedback 
seems likely.59 At least for very large values of x, there seems a good 
chance that the exponent ε of the term βxε will be less than 1. As dis-
cussed in Part III, when this occurs the positive-feedback term βxε 
tends to support power-law growth in the manner of tz, rather than 
exponential growth in the manner of eλt, where t represents time and 
the quantities z and λ are positive real numbers. 

The first of the innovation-decelerating terms, –µ, is essentially 
the “frictional” counterpart of the innovation-accelerating term α. 
This frictional term might be viewed as reflecting overhead costs of 
innovative progress that are independent of the speed of progress, v, 
as long as that speed is greater than 0. 
                                                                                                                  

56. Kenneth Cukier, Data, Data Everywhere, THE ECONOMIST (SPECIAL REP. ON 
MANAGING INFO.), February 27th–March 5th 2010, at 1, 2 (“The amount of digital infor-
mation increases tenfold every five years.”). 

57. See supra notes 32–33 and accompanying text. 
58. Cf. JOEL MOKYR, THE LEVER OF RICHES: TECHNOLOGICAL CREATIVITY AND 

ECONOMIC PROGRESS 292 (1990) (“[W]ithout macroinventions, microinventions are likely 
eventually to run into diminishing returns, and technology will begin to look more and more 
[to be in a state of] ‘stasis’ . . . unless and until a new major invention occurs.”); William J. 
Baumol & Edward N. Wolff, Feedback from Productivity Growth to R & D, 85 
SCANDINAVIAN J. ECON. 147, 149–50 (1983) (observing that productivity growth in a par-
ticular area will likely become “asymptotically stagnant” as costs become dominated by 
factors for “which productivity growth is inherently negligible,” such as many forms of 
human services (emphasis omitted)). 

59. See Karjala, supra note 8, at 13 (“We also know from nearly every sphere of activity 
that there is a law of diminishing returns.”). 
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The second deceleration term, –γv, represents first-order effects 

of speed-dependent impediments to innovative progress. The intuition 
behind this term can be explained in at least two ways. First, one 
might view innovative progress as a process of overcoming succes-
sive hurdles, which might include technological or legal obstacles,60 
resource or infrastructure constraints,61 and public resistance.62 Each 
hurdle encountered would, in the absence of countervailing innova-
tion-accelerating forces, cause the rate of innovation to slow down by 
the amount ψ. On average, such hurdles are spaced at intervals of 
width δ along the path of innovative progress. Consequently, the 
number N of hurdles encountered in an infinitesimal time interval Δt 
during which progress proceeds with average speed v is given by the 
distance traveled during that time interval, vΔt, divided by the hurdle 
interval δ; in short, N = vΔt/δ. The net slowdown caused by the hur-
dles during the interval Δt is Nψ or (ψ/δ)vΔt. The net slowdown per 
unit time is therefore (ψ/δ)v. Setting γ equal to the ratio ψ/δ yields the 
deceleration term –γv.63 

A less mathematical explanation for the intuition behind the de-
celeration term –γv might go as follows. Suppose that an actor wants 
to develop an innovation meeting certain functional specifications in 

                                                                                                                  
60. See CULLIS, supra note 30, at 33 (“Innovation is, at times, inhibited by the need for 

some enabling invention or other event, such as the development of a material having suita-
ble physical characteristics or the enactment of legislation which removes regulatory barri-
ers.”). 

61. See id. at 69 (“The more infrastructure creation that is necessary, the slower will be 
the introduction of an innovation . . . .”); id. at 196 (“[T]he greater the change which is 
brought about by the invention, the lower will be the probability that the wherewithal to 
bring it into effect will be in existence.”). 

62. Id. at 25 (discussing “the difficulty of communication and gaining acceptance of new 
ideas”). 

63. One might imagine situations in which the linear-drag coefficient γ grows with x, the 
amount of technological progress already achieved. Many commentators have theorized that 
“technological improvements become increasingly difficult as the threshold for new discov-
eries rises,” a phenomenon that could explain an apparent long-term trend of increased 
“research effort” per patent obtained. Samuel S. Kortum, Research, Patenting, and Techno-
logical Change, 65 ECONOMETRICA 1389, 1392 (1997); see also Jones, supra note 48, at 
765 (“[P]erhaps the most obvious ideas are discovered first so that the probability that a 
person engaged in R & D discovers a new idea is decreasing in the level of knowledge.”). 
On the other hand, recent rapid growth in patenting might call this trend and its explanation 
into question. See supra note 9 and accompanying text; cf. BESSEN & MEURER, supra note 
3, at 179 fig.8.2 (showing that, following a rise in U.S. patents granted to U.S. inventors 
starting around 1980, the ratio of the number of domestic grants to the number of U.S. resi-
dents has risen to a level that roughly matches peak levels of the 1940s); John M. Golden, 
“Patent Trolls” and Patent Remedies, 85 TEX. L. REV. 2111, 2111 n.3 (2007) (observing 
that the average number of issued U.S. patents per billion dollars of real gross domestic 
product was at about the same level from 2000 to 2005 as it was during the 1970s). Given 
uncertainty in this regard, and given that the present model already generates a complex 
array of potential behaviors, this further potential negative-feedback effect is not central to 
the discussion and application of Equation 1 in Parts II and III, and is left for further discus-
sion in Part IV.A. 
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six months, rather than one year.64 The actor previously calculated 
that it would require an investment of $X worth of capital and labor to 
develop this innovation over the course of one year. The actor might 
reasonably expect that, to produce the innovation in half that time, it 
will need to spend at least the same amount $X over the course of six 
months. In other words, the actor might expect that doubling the rate 
of innovative progress requires at least doubling the rate of invest-
ment, absent any efficiency-enhancing synergies from compressing 
the timeline for innovation. The deceleration term –γv similarly sug-
gests that an effort to increase the rate of innovative progress will re-
quire at least a corresponding linear increase in forces that propel 
innovation forward. 

The supralinear deceleration term –ξv1+η embodies the intuition 
behind the qualifier “at least” in the statement that doubling the rate 
of innovative progress will require at least doubling the rate of in-
vestment. The law of diminishing returns is likely to apply here as 
elsewhere.65 Capital for increased investment might become harder to 
acquire as further increments are demanded. As the workloads of cur-
rent employees increase, they might become less productive, either 
per unit time or per dollar spent. Ramping up efforts by hiring new 
employees of a competence level equal to that of current employees 
might also become more difficult with each additional increment of 
hirees required. The list of potential causes of a supralinear increase 
in the forces opposing an increase of the rate of innovative progress 
could go on and on. Consequently, the basis for suspecting the exist-
ence of higher-order deceleration terms like −ξv1+η, where η is greater 
than zero, seems robust. 

In short, common intuitions about potential causes for the accel-
eration or deceleration of technological progress support including the 
five terms on the right side of Equation 1. Other terms might be add-
ed, and, as Part IV demonstrates with respect to the drag parameter γ, 
Equation 1’s Greek-lettered parameters — α, β, γ, etc. — could them-
selves be represented as having some combination of t-dependence, x-
dependence, and v-dependence. On the other hand, for an initial effort 
at describing the dynamics of a process involving advance in the face 
of obstacles, Equation 1 likely incorporates sufficient complexity.66 
Even Equation 1’s bounded degree of complexity reveals severe limi-

                                                                                                                  
64. Cf. Gillette Co. v. Energizer Holdings, Inc., 405 F.3d 1367, 1369 (Fed. Cir. 2005) 

(noting that development of a successful multi-blade razor had required “overcom[ing] the 
undesired drag forces produced by razors with multiple blades”). 

65. See Paul M. Romer, Increasing Returns and Long-Run Growth, 94 J. POL. ECON. 
1002, 1020 (1986) (“That the production of new knowledge exhibits some form of dimin-
ishing marginal productivity at any point in time should not be controversial.”). 

66. The intuitions supporting Equation 1 as a model for innovation dynamics seem likely 
to extend to dynamic processes in which obstacles to continued progress are regularly en-
countered. 
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tations to arguments that technological growth naturally proceeds ex-
ponentially. Additionally, this degree of complexity suggests double-
ratio tests for evaluating policy proposals that do not appear to have 
been recognized in prior work.67 

Before proceeding to a more detailed account of the implications 
of Equation 1 for innovation dynamics, I should add some caveats 
regarding the degree of “technology optimism” that the model re-
flects. As noted above, the model assumes that the rate of innovative 
progress v is never negative. In accordance with this constraint on the 
model, the model never predicts regress, only stasis or progress. Nei-
ther minor regresses — such as ones due to occasional social forget-
fulness — nor major regresses — whether from epidemic, war, 
natural disaster or otherwise — are modeled here. 

Similarly, any feedback from accumulated technological progress 
is assumed to be positive. This need not be the case. For example, 
modern technology has enabled the production of weapons of mass 
destruction that have increased the likelihood that warfare will snuff 
out technological progress or human civilization itself. More general-
ly, success in developing human capacities to shape and control our 
environment might carry with it an increased risk that, through an 
error in judgment or a failure to exercise judgment, humanity might 
undercut environmental conditions that support both itself and techno-
logical progress.68 But like less human-based catastrophes, such dys-
topian possibilities for negative feedback are not modeled here. 

A further, disputably optimistic aspect of the model is more sub-
tle. As must be expected of a model for acceleration or deceleration 
that tracks Newtonian models for the motion of physical bodies, the 
model implicitly incorporates a notion of inertia: a sense that, if all 
relevant forces are removed — e.g., if all the terms on the right-hand-
side of Equation 1 are set to zero — progress will proceed at a con-
stant, possibly nonzero rate. I must confess that my own intuitions 
naturally resist this notion that progress could effortlessly persist for-
ever, with progress continuing indefinitely at the rate at which it hap-
pened to be occurring when all forces were turned off. But such 
intuitions might substantially be driven by the ubiquity, in practical 
experience, of motion-damping terms such as the drag terms of Equa-
tion 1. 

Given the current crude state of our understanding of innovation 
dynamics and the general failure, so far, to examine how to describe 
those dynamics via a differential equation of motion, it seems enough 

                                                                                                                  
67. See infra Part IV.C. 
68. Cf. OGBURN, supra note 49, at 117 (“It is probable that the social development of the 

future will be affected by changes in the quantity and nature of natural resources such as 
soil, minerals, forests, etc. . . . So changes, shortages, or discoveries in natural resources will 
have an effect on the material culture of the future.”). 
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for now to include drag terms that appear likely to bring the operation 
of the equation’s dynamics within the range of our common intuitions 
and experience, and then to see where the model leads us.69 

III. OPERATION OF THE MODEL 

Perhaps the best way to understand the operation of the model is 
to investigate how the speed of innovation behaves in different re-
gimes for the model’s input parameters. To this end, analysis of the 
model’s operation is divided into two basic parts: (A) investigation of 
“small-v dynamics” for circumstances where the supralinear drag 
term –ξv1+η can be treated as negligible compared to the linear drag 
term –γv, and (B) investigation of “large-v dynamics” for circum-
stances where this is not the case. Within each of these parts, analysis 
proceeds via subparts looking at situations (1) where the positive-
feedback term βxε can be treated as negligible or, at least, as negligi-
bly variable and thus absorbable into the acceleration term α, and 
(2) where the positive-feedback term βxε is large and its time-
dependence is significant for behavior during the time period studied. 

A. Small-v Dynamics 

The first set of parametric regimes to be considered are those for 
which the nonlinear drag term –ξv1+η can be treated as negligible. To a 
first approximation, this seems a reasonable assumption if, throughout 
the time period of interest, the magnitude of the nonlinear drag term 
−ξv1+η is generally much less than the magnitude of the linear drag 
term –γv — i.e., if ξv1+η << γv. This inequality holds if (1) ξ = 0 and v 
and γ are both positive or (2) if v << (γ/ξ)1/η. Because of the latter ine-
quality, this regime is called a “small-v” regime although, for ξ equal 
to zero or much smaller than γ, the speed of innovative progress v 
need not be small in a more general sense of the term. 

                                                                                                                  
69. Alternatively, one might try to avoid the problem of a counterintuitive notion of an 

inertial state of innovative progress by adopting a substantially different vision of innova-
tion dynamics. For example, one might adopt an “Aristotelian mechanics” according to 
which the rate of progress is simply proportional to the ratio between forces of propulsion 
and forces of resistance to motion. Cf. GERALD HOLTON & STEPHEN G. BRUSH, 
INTRODUCTION TO CONCEPTS AND THEORIES IN PHYSICAL SCIENCE 80–81 (2d ed. 1985) 
(describing the Aristotelian account of motion). But such a model leads to problems that are 
perhaps even more fundamental, such as the lack of an account of acceleration, and the 
question of whether such Aristotelian proportionality should hold when the forces of re-
sistance exceed the forces of propulsion. Cf. id. at 81 (discussing how the Aristotelian ac-
count of motion was internally inconsistent). 
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1. Terminal Velocity for Negligibly-Variable Positive Feedback 

Equation 1 resolves to a simpler formula when the positive-
feedback term βxε has negligible time dependence. Of course, this is 
true when β = 0 — i.e., when there is no positive feedback — but, 
because the existence of some positive feedback seems plausible un-
der many circumstances, we might like to consider more general con-
ditions under which the time dependence of βxε is negligible. 

To a first approximation, we can ignore the term βxε if it is much 
less than the minimum magnitude of α – µ throughout the time period 
of interest — i.e., if (βxε)max << |α – µ|min throughout that period. For 
nonzero v, the cumulative amount of progress x will grow during the 
time period, so there is likely to be an implicit requirement that the 
time period’s duration Δt not be too long. Thus, situations in which 
βxε can be entirely neglected to first approximation might be under-
stood as existing in a small-x and small-Δt limit. 

More generally, there are situations in which βxε can be treated as 
essentially constant, even if βxε cannot be viewed as particularly 
small. Recall that the exponent ε and the rate of innovative progress v 
have been assumed to be nonnegative. Thus, βxε never decreases as 
time elapses. Consequently, to a first approximation the time depend-
ence of βxε can be treated as negligible if its growth during the rele-
vant time period is much less than |α + βxε – µ|min, the minimum 
magnitude of α + βxε – µ during that period. This condition will hold 
if an upper bound on the growth of βxε during that period is much less 
than |α + βxε – µ|min. Because at any point in time the rate of change of 
βxε equals εβxε–1(dx/dt), which equals εβxε–1v, and because 0 < ε ≤ 1 
and therefore ε – 1 ≤ 0, an upper bound on the growth of βxε is given 
by εβxi

ε–1vmaxΔt, where xi is the value of x at the beginning of the rele-
vant time interval, vmax is the maximum speed during that time inter-
val, and Δt is the duration of that time interval. Thus, the time 
dependence of βxε would appear to be negligible if 
εβxi

ε−1vmaxΔt << |α + βxε – µ|min, which might be restated more tersely 
as a requirement that vmaxΔt be “small enough” under the circum-
stances. Of course, if one continues to expand the scope of the rele-
vant time interval, this condition will eventually fail to hold, even if 
vmax does not increase with the expansion. Hence, circumstances for 
which we can neglect the time dependence of βxε include small-Δt 
situations for which the value of x is not required to be particularly 
small. 

When any of the above sets of conditions hold, we can approxi-
mate the relevant equation of motion by writing: 

dv/dt = α′ – γv      (Eq. 2), 
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where α′ = α + βxi
ε – µ or, more simply, α′ = α – µ if we are in a 

small-x regime where we can ignore the term βxε. 
For students of classical mechanics, Equation 2 might recall the 

equation of motion for a streamlined object moving slowly through a 
fluid — so slowly, in fact, that the flow of fluid around the object is 
essentially laminar (i.e., lacking turbulence).70 A solution to this equa-
tion of motion is the following: 

v = vT – (vT – v0)e–γt    (Eq. 3), 

where v0 is the speed at time t = 0 and vT is the “terminal velocity” 
α′/γ.  

In words, when Equation 2 applies, the speed of innovation de-
cays exponentially toward a maximum speed vT = α′/γ, with the rate of 
decay equal to the magnitude of the linear-drag coefficient γ. For 
t << 1/γ, e–γt ≈ 1 – γt, and the speed of progress increases approximate-
ly linearly: 

v ≈ v0 + (vT – v0)γt for t << 1/γ  (Eq. 4). 

For t >> 1/γ but small enough so that growth of the positive-
feedback term βxε can still be neglected, innovation proceeds essen-
tially at a constant rate, vT = α′/γ, and the cumulative sum of techno-
logical progress x grows essentially linearly with time t. Indeed, 
integration of Equation 3 to yield a formula for the amount of cumula-
tive technological progress x yields the following equation: 

x – x0 = vTt – (1/ γ)(vT – v0)(1 – e–γt)  (Eq. 5), 

where x0 is the amount of cumulative technological progress at time 
t = 0. 

Hence, if Equation 2 is the appropriate equation of motion for a 
long enough time period, the result is a linear growth of technology. 
But as indicated by earlier discussion, the values of t for which linear 
growth applies can be tightly constrained. If there is any positive 
feedback — i.e., if β > 0 — the steady growth of x according to Equa-
tion 5 will ultimately undermine the very conditions under which 
Equations 2, 3, and 5 are understood to apply. Thus, far from being a 
stable norm, linear or quasilinear growth appears generally to be an 
unstable condition that contains the seeds of its own destruction. Of 
course, if technology’s advance is viewed as an unambiguous good, 
that “destruction” is likely to be profoundly “creative,” for it coin-

                                                                                                                  
70. See GIANCOLI, supra note 41, at 259–60 (discussing the motion of a streamlined ob-

ject through a fluid). See generally id. at 249 (defining laminar and turbulent flow). 
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cides with the onset of more rapid growth reflecting the progress-
accelerating effect of growing positive feedback.71 

For illustrative purposes, Figures 1 and 2 show graphs for the be-
havior of v and x according to Equations 3 and 5. Please note that the-
se graphs are only illustrative. Under realistic sets of circumstances, 
the assumptions that underlie Equation 2 might not apply throughout 
time periods as long as those shown in the graphs — i.e., the value 
and/or time-dependence of terms such as βxε and –ξv1+η might not be 
negligible throughout these periods. 
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Figure 1: Speed of technological progress v, measured on 
the vertical axis, as a function of time t, measured on the 
horizontal axis, for a situation in which Equation 3 applies 
and, in the units of the graph’s axes, v0 = 0, vT = 10, and 
γ = 1.  

 

                                                                                                                  
71. Cf. JOSEPH A. SCHUMPETER, CAPITALISM, SOCIALISM, AND DEMOCRACY 83 (3d ed. 

1950) (discussing “Creative Destruction” as involving “industrial mutation . . . that inces-
santly revolutionizes the economic structure from within” (footnote and emphasis omitted)). 
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Figure 2: Amount of cumulative technological progress x, 
measured on the vertical axis, as a function of time t, meas-
ured on the horizontal axis, for a situation in which Equation 
5 applies and, in the units of the graph’s axes, x0 = 0, v0 = 0, 
vT = 10, and γ = 1. 

2. Exponential Growth for Nonnegligible Linear Positive Feedback 

Next, we consider situations where the positive feedback term is 
linear and nonnegligible:  

dv/dt = α + βx – µ – γv     (Eq. 6). 

As v = dx/dt and dv/dt = d2x/dt2, Equation 6 can be rewritten as a line-
ar second-order differential equation having the following solution: 

x = c1eκt + c2e–(γ + κ)t – (α – µ)/β   (Eq. 7), 

with 

v = c1κeκt – c2(γ + κ)e–(γ + κ)t   (Eq. 8), 

2κ = (γ2 + 4β)1/2 – γ    (Eq. 9), 

c1 = {(κ + γ)[x0 + (α – µ)/β] + v0}/(2κ + γ)  (Eq. 10), 

and 

c2 = {κ[x0 + (α – µ)/β] – v0}/(2κ + γ)  (Eq. 11), 

where x0 is the value of x at time t = 0 and v0 is the value of v at time 
t = 0. As one would hope, these equations are consistent with Equa-
tions 3 and 5 in the limit β → 0, in which κ → 0 and the positive 
feedback βx becomes negligible. 
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Outside the β → 0 limit, we see that, because κ > 0, Equations 7 

and 8 describe functions x and v that are dominated by exponential 
growth under circumstances where α + βx0 – µ > 0 and the time t sat-
isfies t >> {ln[|c2|(κ + γ)/(c1κ)]}/(2κ + γ).72 In this large-t limit,  

x ≈ c1eκt      (Eq. 12), 

and 

v ≈ c1κeκt     (Eq. 13). 

For purposes of comparison with Figure 2 above, Figure 3 provides a 
graph of the kind of exponential dependence on time described by 
Equation 12 for illustrative parameter values.  
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Figure 3: Large-t, leading-order behavior of the amount of 
cumulative technological progress x, measured on the verti-
cal axis, as a function of time t, measured on the horizontal 
axis, for a situation in which Equation 12 applies at large 
values of t and, in the units of the graph’s axes, c1 = 0.1, 
γ = 1, and β = 1. 
 
Thus, for nonzero β, linear feedback βx, large t, and negligible 

supralinear damping –ξv1+η, we encounter the exponential growth that 
Polk Wagner and Brian Arthur predict.73 On the other hand, just as 
Part III.A.1’s regime of linear growth was shown to contain the seeds 
of its own destruction, so too is this Part’s regime of exponential 
growth likely to undermine itself with time. Recall that neglect of the 
higher-order damping term –ξv1+η rested on a requirement that the 
                                                                                                                  

72. Given the requirement that v be nonnegative at time zero (as well as all other times), 
we know that c2(γ + κ) ≤ c1κ and consequently, because γ and κ are both nonnegative, that 
c2 ≤ c1. Equations 9 and 10 then follow for t >> 1/κ, which implies eκt >> 1. 

73. See supra text accompanying notes 49–54. 
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speed v of technological progress be relatively small.74 Exponential 
growth of v according to Equation 13 might rapidly erode satisfaction 
of this requirement, triggering higher-order damping that, as Part III.B 
reveals, will result in a more slowly-growing functional form for 
technological progress. Thus, even when positive feedback is linear 
and significant, the exponential growth predicted by Polk Wagner and 
Brian Arthur might not last for long unless public policymakers or 
private-sector actors can counter the tendency for obstacles to techno-
logical progress to scale upward supralinearly with v, for example 
through supralinearly increasing subsidies or investment.75  

3. Power-Law Growth for Large Sublinear Positive Feedback 

What sort of growth is likely to occur when the positive feedback 
is sublinear, i.e., subject to diminishing returns? For sublinear feed-
back, the exponent in the equation  

dv/dt = α + βxε – µ – γv    (Eq. 14) 

is less than 1. An equation exhibiting such feedback should not be 
expected to exhibit long-term exponential growth, for if x ≈ ceλt with 
c > 0 and λ > 0, then xε ≈ cεeελt, v ≈ cλeλt, and dv/dt ≈ cλ2eλt. Thus, for 
sublinear feedback, –γv and dv/dt are the only two terms in Equation 
14 that exhibit the highest order of exponential dependence with time, 
that of eλt. But these terms do not balance each other out. Instead, un-
der the assumption that x ≈ ceλt, dv/dt is a positive term on the left-
hand side of Equation 14, and –γv is a negative addend on the right-
hand side. Thus, under a supposition of exponential growth, the two 
sides of Equation 14 will have opposite signs at very large times t, 
making the equality required by Equation 14 an impossibility. Sublin-
ear feedback is therefore not consistent with a supposition of sus-
tained exponential growth according to Equation 14. 

Can sublinear feedback sustain power-law growth, in accordance 
with which, at least in a large-t limit, x ≈ c3tz with z being a positive 
real number? For such power-law growth, xε ≈ c3

εtεz, v ≈ c3ztz–1, and 
dv/dt ≈ c3z(z – 1)tz–2. The dv/dt term is thus of lower order in t than the 
–γv term. The βxε term is the only term that can counterbalance the 
leading-order behavior of the –γv term and thus yield the required 
lower-order leading functional dependence for dv/dt. Consequently, in 
the limit of large positive feedback, we must have the leading-order 

                                                                                                                  
74. See supra introductory paragraph of Part III.A. 
75. Supralinear scaling up of investment in computer chip production might help explain 

the long reign of Moore’s law, in accordance with which chip complexity has grown expo-
nentially for decades. See RICHARD N. FOSTER, INNOVATION: THE ATTACKER’S 
ADVANTAGE 101 (1986) (“The rate of effort (dollars per year) has been increasing even 
more quickly than chip density.”). 
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formula βxε – γv ≈ 0. Calculation then shows that power-law growth 
can occur in accordance with the following formulas:76 

x ≈ c3t1/(1–ε)     (Eq. 15) 

and, hence, 

v ≈ [c3/(1 – ε)]tε/(1–ε)    (Eq. 16), 

where  

c3 = [β(1 – ε)/γ]1/(1–ε)     (Eq. 17). 

As we would hope, Equation 15 shows proper limiting behavior. 
As ε goes to zero and the positive feedback becomes more and more 
sublinear, the exponents of t in Equations 15 and 16 move closer and 
closer to 1 and 0, respectively, yielding the limit of linear power-law 
growth (z = 1) and constant terminal velocity that Part III.A.1 has 
shown to be expected in the absence of positive feedback. On the oth-
er hand, as ε goes to one, the exponents of t in Equations 15 and 16 
rise dramatically, becoming appropriately ill-defined for ε = 1, the 
limiting point at which the assumption of power-law growth should 
break down to make way for the exponential growth described by 
Equations 12 and 13 above. 

For illustrative purposes, consider the results for positive feed-
back that scales as the square root of x, that is, βx1/2. Consistent with 
the argument that positive feedback is likely to show diminishing re-
turns, the slope of βx1/2 decreases as x becomes larger. For a given 
infinitesimal increment Δx of technological progress, the added pro-
pulsive force for innovation due to positive feedback is approximately 
βΔx/(2x1/2). Additions to the propulsive force for innovation from pos-
itive feedback are thus effectively damped through division by x1/2 at 
large values of x. On the other hand, those additions are still positive, 
and the speed v of technological progress continues to rise with time. 
In fact, given that ε = 1/2, Equations 16 and 17 yield v ≈ 2c3t, where 
c3 = [β/(2γ)]2. In other words, v grows essentially linearly with time. It 
follows that, in a regime where our various approximations apply, the 
cumulative amount of technological progress grows essentially quad-
ratically — x ≈ c3t2 — a robust form of power-law growth, even 
though not exponential. Figure 4 provides a graph of this form of 
growth for illustrative parameter values. 

 

                                                                                                                  
76. For the various parameter regimes discussed in this article, behaviors predicted 

through analytical calculation in large-t limits, such as those predicted by Equations 15 
through 17, have generally been confirmed to occur through numerical calculation using 
apparently representative parameter values. 
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Figure 4: Leading-order, large-t behavior of the amount of 
cumulative technological progress x, measured on the verti-
cal axis, as a function of time t, measured on the horizontal 
axis, for a situation in which Equation 15 applies at large 
values of t and, in the units of the graph’s axes, ε = 1/2, 
γ = 1, β = 1, and c3 = 1/4. 

 
Significantly, however, to the extent we have been neglecting the 

effects of a nonzero –ξv1+η term, such a regime of power-law growth 
is unstable. This regime will ultimately give way to one of reduced-
power-law growth once the speed v of technological progress is large 
enough that the effects of higher-order damping cannot be ignored. 
Expected behavior in this comparatively “large-v” regime is the sub-
ject of Part III.B. 

B. Large-v Dynamics 

For large enough values of v, the supralinear damping term –ξv1+η 
is nonnegligible when compared to the linear damping term –γv. For 
even larger values of v — namely, for vη >> γ/ξ — the magnitude of 
the supralinear damping term is much larger than the magnitude of the 
linear damping term. Because of the possibility that supralinear damp-
ing will significantly affect the trajectory of technological progress, 
the effects of this form of damping are worth investigating. 

Further, given the physical analogy between the small-v dynamics 
described above and the laminar motion of a body through a fluid, it 
is worth observing that, for η = 1, the supralinear damping term ξv2 is 
quadratic, analogous in form to the common leading-order behavior 
for the air resistance encountered by a non-streamlined body moving 
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at relatively high speed.77 Thus, whereas our model provides small-v 
dynamics analogous to those of a body moving through a fluid in the 
absence of turbulence, the model provides large-v dynamics that are 
analogous to those of a body moving through a fluid with turbu-
lence.78 

1. Terminal Velocity for Negligibly-Variable Positive Feedback 

For substantially the same set of circumstances described at the 
beginning of Part III.A.1 — circumstances under which β = 0 or, 
throughout the time period of interest, βxε is negligibly small or negli-
gibly variant — one can, to first approximation, treat the large-v equa-
tion of motion for innovative progress as the following: 

dv/dt = α′ – γv – ξv1 + η     (Eq. 18), 

where α′ is defined as in Part III.A.1 and is thus only time-dependent 
in the sense that the behavior of µ varies if v goes from a positive val-
ue to zero or vice versa.79  

Like Equation 2 in the limit where the –ξv1+η term is negligible, 
Equation 18 leads to convergence on a terminal velocity vT for inno-
vative progress. According to this Part’s basic assumptions, the drag 
coefficient ξ is nonzero and positive, and the drag coefficient γ is 
nonnegative. It follows that, for α′ ≤ 0, the terminal velocity is zero. 
Under the circumstances described, dv/dt is always negative until 
v = 0, at which time both α′ and dv/dt also go to zero. Hence, even if 
innovative progress starts out at a pace greater than zero, that progress 
will slow and eventually grind to a halt without a positive push to 
counteract velocity-dependent drags.  

For α′ > 0, on the other hand, vT is a real, positive value that satis-
fies the equation 0 = α′ – γvT – ξvT

1+η. When γ = 0, vT = (α′/ξ)1/(1+η). 
Thus, for η = 1 and γ = 0, vT = (α′/ξ)1/2. Alternatively, for η = 1 and 
α′ > 0, the quadratic formula yields the result: 

vT = (φ – γ)/(2ξ)   for η = 1  (Eq. 19), 

where 

φ = (γ2 + 4α′ξ)1/2     (Eq. 20). 

                                                                                                                  
77. See PAUL A. TIPLER, PHYSICS FOR SCIENTISTS AND ENGINEERS 133 (W.H. Freeman 

& Co. 4th ed. 1999) (discussing “a drag force of magnitude bvn, where b is a constant that 
depends on the shape of the object and the properties of the air, and the exponent n is ap-
proximately 1 at low speeds and approximately 2 at higher speeds.”). 

78. See GIANCOLI, supra note 41, at 260 (“When turbulence is present, experiments show 
that the drag force increases as the square of the speed . . . .”). 

79. See supra note 41 and accompanying text. 
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In fact, for η = 1 and α′ > 0, one can derive an exact formula for v 

evolving in accordance with Equation 18. At time t, the speed v of 
innovative progress satisfies the equation: 

(σ– – v)/(σ+ + v) = Ωe–φt    (Eq. 21), 

where 

σ± = (φ ± γ)/(2ξ)     (Eq. 22) 

and, with v0 being the speed of innovation at time zero (t = 0), 

Ω = (σ– – v0)/(σ+ + v0)    (Eq. 23). 

Equations 21 through 23 might, by themselves, seem obscure. 
Their significance is clarified, however, by considering the small-t 
and large-t limits where e–φt approximately equals 1 or 0, respectively.  

In the large-t limit where t >> 1/φ, the exponential function e–φt 
approximately equals 0, and v converges on the terminal velocity 
vT = σ–: 

v ≈ vT – (φΩ/ξ)e–φt for t >> 1/φ  (Eq. 24). 

Thus, in the large-t limit, the speed v of innovative progress converges 
on the constant value vT, and the growth of the magnitude x of accu-
mulated progress becomes essentially linear.  

Of course, we saw such convergence on a terminal velocity and 
on linear growth of progress before, when we examined the large-t 
limit for situations where the time dependence of positive feedback 
was negligible and the –ξv1+η term could be treated as negligible. This 
earlier result is connected to that of Equation 24. Indeed, in the limit 
where ξ → 0, the large-t behavior described by Equation 24 converges 
exactly to that described by Equation 3, which applies when the su-
pralinear damping term –ξv1+η is negligible. 

Similarly, for the small-t limit of 0 ≤ t << 1/φ, we have a result 
that recalls the corresponding outcome for situations where supraline-
ar damping is negligible. In this small-t limit, e–φt ≈ 1 – φt, and v ≈ v0. 
More specifically: 

v ≈ v0 + (vT – v0)[(1 + v0/σ+)/(1 + vT/σ+)]φt for t << 1/φ 
  (Eq. 25). 

By comparing Equation 25 with Equation 4, one can see that the 
small-t behavior for situations where the –ξv1+η term is negligible has 
much in common with the small-t behavior when the –ξv1+η term with 
η = 1 is nonnegligible. In both cases, v initially increases approxi-
mately linearly from its value v0 at t = 0, with the rate of linear in-
crease being proportional to |vT – v0|, the magnitude of the difference 
between vT and v0. Once again, this correspondence is no coincidence: 
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as ξ goes to zero, φ goes to γ, and σ+ goes to positive infinity, Equa-
tion 25 converges precisely to Equation 4, which applies when supra-
linear damping can be treated as negligible. 

2. Power-Law Growth for Large Linear or Sublinear Positive 
Feedback 

When the time dependence of the positive-feedback term βxε can-
not be ignored, we again have a situation where the system might be 
expected to sustain substantially more than linear growth as t becomes 
very large. Such growth, however, cannot be approximated by an ex-
ponential function.80 

A supposition of power-law growth fares better. As for situations 
where ε < 1 and, at least effectively, ξ = 0, nonnegligible positive 
feedback can lead x to grow according to a supralinear power law.81 
Suppose that x ≈ c4tz where z > 1. Then, xε ≈ c4

εtεz, v ≈ c4ztz–1, and 
dv/dt ≈ c4z(z − 1)tz–2. Further, v1+η ≈ c4

1+ηz1+ηt(1+η)(z–1). The power-law 
dependence of the –ξv1+η term is therefore necessarily higher than that 
of any term but the βxε positive-feedback term. For the leading behav-
iors of these terms to cancel — thereby allowing Equation 1 to 
hold — the following must be true: 

x ≈ c4t(1 + η)/(1 + η – ε)    (Eq. 26) 

and 

v ≈ c4[(1 + η)/(1 + η – ε)]tε/(1 + η – ε)   (Eq. 27), 

where  

c4 = [(1 + η – ε)/(1 + η)](1 + η)/(1 + η – ε) (β/ξ)1/(1 + η – ε)  

(Eq. 28). 

                                                                                                                  
80. Recall the basic equation for innovation dynamics: 

dv/dt = α + βxε – µ – γv – ξv1 + η      (Eq. 1), 
where η is greater than zero and the exponent ε satisfies 0 < ε ≤ 1. If, to leading order, x 
grows exponentially at large time scales, we have x ≈ ceλt with c > 0 and λ > 0, xε ≈ cεeελt, 
v ≈ cλeλt, v1+η ≈ c1+ηλ1+ηe(1+η)λt, and dv/dt ≈ cλ2eλt. Because 1 + η > 1, it follows that, if x ≈ ceλt, 
the –ξv1+η term has a higher order of exponential dependence on time than any other term in 
Equation 1. But this means that the assumption that x ≈ ceλt must be wrong at large times. 
As long as Equation 1 holds and ξ is nonzero, the leading behavior of ξ must be matched by 
where η is greater than zero and the exponent ε satisfies 0 < ε ≤ 1. If, to leading order, x 
grows exponentially at large time scales, we have x ≈ ceλt with c > 0 and λ > 0, xε ≈ cεeελt, 
v ≈ cλeλt, v1+η ≈ c1+ηλ1+ηe(1+η)λt, and dv/dt ≈ cλ2eλt. Because 1 + η > 1, it follows that, if x ≈ ceλt, 
the –ξv1+η term has a higher order of exponential dependence on time than any other term in 
Equation 1. But this means that the assumption that x ≈ ceλt must be wrong at large times. 
As long as Equation 1 holds and ξ is nonzero, the leading behavior of ξ must be matched by 
that of some other term or combination of terms. 

81. See supra Part III.A.3. 
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Once again, the results exhibit proper limiting behavior. In the 

limit where ε → 0, Equation 26 converges to x ≈ c4t, and the constant 
c4 converges to (β/ξ)1/(1+η). Thus, in the ε → 0 limit, Equations 26 to 
28 yield linear-growth behavior with terminal velocity vT = (β/ξ)1/(1+η). 
This is the leading-order behavior expected from Equation 18 in the 
large-t limit where α′ ≈ βxε, γv ≈ 0, and ε → 0.82 

For purposes of illustrating the nature of the leading-order behav-
iors described by Equations 26 to 28, consider the leading large-t be-
haviors where the supralinear drag term –ξv1+η is quadratic (i.e., η = 1) 
and the positive-feedback term βxε grows either linearly with x (i.e., 
ε = 1) or as the square root of x (i.e., ε = 1/2). For η = 1 and ε = 1, the 
leading-order behavior of the cumulative amount of innovative pro-
gress x is quadratic in time, and the leading-order behavior of the 
speed of innovative progress v is linear: x ≈ [β/(4ξ)]t2 and v ≈ [β/(2ξ)]t. 
For η = 1 and ε = 1/2, the leading-order behaviors of x and v are of 
positive but lower powers of time: x ≈ [9β/(16ξ)]2/3t4/3 and 
v ≈ [3β2/(4ξ2)]1/3t1/3. Thus, these examples provide a window onto an 
early stage in the shift toward leading-order behaviors x ≈ vTt and 
v ≈ vT as ε → 0. Figures 5 and 6 provide plots of these examples of 
large-t behavior for x and v for η = 1, ε = 1/2, and illustrative values 
for β and ξ.  
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Figure 5: Leading-order, large-t behavior of the amount of 
cumulative technological progress x, measured on the verti-
cal axis, as a function of time t, measured on the horizontal 
axis, for a situation in which Equation 26 applies at large 
values of t and, in the units of the graph’s axes, ε = 1/2, 
η = 1, β = 1, and ξ = 1. 

 

                                                                                                                  
82. See supra Part III.B.1. 
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Figure 6: Leading-order, large-t behavior of the speed of 
technological progress v, measured on the vertical axis, as a 
function of time t, measured on the horizontal axis, for a sit-
uation in which Equation 27 applies at large values of t and, 
in the units of the graph’s axes, ε = 1/2, η = 1, β = 1, and 
ξ = 1. 

 
In sum, when the supralinear damping term –ξv1+η is nonnegligi-

ble and the power-law dependence of the positive-feedback term βxε 
is no more than linear (0 < ε ≤ 1), the highest order of growth that we 
can expect over long time scales is a power-law growth with the cu-
mulative amount of innovative progress developing, to first approxi-
mation, according to the formula x ≈ c4t(1+η)/(1+η–ε). On the other hand, 
similar reasoning to that used above suggests that, if supralinear posi-
tive feedback can occur — e.g., if the positive-feedback term βxε has 
ε > 1 — leading-order exponential growth can be expected for large t 
when ε = 1 + η.83 But as indicated above, even the sustainability of 
                                                                                                                  

83. For 1 < ε < 1 + η, large-t power-law growth like that described by Equations 26 to 28 
is expected. For ε = 1 + η, large-t exponential growth according to x ≈ c5eθt is expected, 
where θ = (β/ξ)1/ε. For ε > 1 + η, on the other hand, Equation 1 appears likely to lead to 
inverse power-law growth in a large-t limit, with x ≈ c6(b – t)–r, where r is a positive real 
number and b is a large positive real number. The value of b marks the temporal location of 
a “singularity,” in the vicinity of which both the amount of technological progress and the 
speed of technological progress approach infinity. See Ashlee Vance, Merely Human? 
That’s So Yesterday: The Singularity Movement Sees a Merger of Technology and the Mind, 
N.Y. TIMES, June 13, 2010, at BU1 (describing the expectation of “Singularity University 
founders” of “the Singularity — a time, possibly just a couple decades from now, when a 
superior intelligence will dominate and life will take on an altered form that we can’t pre-
dict or comprehend”); Kurzweil, Law, supra note 54 (“The Singularity is technological 
change so rapid and so profound that it represents a rupture in the fabric of human histo-
ry.”). The prospect of a theory predicting such a singularity might be another reason to 
assume a positive-feedback term that is no more than linear in x (i.e., for which ε ≤ 1). Al-
ternatively, one might theorize quite plausibly that, at large values of v, an additional high-
er-order drag term ωvρ, with ρ > ε, will become significant and cut off the singular behavior 
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linear ε = 1 feedback is questionable over long time scales. Thus, for 
the moment at least, there seems cause for confining our attention to 
situations where the exponent ε of the positive-feedback term βxε is no 
more than one. 

IV. ANALYSIS OF THEORETICAL RESULTS 

A. Different Regimes, Temporal and Technological, for Innovative 
Progress 

Parts IV.B and IV.C discuss specific implications of Part III’s re-
sults for the development of public policy and patent law in a way that 
appears most likely to promote innovative progress. More generally, 
however, Part III’s results highlight the fact that, even under a rela-
tively simple model for innovation dynamics, there is no single “natu-
ral” trajectory for innovative progress. Thus, it appears wrong to 
assume that technological progress naturally proceeds exponentially, 
linearly, or according to some other simple general form with time. 
Indeed, the exponential growth that some have posited84 seems a par-
ticularly special case — one that lies, as Robert Solow might put it, on 
a “knife-edge” at which the exponent for the dominant drag term 
matches the exponent for positive feedback.85 Far from there being 
such a generally applicable form, even a simple dynamic model yields 
multiple distinct “parameter regimes” — defined by ranges of values 
for (1) variables such as the time t, and (2) externally set parameters 
such as α, β, and γ — with each regime characterized by its own par-
ticular functional forms for the growth and speed of innovative pro-
gress. 

The theoretical existence of such significantly distinct parameter 
regimes presents both opportunities and challenges. On the one hand, 
it provides significant opportunities for empirical work that helps 
identify the parameter regime in which a category of innovative pro-
gress is located or has been located. On the other hand, by highlight-
ing the contingency of even the basic functional behavior of 
technological progress, the existence of such distinct parameter re-
gimes complicates efforts to determine how technological progress 

                                                                                                                  
that Equation 1’s lower-v model predicts. Robert Solow has noted similar divergence con-
cerns with respect to economic growth models that treat technological progress as endoge-
nous. See SOLOW, supra note 40, at 152 (observing that minor variation of an exponent in 
such models results in a finite time at which “output blows up to infinity,” a result that 
“does not correspond to common sense”). 

84. See supra text accompanying notes 49-55. 
85. SOLOW, supra note 40, at 171 (describing a similar situation with respect to models 

for exponential economic growth that treat technological progress as endogenous); cf. id. at 
100 (“Such precise assumptions are always hard to justify, and this one usually gets no 
justification.”). 
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should be measured and how past measurements of technological 
progress should inform policymaking.  

Any particular technological or industrial classification might in-
clude a mix of technologies whose developmental trajectories lie in 
different parameter regimes at a given point in time. The specific 
boundaries of a technological or industrial classification selected for 
study might have a significant influence on the nature of this mix, and 
thus on whether the classification’s overall path of development ap-
pears dominated by one parameter regime or another. Further, as 
many of the parameter regimes are unstable in time, the parameter 
regime of a given technology or set of technologies will likely vary 
with time. Thus, unless both theory and empirical data are sufficiently 
developed to enable accurate prediction of a movement from one pa-
rameter regime to another, even a well-developed understanding of 
past behavior might not help much in predicting the trajectory of fu-
ture development. The technological and economic contingencies that 
tend to plague patent policy86 might thus be a common bane of inno-
vation policy generally. 

Moreover, movement between parameter regimes during the 
lifespan of a single technology or set of technologies might only be 
part of a much larger story of technological progress. A number of 
commentators have hypothesized that technological progress or its 
analogs tend to unfold through a time sequence of punctuated equilib-
ria, with spurts of rapid growth interspersed between periods of rela-
tively slow growth or comparative stasis.87 

Suppose, in accordance with a conventional view, that a single 
technology or set of technologies progresses in time according to an 
S-shaped curve.88 This Article’s model can account for such a curve 
as follows. The initial phase of relatively slow advance corresponds to 
circumstances in which Equation 2 applies and, for some time, growth 
is at least quasilinear. Positive feedback then becomes a significant 

                                                                                                                  
86. See generally Golden, supra note 17, at 539–50. 
87. See, e.g., ARTHUR, supra note 19, at 185 (describing how, in a computer simulation 

of technological development, “periods of quiescence [were] followed by miniature ‘Cam-
brian explosions’ of rapid evolution”); OGBURN, supra note 49, at 107–08 (“The facts of the 
growth of material culture seem to indicate a development by jumps. There will be a period 
of [relative] stability . . . . Then occurs a fundamental invention of great significance which 
precipitates many changes, modifications and other inventions which follow with relative 
rapidity for a time. [This is] then followed by another period of relative stability . . . .”). 

88. See CULLIS, supra note 30, at 95 (“When a new device is first manufactured, yields 
are small, but they increase rapidly as efficiency at each process stage improves . . . . After 
some time, the efficiency approaches an asymptotic value determined by physical con-
straints.”); FOSTER, supra note 75, at 98 (observing that the trajectory for improvement of a 
technology commonly follows an “S-curve” reflecting initial acceleration of progress 
through “learning” and ultimate deceleration due to “diminishing returns”); cf. ANDERSSON 
& BECKMANN, supra note 28, at 55 (observing that research in a new field “generates ini-
tially increasing and then decreasing returns, which is characteristic of single-input produc-
tion activities in general”). 
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driver of innovation, leading to an extended period of rapid techno-
logical progress. Finally, a higher-order negative-feedback-informed 
drag term substantially slows technological growth at large values of 
x. This might occur because opportunities to develop a particular 
technology at feasible social cost have essentially been exhausted,89 
or because the hurdles to progress modeled by one or more drag terms 
have grown increasingly difficult to overcome in a way that over-
whelms any progress-promoting positive feedback.90 A simple S-
shaped curve with a flat small-time “bottom” and a flat large-time 
“top” is shown in Figure 7. 
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Figure 7: S-shaped curve given by the formula 
x = [1 + tanh(t – 4)]/2, where the time t is expressed in units 
corresponding to those marking the horizontal axis. 

 
An S-shaped curve for technological progress substantially like 

Figure 7 can be produced by replacing the constant damping coeffi-
cient γ in Equation 6, for which supralinear damping is negligible, 
with the function γ(x), where 

γ(x) = γ0/[1 – (x/xmax)q]    (Eq. 29) 

                                                                                                                  
89. See Carrillo-Hermosilla & Unruh, supra note 55, at 709–10 (“Ultimately . . . the in-

creasing returns process is limited by the decreasing returns at the top of the S-curve, which 
provide the negative feedback that limits exponential growth as markets become saturat-
ed.”); cf. Christoph H. Loch & Bernardo A. Huberman, A Punctuated-Equilibrium Model of 
Technology Diffusion, 45 MGMT. SCI. 160, 168 (1999) (characterizing a “realistic” view of 
“technology performance changes” as involving “incremental improvements along an S-
curve,” with “[t]he upper limit of the S-curve impl[ying] an inherent performance ceiling 
that a technology cannot surpass”). 

90. Cf. FOSTER, supra note 75, at 33 (“[T]echnology even variously defined always has a 
limit . . . .”); The Next 20 Years of Microchips, SCI. AM., Jan. 2010, at 83 (commenting that 
“Moore’s Law” — a “predict[ion] that the complexity of integrated-circuit chips would 
double every two years” — “could finally be running out of room”). 
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and q is a positive real number. In this modified model, xmax repre-
sents a point at which cumulative technological advance must stop — 
at least so long as the modified model remains valid — as a result, 
say, of a currently insurmountable obstacle to further technological 
progress. Under these circumstances, the amount of technological 
progress x converges asymptotically to xmax from below, with the re-
sult being a “flat top” to the technological-progress curve analogous 
to that shown in Figure 7. Specifically, in the limit where 
(xmax − x)/xmax << 1, the difference between xmax and x decays expo-
nentially with time: (xmax – x) ≈ c5e–ζt, where 
ζ = q(α + βxmax − µ)/(γ0xmax) and c5 is a positive constant.91 Numerical 
calculation of the trajectory of development for this modified model 
produces the graph shown in Figure 8 for conditions that, for 
x << xmax, roughly correspond to those used to generate the exponen-
tial growth illustrated in Figure 3. 
 

5 10 15

10

20

30

40

50

 
Figure 8: S-shaped curve generated by substituting γ(x) from 
Equation 29 for γ in Equation 6, with γ0 = 1, β = 1, c1 = 0.1, 
xmax = 50, q = 1, x0 = 0, and v0 = 0. 

 
Of course, obstacles to progress that force a slowdown from a pe-

riod of rapid growth need not come in the form of a hard “wall.” Ra-
ther, they might act more like a slowing “bottleneck.”92 Instead of 
                                                                                                                  

91. Derivation of the exponential-decay form for the leading behavior of (xmax – x) in the 
limit where (xmax – x)/xmax << 1 is described in the Appendix. 

92. The pharmaceutical industry, which has apparently experienced dramatic increases in 
the costs of developing new drugs, might be experiencing a phenomenon along these lines. 
See, e.g., Sherry M. Knowles, Fixing the Legal Framework for Pharmaceutical Research, 
327 SCIENCE 1083, 1083 (2010) (“The costs of drug research and development (R&D) has 
increased from ~$230 million per drug in the early 1980s to $1.2 billion today, with R&D 
currently requiring about 10 to 15 years per drug.”). Similarly, commentators have long 
opined that increased costs of progress in semiconductor chip manufacturing might signal 
that “the technology is beginning to approach its limit.” FOSTER, supra note 75, at 101; cf. 
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having the drag coefficient γ(x) go to infinity at a finite level of pro-
gress xmax, one could have γ(x) simply grow rapidly once x becomes 
comparable in magnitude to a finite “characteristic value” xc. For ex-
ample, one could have  

γ(x) = γ0[1 + (x/xc)q]    (Eq. 30), 

where q is a positive real number. For such a form of γ(x), growth 
continues beyond the characteristic value xc, with x ultimately grow-
ing (at least while v is still large enough to make the positive-
feedback and drag terms dominant) according to the power law 
x/xc ≈ (ςt)1/q and with v developing according to the power law 
v/ςxc ≈ (ςt)–1+(1/q), where ς = qβ/γ0. Consequently, for q > 1 (i.e., for 
−1 + (1/q) < 0), the speed v of progress decreases after x becomes 
comparable to xc.93 Figure 9 shows a numerically calculated trajectory 
for growth when Equation 30’s γ(x) is substituted for γ in Equation 6, 
under conditions corresponding to those for Figure 8. 

                                                                                                                  
CULLIS, supra note 30, at 174 (“Capital costs have risen steadily . . . until, currently, the 
device manufacturers are reaching the stage that they can no longer afford to finance the 
infrastructure from their individual resources.”). Nonetheless, semiconductor chip manufac-
turing has maintained a trajectory of exponential progress for decades, perhaps partly be-
cause positive-feedback effects related to the growth of new markets for computing 
technology have helped offset the growth in the costs of progress. How long chip manufac-
turing can continue on this exponential path remains an open question. See, e.g., Antone 
Gonzales, Chasing Moore’s Law Getting Too Expensive, INFORMATIONWEEK.COM (June 
16, 2009 2:11 PM), http://www.informationweek.com/news/hardware/processors/show 
Article.jhtml?articleID=217900161 (reporting a conclusion that “Moore’s Law by 2014 will 
no longer drive volume semiconductor production”). 

93. The Appendix describes derivation of the power-law leading behavior for x when 
x/xc >> 1, under circumstances where Equation 6’s positive-feedback and drag terms are 
dominant. 
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Figure 9: S-shaped curve generated by substituting γ(x) from 
Equation 30 for γ in Equation 6, where γ0 = 1, β = 1, 
c1 = 0.1, x0 = 0, v0 = 0, xc = 50, and q = 6. 

 
Whatever the provenance of such an S-shaped development path, 

a time period over which a cycle of S-shaped development occurs 
might be only one episode in a much larger story. The modified ver-
sion of Equation 6 obtained by substituting x-dependent γ(x) for con-
stant γ might cease to be accurate after a further substantial period of 
time. Faster development might resume, perhaps as a result of a major 
breakthrough that removes or circumvents the “wall” at xmax or the 
“bottleneck” associated with xc. The resulting newly-revived trajecto-
ry for progress might undergo a new cycle of S-shaped growth. In 
turn, this S-shaped cycle might be followed by further spates of S-
shaped development, with technology alternating between slower and 
faster phases of advance. Figure 10 shows the sort of overall func-
tional behavior that might result when like cycles of growth are equal-
ly spaced in time. This functional behavior might be viewed as 
embodying a particularly simple pattern of the punctuated equilibria 
that have been found to characterize the improvement paths of various 
technologies.94  

 

                                                                                                                  
94. See MOKYR, supra note 58, at 291 (“In the history of technology there are long peri-

ods of stasis as well as major discontinuous changes . . . .”); Carrillo-Hermosilla & Unruh, 
supra note 55, at 712 (“[I]f a long enough time horizon is taken, one sees a succession of 
standards, a dynamic of transition between multiple semi-stable equilibria.”); Loch & Hu-
berman, supra note 89, at 160 (“In a number of industries it is also observed that long peri-
ods of incremental improvement tend to be interrupted by short periods of radical 
innovation.”).  
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Figure 10: Graph of the sum of four S-shaped curves given 
by the formula x = {1 + tanh[t – 4(2n – 1)]}/2, where the 
time t, is expressed in units corresponding to those marking 
the horizontal axis, and where n takes on integer values from 
1 to 4. 

 
Figure 10 suggests another potential feature of the trajectory of 

technological progress: that the leading-order behavior over very long 
time scales might differ greatly from leading-order behaviors ob-
served over much shorter time scales. 

For purposes of simplicity, consider a situation like that of Figure 
10, in which successive cycles of S-shaped growth, each characterized 
by a “jump” in technological progress of identical height X, are sepa-
rated by regular time intervals of width T. Over a time interval t – ti 
that is much greater than T (i.e., for (t – ti)/T >> 1), the overall amount 
of technological growth is, to leading order, linear in t – ti, with the 
progress made from starting position xi satisfying the approximate 
formula 

x – xi ≈ X(t – ti)/T    (Eq. 31). 

For the trajectory of progress shown in Figure 10, xi = 0, ti = 0, 
X = 1, and T = 8. Thus, in accordance with Equation 31, x ≈ t/8 for 
values of t for which t/8 >> 1, presuming that, for such large values of 
t, the pattern of growth shown in Figure 10 continues to hold. 

The dynamics that might be observed at such “super-long” time 
scales therefore provide a further complication. Super-long time 
scales can encompass multiple periods of technological progress or 
stasis. In some circumstances, like those yielding Equation 31 above, 
complications observed at shorter time scales might substantially av-
erage out over super-long time scales, giving way to a much simpler 
leading-order form for progress’s time dependence. In other circum-
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stances, the behavior at super-long time scales might itself exhibit 
shifts among different behavioral regimes for growth. In any event, 
the behavior at super-long time scales might be effectively moot for 
relevant policymakers. The need to satisfy present political needs and 
the vagaries of super-long-term predictions might be likely to cut off 
policy horizons at time scales of no more than a few decades.  

B. Predictions of Time-Dependent Behavior Compared to Patent 
Counts 

The above discussion of potential behaviors over super-long time 
scales highlights some of the limitations of the model presented by 
Equation 1, while also showing how elaborations on the model can 
overcome some of these limitations. Equation 1’s model can still be 
useful, however, even without such elaborations. 

 This Part and the one that follows illustrate two ways in which 
Equation 1 and corollary analysis might be put to practical use. In this 
Part, the focus is on Equation 1’s implications for likely functional 
forms of technological progress. Part IV.C discusses how dynamic-
elasticity or double-ratio tests, derived from Equation 1 for various 
parameter regimes, might help in addressing questions of innovation 
policy. 

What, beyond contingency and variability, does Equation 1 sug-
gest about the functional form for technological progress? As Part III 
has shown, the model embodied by Equation 1 indicates that, under a 
variety of circumstances, technological progress can be expected to 
grow asymptotically like a positive power of elapsed time, tz. Such 
power-law behavior can be looked for in empirical data. If a plausible 
value for the exponent z is associated with such data, it might permit 
inferences about the nature of a positive-feedback term like βxε or the 
forms of drag terms like γv or ξv1+η.  

One way to look for power-law behavior is to gather data regard-
ing the value x(t) of a measure of technological progress at different 
points in time t. One can then examine a log-log plot of that data, gra-
phing the logarithm of progress s = ln(x) as a function of the loga-
rithm of time q = ln(t). If technological progress proceeds according 
to a power law — i.e., if x(t) ≈ Ctz — the log-log plot of technological 
progress as a function of time should approximate a straight line 
whose slope equals the power-law exponent z.95 In contrast, if techno-
logical progress proceeds exponentially, a log-log plot yields expo-
nential, rather than linear, behavior.96 

Different results follow from use of a semi-log plot in which 
s = ln(x) is plotted against time t itself, rather than q = ln(t). An ap-
                                                                                                                  

95. x(t) ≈ Ctz means that ln(x) ≈ zln(t) + ln(C) or, equivalently, s ≈ zq + ln(C). 
96. x(t) ≈ Ceκt means that ln(x) ≈ κt + ln(C) or, equivalently, s ≈ κeq + ln(C). 
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proximately exponential dependence x(t) ≈ Ceκt yields an approxi-
mately straight line in a semi-log plot: s ≈ κt + ln(C). If, instead, x(t) 
exhibits power-law behavior, the natural logarithm of x has only a 
logarithmic dependence on time: s ≈ zln(t) + ln(C). For reference re-
garding the form of such logarithmic dependence, Figure 11 shows a 
plot of s = ln(t). 
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Figure 11: The quantity s as a function of time where 
s = ln(t). The form of this graph corresponds to that expected 
for a semi-log plot of technological progress x(t) where pro-
gress has a power-law dependence on time: x(t) ≈ Ctz, and 
thus ln(x) ≈ zln(t) + ln(C). 

 
Log-log and semi-log plots can be used to analyze the time-

dependent behavior of a quite crude but easily specified measure of 
technological progress97: the cumulative number of U.S. utility pa-
tents that have issued since passage of the U.S. Patent Act of 1790. 
Figure 12 provides a plot of this cumulative number of patents as a 
function of time.  

Figure 12 makes clear that growth in the cumulative number of 
patents has accelerated substantially over the course of two centuries. 
But has this growth been exponential?98 

                                                                                                                  
97. But cf. Olsson, supra note 21, at 254 (“The empirical literature on patents and patent 

citations probably comes closest to actually measuring idea diffusion across time and geog-
raphy and its impact on the production of new ideas.”). 

98. Cf. Katherine J. Strandburg et al., Law and the Science of Networks: An Overview 
and an Application to the “Patent Explosion,” 21 BERKELEY TECH. L.J. 1293, 1329 (2006) 
(“[T]he number of patents issued by the USPTO has increased more or less exponentially 
since the patent system was inaugurated in 1790 . . . .”). 
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Figure 12: Cumulative number of U.S. utility patents issued 
from 1790 up to the year indicated on the horizontal axis of 
the plot.  
 

The log-log and semi-log plots of Figures 13 and 14 suggest that 
growth has generally not been exponential. Figure 13’s log-log plot 
exhibits substantially linear, rather than exponential, behavior over 
decades-long time periods, most particularly over a six-decade span 
following issue of the first utility patents in 1793.  
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Figure 13: Log-log plot of the cumulative number of U.S. 
utility patents issued, on the vertical axis, versus the years 
elapsed since 1790, on the horizontal axis. 

 
Consistent with such impressions from Figure 13, the bowed 

form of Figure 14’s semi-log plot looks very little like the straight-
line form expected if the cumulative patent number had grown expo-
nentially since 1790. Instead, Figure 14’s bowed form resembles that 
of s = ln(t) in Figure 11. Thus, Figures 13 and 14 both suggest that the 
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cumulative number of U.S. utility patents is generally better modeled 
as having power-law, rather than exponential, time-dependence. 
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Figure 14: Semi-log plot of the cumulative number of U.S. 
utility patents issued, on the vertical axis, versus the year, on 
the horizontal axis. 

 
On the other hand, Figure 13’s log-log plot also suggests that, 

over the course of U.S. history, such power-law behavior has experi-
enced at least two major shifts. An initial phase of patent-count 
growth ran roughly from 1793 through 1856. As Figure 15 illustrates, 
a least-squares fit to log-log data from this period yields a line with a 
slope of about 2.5.99 This indicates that, during this time period, the 
cumulative number of U.S. utility patents grew approximately in pro-
portion to t2.5 where t is the number of years elapsed since 1790. If we 
were to boldly assume that technological drag during this period had 
an approximately linear dependence on the rate of patent accumula-
tion, we might then conclude from Equation 15 that the exponent ε for 
positive feedback βxε was approximately 0.6. 

 

                                                                                                                  
99. In Figures 15 through 17, least-squares regression provides linear fits for the accom-

panying data. Statistical descriptions of the closeness of this fit such as standard errors, R2 
values, and p-values are not reported here, however, in large part because of concern that 
the use of logarithms of values from the original data sets — times in years and year-by-
year cumulative patent counts — might mean that normal bases for attaching specific statis-
tical significance to such descriptions do not apply. Cf. Aaron Clauset, Cosma Rohilla Sha-
lizi & M.E.J. Newman, Power-Law Distributions in Empirical Data, 51 SIAM REV. 661, 
665 (2009) (concluding that the results of “a least-squares linear regression on the logarithm 
of [a] histogram . . . . cannot be trusted”). 
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Figure 15: Combined plot of a least-squares regression line 
and the natural logarithm of the cumulative number of U.S. 
utility patents issued in the years elapsed since 1790, for the 
years from 1793 through 1856. The labels on the horizontal 
and vertical axes indicate logarithmic values for years 
elapsed since 1790 and for cumulative patent numbers, re-
spectively. The regression line is approximated by the for-
mula y = −0.6 + 2.5x. 
 
The second and third growth phases in Figure 13 ’s log-log plot 

yield regression lines with higher slopes than that for the first phase. 
A second phase of distinctively high slope runs from about 1856, the 
endpoint of the first phase, through 1894. A least-squares fit of log-
log data for this period yields a regression line, shown in Figure 16 
that has a slope of about 7.3. In other words, during this nearly four-
decade period, the cumulative number of U.S. utility patents behaved 
approximately like a multiple of t7.3. 
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Figure 16: Combined plot of a least-squares regression line 
and the natural logarithm of the cumulative number of U.S. 
utility patents issued in the years elapsed since 1790, for the 
years from 1856 through 1894. The labels on the horizontal 
and vertical axes indicate logarithmic values for years 
elapsed since 1790 and cumulative patent numbers, respec-
tively. The regression line is given by the formula 
y = −20.5 + 7.3x. 
 
Finally, Figure 13’s third phase of growth runs from about 1894 

through 2009. A least-squares fit yields a regression line with a slope 
of about 3.4, corresponding to a cumulative patent number that be-
haved, during this time period, approximately like a multiple of t3.4. 
Figure 17 shows the regression line for this third phase, one of ap-
proximate power-law growth less robust than that in the second phase 
but more robust than that in the first. 
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Figure 17: Combined plot of a least-squares regression line 
and the natural logarithm of the cumulative number of U.S. 
utility patents issued in the years elapsed since 1790, for the 
years 1894 through 2009. The labels on the horizontal and 
vertical axes indicate logarithmic values for years elapsed 
since 1790 and cumulative patent numbers, respectively. 
The regression line is approximated by the formula 
y = −2.3 + 3.4x.100 
 
More precise statistical analysis might help identify better bounds 

for distinct phases of U.S. patent-count growth. Likewise, historical 
study might help explain the location of such bounds, as well as the 
timing and size of undulations about average behavior. The semi-log 
plot of Figure 14 might also bear closer scrutiny — for example, with 
respect to a downward kink that appears to follow shortly on the heels 
of the U.S. Patent Act of 1836, which moved U.S. patent law from a 

                                                                                                                  
100. In accordance with observations that the creation of the U.S. Court of Appeals for 

the Federal Circuit in the early 1980s was followed by a sharp rise in patenting, see supra 
note 9; see also Strandburg et al., supra note 98, at 1329 (“[T]he rate of increase [in issued 
patents] . . . sharpened noticeably in the early 1980s.”), the plot in Figure 17 appears to 
show an upward inflection in the cumulative patent count at about the year 1983 — a time 
corresponding to a point just beyond the 5.26 mark on Figure 15’s horizontal axis. But this 
upward inflection does not yet appear to have led to a deviation from approximate power-
law behavior beyond what might have been expected based on long-term trends. Likewise, 
the “Information Age” of the last few decades, Bilski v. Kappos, 130 S. Ct. 3218, 3228 
(2010) (characterizing the present “Information Age” as “put[ting] the possibility of innova-
tion in the hands of more people and rais[ing] new difficulties for the patent law”), does not 
yet appear to have effected a change in the time-dependent behavior of cumulative patent 
numbers comparable to that which occurred during the latter half of the nineteenth century. 
Cf. Carol A. Corrado & Charles R. Hulten, How Do You Measure a “Technological Revolu-
tion”?, 100 AM. ECON. REV. 99, 102 (2010) (reciting economist “Robert Solow’s famous 
quip that ‘you see the computer age everywhere except in the productivity data’”). 
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registration system to an examination system.101 But such projects go 
beyond this Article’s scope. The example of patent-count data is illus-
trative, showing how future empirical work might look for power-law 
or exponential behavior, and how it might relate such behavior to 
Equation 1’s model. 

From the standpoint of Equation 1’s model, it is a bonus that, 
over decades-long time scales, the historical development of U.S. util-
ity patent numbers appears remarkably consistent with power-law 
behavior, as the model might lead one to expect. The simplifications 
and assumptions that underlie Equation 1 might have rendered such 
success doubtful. For example, if one had believed Equation 1’s as-
sumption of constant values for the exponents ε and η to be implausi-
ble, the relative constancy of the power-law dependence seen in 
Figures 15 through 17 might well have been a surprise. Will other 
measures of technological progress — such as technical measures of 
the average speed of communications or the efficiency of electrical 
energy generation — reveal similar surprises? Future research might 
look to answer this question. 

C. Dynamic-Elasticity Tests for Questions of Innovation Policy 

This Part describes a second way in which Equation 1’s model for 
innovation dynamics contributes to the understanding of when partic-
ular policies are likely to promote innovative progress. The model 
does this by indicating the potential significance of what I call dynam-
ic-elasticity or double-ratio tests for whether a particular incremental 
policy change will promote progress. 

The terminology “double-ratio tests” is meant to distinguish such 
tests from ratio tests for patent-related policy that Louis Kaplow de-
scribed in 1984.102 According to such a “single-ratio test,” the relative 
desirability of a particular policy — such as permitting patentee li-
censing practices that might raise antitrust concerns — can be as-
sessed by considering the ratio between the additional patentee 
rewards associated with the policy and the additional social costs as-
sociated with the policy.103 An even more fundamental ratio test — 

                                                                                                                  
101. F. SCOTT KIEFF ET AL., PRINCIPLES OF PATENT LAW 20 (4th ed. 2008) (“The regis-

tration system lasted for 43 years, until July 4, 1836, when Congress enacted what is gener-
ally acknowledged to be the foundation of the modern patent system in the United States.”). 

102. See Louis Kaplow, The Patent-Antitrust Intersection: A Reappraisal, 97 HARV. L. 
REV. 1813, 1816 (1984) (describing a “ratio test” to address “the patent-antitrust puzzle”); 
see also Daniel A. Crane, Intellectual Liability, 88 TEX. L. REV. 253, 272 (2009) (describ-
ing Kaplow’s “patentee-reward to monopoly-loss ratio” test and contending that it “is useful 
for appraising the appropriate sticks in the bundle of intellectual rights more generally”). 

103. See Kaplow, supra note 102, at 1834 (suggesting that social welfare can be im-
proved by “shuffling the extant pattern of [antitrust] restrictions” by, for example, disfavor-
ing “a currently permitted practice with a low ratio” in comparison to “a currently 
prohibited practice with a high ratio”). 
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also described by Kaplow, albeit without specific formulation as a 
ratio test — is that, for any particular policy to be socially desirable, 
the ratio between the “marginal social benefit” generated by the poli-
cy and the policy’s “marginal social cost” should be greater than or 
equal to one (where the marginal social cost is here assumed to be 
positive).104 Thus, a ratio test as it has commonly been understood 
involves a ratio of the general form: 

ΔB/ΔC      (Eq. 32), 

where ΔB is an incremental benefit associated with the policy in ques-
tion and ΔC is an incremental cost associated with the policy. Such a 
single-ratio test tends to indicate either that the policy change in ques-
tion is desirable if ΔB/ΔC > 1, or at least that the policy change in 
question is relatively more desirable as ΔB/ΔC becomes larger.105 

The double-ratio tests presented here involve two ratios having 
the forms ΔB/B and ΔC/C, respectively, where ΔB is the incremental 
change (positive or negative) that the policy produces in a positive 
parameter B that is associated with faster technological progress, and 
ΔC is the incremental change that the policy produces in a positive 
parameter C that is associated with slower technological progress. A 
double-ratio test using these two ratios indicates that, at least to a first 
approximation, an incremental policy change is desirable if 

ΔB/B > ΔC/C (Eq. 33).106 

When the ratio ΔC/C is positive, this double-ratio test can be writ-
ten in the alternative form (ΔB/B)/(ΔC/C) > 1. The double ratio 
(ΔB/B)/(ΔC/C) might be viewed as a form of “dynamic elasticity” — 
a ratio of the percentage “dynamic benefit” increase due to a new pol-
icy to the percentage “dynamic cost” increase as a result of that poli-
cy. Thus, the double-ratio test can be described as a form of dynamic-
elasticity test.107 

Dynamic-elasticity or double-ratio tests arise from Part II’s model 
because a number of the results from Part III indicate that the leading-
order, large-time behavior of innovative progress depends heavily on 
a ratio of push and drag parameters. For example, Equation 3 in Part 
III.A.1 indicates that, for sufficiently large times and for conditions 

                                                                                                                  
104. Cf. id. at 1825 (“The optimal patent life is that length of time at which the marginal 

social cost of lengthening or shortening the patent life equals the marginal social benefit.”). 
105. See supra notes 102–03. 
106. For purposes of terminological and notational simplicity, this Article commonly re-

fers to inequalities such as that of Equation 33 as equations. 
107. Economists commonly use the word “elasticity” to refer to a ratio of percentage 

changes in two quantities. See, e.g., WILLIAM J. BAUMOL & ALAN S. BLINDER, ECONOMICS: 
PRINCIPLES AND POLICY 465 (5th ed. 1991) (providing an equation for the “elasticity of 
demand” (emphasis omitted)); HAL R. VARIAN, INTERMEDIATE MICROECONOMICS 265–66 
(3d ed. 1993) (same). 
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under which the supralinear damping term –ξv1+η and the time de-
pendence of the positive-feedback term βxε are effectively negligible, 
we have v ≈ vT, with  

vT = α′/γ      (Eq. 34), 

where α′ and γ are positive real numbers. For circumstances where 
v ≈ vT applies at large times, a policy change will tend to promote 
progress over such a time scale if the policy change tends to increase 
the quantity vT — i.e., if the change ΔvT in vT that results from the 
policy change is greater than zero. Where the policy change produces 
changes Δα′ and Δγ in the quantities α′ and γ, respectively, ΔvT is giv-
en by the equation ΔvT = (α′ + Δα′)/(γ + Δγ) – α′/γ. Alternatively stat-
ed, ΔvT/vT = (Δα′/α′ – Δγ/γ)/(1 + Δγ/γ). As long as we make the 
relatively trivial presumption that the policy change does not reduce 
the drag coefficient γ to zero — i.e., that γ + Δγ > 0, and thus that 
1 + Δγ/γ > 0 — it follows that the sign of ΔvT is the same as the sign 
of the quantity (Δα′/α′ – Δγ/γ). Consequently, we have the following 
double-ratio test for whether a policy change is likely to promote the 
speed of innovative progress: 

Δα′/α′ > Δγ/γ     (Eq. 35). 

A key distinction between such a dynamic-elasticity or double-
ratio test and a single-ratio test involving a ratio like that of Equa-
tion 32 is that, under the double-ratio test, the key determinants of the 
policy’s desirability are not so much the raw magnitudes of the ex-
pected changes in progress-promoting or progress-retarding terms, but 
instead the expected percentage changes in those terms. Thus, even 
when a policy produces only a seemingly small positive impetus to 
innovation while also introducing seemingly substantial contributions 
to innovative drag, that policy might nonetheless help speed progress. 
This can result when the pre-policy impetus to innovation, as reflected 
in the progress-forcing term α′, is very small and pre-policy impedi-
ments to innovative progress, as reflected in the drag coefficient γ, are 
already comparatively large.  

This distinguishing aspect of double-ratio tests has important im-
plications. In particular, the double-ratio test suggests that, in indus-
tries such as the pharmaceutical industry, where regulation and safety 
concerns help generate large innovative drag that exists independently 
of the details of patent law, comparatively stronger or broader patent 
protection might speed progress even if such increased protection im-
poses substantial costs on follow-on innovators. This follows because 
whatever increases these costs make to the drag coefficient γ might be 
negligible compared to γ’s preexisting magnitude. Consequently, the 
percentage change in γ from the increased costs might be small, and 
even if the policy change produces only a relatively small percentage 
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uptick in the progress-forcing term α′, that small increase might justi-
fy the follow-on costs. 

On the other hand, if a technology (such as software) would be 
characterized, in the absence of patents, by both strong incentives for 
innovation and relatively low costs for follow-on innovation, the 
analysis might be reversed. For such a technology, the value of the 
progress-forcing term α′ might already be very large before any policy 
change is implemented. Such a situation might arise under circum-
stances where user innovation is a prevalent or even dominant mode 
of technological progress.108 Under such circumstances, unless Δα′, 
the further impetus to progress provided by the policy change, is ex-
tremely large, even a modest increase in γ might mean that the policy 
change does more to impede progress than to promote it.  

More generally, comparison of the analyses in the two preceding 
paragraphs might do much to explain the differing positions of vari-
ous industries and industry actors in recent patent reform debates. 
Companies in technology sectors such as software or financial ser-
vices, in which there are, apparently, relatively low costs for follow-
on innovation and strong incentives for innovation even without pa-
tent rights,109 have been looking to curtail what they view as overex-
tensions of patents’ effective strength or scope.110 Companies in 
technology sectors such as pharmaceuticals, in which regulatory or 
other hurdles likely make a drag coefficient such as γ extraordinarily 
high, have tended to defend the strength or scope of patent rights.111 
Entrepreneurial biotechnology firms facing large start-up costs and 
having few non-patent mechanisms for appropriating value from in-
novation112 might similarly experience low-α′ and high-γ conditions 
that make stronger or broader patents desirable in their technology 
sector.  

                                                                                                                  
108. User innovation is frequently associated with significant progress-promoting pushes 

that operate without the drags associated with the need for commercial profit from an inven-
tion. See Katherine J. Strandburg, Evolving Innovation Paradigms and the Global Intellec-
tual Property Regime, 41 CONN. L. REV. 861, 875 (2009) (“In sharp contrast to the standard 
seller-based view underlying most discussions of the societal justifications for the patent 
system, user innovators expect to benefit primarily from developing and using an innova-
tion rather than selling it.”); cf. ERIC VON HIPPEL, DEMOCRATIZING INNOVATION 14 (2005) 
(associating the proliferation of user innovation in design with “the cost of high-quality 
resources for design and prototyping becom[ing] very low”); William W. Fisher III, The 
Implications for Law of User Innovation, 94 MINN. L. REV. 1417, 1423 (2010) (“Purchasers 
of sports equipment frequently alter the equipment to fit their bodies or needs.”). 

109. These conditions correspond to a relatively high value for α′ and a relatively low 
value for γ. 

110. See Golden, supra note 17, at 507–08. 
111. Cf. id. 
112. See Stuart J.H. Graham et al., High Technology Entrepreneurs and the Patent Sys-

tem: Results of the 2008 Berkeley Patent Survey, 24 BERKELEY TECH. L.J. 1255, 1308 
(2009) (reporting on the apparent importance of patents for private investment in biotech-
nology firms). 
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Even if a double-ratio test indicates the desirability of a policy 

change for one technology sector, however, there would remain diffi-
cult questions of how a policymaker should weigh the potentially dis-
parate impacts of the policy change on different technology sectors’ 
progress — questions that no mathematical model is likely to answer, 
except by incorporating value judgments that the model itself does not 
justify. Nonetheless, it seems no small advance to arm policymakers 
with a dynamic model that provides new means of (1) understanding 
when and how a policy change might affect different sectors dispar-
ately, and (2) potentially gaining insight into how to mitigate negative 
impacts while pursuing a positive policy end — for example, by com-
paring different policies’ likely impacts on push and drag parameters. 

Along these lines, it might be instructive to consider potential im-
plications of double-ratio tests for the categories of subject matter that 
might be considered patentable. A double-ratio test might support the 
imposition of limits on such categories. For example, courts have tra-
ditionally held that claimed inventions that amount to no more than 
“abstract ideas” or “natural phenomena” lack patentable subject mat-
ter.113 A double-ratio test can help justify both of these exclusions, as 
well as their relatively narrow nature.  

Consider the exclusion from patentable subject matter of laws of 
nature and natural phenomena,114 which might be understood as seek-
ing to reserve a relatively patent-free zone for basic scientific re-
search. Even without patent rights as an incentive, development of 
basic scientific knowledge about natural phenomena is stimulated by 
a robust combination of public funding, prizes, reputational rewards, 
opportunities for career advance, and funding from private interests 
motivated by first-mover advantages, altruism, or other causes.115 In 
this context, the quantity α′ in the double-ratio test is likely to be sub-
stantial for a wide range of scientific endeavors. Meanwhile, in the 
absence of patent rights, there might be relatively little innovative 

                                                                                                                  
113. See Diamond v. Diehr, 450 U.S. 175, 185 (1981) (“Excluded from . . . patent protec-

tion are laws of nature, natural phenomena, and abstract ideas.”). 
114. Id. 
115. See, e.g., Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L. 

REV. 1575, 1586 (2003) (“Inventors may be motivated by the prospect of prestige among 
peers, by prizes (such as the Nobel)[,] . . . by academic rewards of promotion and ten-
ure[,] . . . by the desire to do good, . . . or by the love of science.”); Rebecca S. Eisenberg, 
Proprietary Rights and the Norms of Science in Biotechnology Research, 97 YALE L.J. 177, 
182–84 (1987) (describing a Mertonian “conception of the norms and incentives that guide 
the behavior of research scientists,” including “recognition and esteem”); John M. Golden, 
Biotechnology, Technology Policy, and Patentability: Natural Products and Invention in the 
American System, 50 EMORY L.J. 101, 190 (2001) (noting evidence “that a key aspect of 
biotechnology is the fact that, to an exceptionally large degree, it results from a massive 
public investment both in the life sciences and in the training of life scientists”); Arti Kaur 
Rai, Regulating Scientific Research: Intellectual Property Rights and the Norms of Science, 
94 NW. U. L. REV. 77, 92 (1999) (“The norm of invention leads scientists to compete vigor-
ously to be the first to present an invention or discovery to the scientific community.”). 
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drag: with commercial applications frequently far in the distance, 
there might be few regulatory hurdles to clear or little need to spend 
time and energy packaging results in a manner suitable for mass use 
by consumers. The quantity γ in the double-ratio test might therefore 
be relatively small. Given these expectations regarding background 
pushes and drags, the double-ratio test suggests that an increased 
presence of patent rights in the subject matter of basic science will 
slow down, rather than speed up, the rate of progress — unless pa-
tents will (1) add greatly to incentives for developing basic scientific 
knowledge and (2) add very little to the costs of subsequent scientific 
research. 

Similar arguments in relation to the drag side of an applicable 
double-ratio test appear likely to extend to the excluded category of 
abstract ideas. On the other hand, arguments with respect to the push 
side of the test might be more balanced for abstract ideas in general. 
The category of abstract ideas is so broad and polymorphous that one 
might wonder whether there are segments of the category for which 
society currently provides little effective incentive. Indeed, despite the 
existence of factors such as principles of academic freedom that help 
to ensure that scientific research is wide-ranging and decentralized, 
this concern might extend to some forms of basic scientific 
knowledge as well. In the 1990s, prohibition of federal public funding 
for human embryonic stem cell research arguably created such a sit-
uation in the United States, and the prospect of patent rights in the 
fruits of research helped generate crucial initial funding where con-
ventional public-funding mechanisms were inoperative.116 Given the 
possibility that incentives for the development of abstract ideas and 
even basic science might sometimes be very weak, the double-ratio 
test does not unambiguously support a broad understanding of the 
traditional judge-made exclusions.  

A predictable result of such ambiguity is the sort of hedge that 
courts have tended to adopt: judge-made rules on patentable subject 
matter generally forbid patent rights for natural laws, natural phenom-
ena, and abstract ideas, but at the same time impose only relatively 
minimal requirements for circumventing these exclusions. These min-
imal requirements have included (1) tying the exploitation of an ab-
stract idea to a human-made device or a transformation of matter;117 

                                                                                                                  
116. See John M. Golden, WARF’s Stem Cell Patents and Tensions Between Public and 

Private Sector Approaches to Research, 38 J.L. MED. & ETHICS 314, 314–15 (2010). 
117. See In re Bilski, 545 F.3d 943, 954 (Fed. Cir. 2008) (en banc) (holding that the 

United States Supreme Court had “enunciated a definitive test” for the subject-matter eligi-
bility of a process, centered on the question of whether the claimed process “(1) . . . is tied 
to a particular machine or apparatus, or (2) . . . transforms a particular article to a different 
state or thing”), aff’d sub nom. Bilski v. Kappos, 130 S. Ct. 3218 (2010). But see Bilski v. 
Kappos, 130 S. Ct. at 3227 (“The machine-or-transformation test is not the sole test for 
deciding whether an invention is a patent-eligible ‘process.’”). 
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and (2) creating an isolated and purified version of a naturally occur-
ring substance.118 Better understanding of innovation dynamics and 
likely tradeoffs in promoting progress might facilitate the develop-
ment of better-tailored and better-justified boundaries for patentable 
subject matter. In the meantime, the potential ambiguity of the dou-
ble-ratio test across the full breadth of abstract ideas or basic science 
might be viewed as supporting imposition of something less than in-
surmountable hurdles to patenting related subject matter. Although 
perhaps theoretically inelegant, such reduced hurdles might leave 
open a path — a sort of “safety valve”119 — for patents to promote 
potentially significant basic research or abstract thinking in situations 
where alternative modes of motivation fail. 

Whatever the theoretical utility of a dynamic-elasticity or double-
ratio test, one might question whether the particular double-ratio test 
of Equation 35 applies, under present or expected conditions, to any 
given technology or industry sector. One response to such skepticism 
is to note that, even if Equation 35’s double-ratio test does not apply, 
an alternative double-ratio test might. Further examination of the be-
haviors predicted in Part III.A yields additional dynamic-elasticity or 
double-ratio tests and establishes the circumstances under which they 
apply. What follows is a list of additional tests for situations in which 
(1) parameters such as α′, β, γ, and ξ are assumed to be positive, and 
(2) exponent-based parameters such as ε and η in Equation 1 are as-
sumed to be unaffected by the policy change in question: 
• Δβ/β > Δγ/γ, where the following conditions apply: (i) in accord-

ance with Equation 6, growth is exponential due to the positive-
feedback term βx being linear and the supralinear damping term 
−ξv1+η being negligible; (ii) 4β/γ2 << 1; and (iii) the large-t limit 
where t >> {ln[|c2|(κ + γ)/c1κ]}/(2κ + γ) and t >> ln[c1/(c1 + Δc1)] 
applies, where Δc1 is the incremental change in c1 due to the poli-
cy change; 

• Δβ/β > Δγ/γ, where (i) the positive-feedback term βxε is sublinear, 
(ii) the supralinear damping term –ξv1+η is negligible, and 

                                                                                                                  
118. See MERGES & DUFFY, supra note 11, at 113 (discussing how, under current law, a 

naturally occurring substance existing “as it is produced and used in the human body is 
viewed as different from the substance in its isolated and purified state”); cf. Amgen, Inc. v. 
Chugai Pharm. Co., 927 F.2d 1200, 1206 (Fed. Cir. 1991) (emphasizing that “[t]he subject 
matter of [a patent claim] was the novel purified and isolated [genetic] sequence which 
codes for” the protein erythropoietin). But see Ass’n for Molecular Pathology v. U.S. Patent 
& Trademark Office, 702 F. Supp. 2d 181, 227 (S.D.N.Y. 2010) (concluding that “purifica-
tion of a product of nature, without more, cannot transform it into patentable subject mat-
ter”). 

119. Cf. Henry E. Smith, Institutions and Indirectness in Intellectual Property, 157 U. 
PA. L. REV. 2083, 2127 (2009) (arguing, in relation to debates over patent–infringement 
injunctions, for viewing “equitable analysis as the correct safety valve for enriching the 
interface between otherwise quite modular rights”). 
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(iii) x ≈ c3t1/(1–ε) in accordance with Equation 15 and the appropri-
ate large-t limit for Equation 14; 

• Δα′/α′ > Δξ/ξ, where (i) η = 1; (ii) Equation 18 applies because the 
supralinear damping term –ξv2 is nonnegligible but the positive-
feedback term βxε, or at least its time dependence, is negligible; 
(iii) the time t >> 1/φ, and innovative progress is therefore essen-
tially proceeding at the constant terminal velocity vT = σ–; and 
(iv) γ/[2(α′ξ)1/2] << 1; 

• Δα′/α′ > Δγ/γ, where, as immediately above, (i) η = 1; 
(ii) Equation 18 applies because the supralinear damping term     
–ξv2 is nonnegligible but the positive-feedback term βxε, or at 
least its time dependence, is negligible; and (iii) the time t >> 1/φ, 
and innovative progress is therefore essentially proceeding at the 
constant terminal velocity vT = σ–; but where (iv) γ2/(4α′ξ) >> 1; 

• Δβ/β > Δξ/ξ, where (i) both the supralinear damping term –ξv1+η 
and the time dependence of the positive-feedback term βxε are 
nonnegligible, with 0 < ε ≤ 1; and (ii) the large-t limit of Equa-
tion 1 in which, in accordance with Equation 26, x ≈ c4t(1+η)/(1+η–ε) 
applies.120 
As might be expected, the “push ratio” on the left-hand side of 

each inequality represents the percentage change expected for a pa-
rameter, α′ or β, associated with one or more of the progress-forcing 
terms of Equation 1. In turn, the “drag ratio” on the right-hand side 
represents the percentage change expected for a parameter, γ or ξ, 
associated with one of Equation 1’s velocity-dependent damping 
terms. 

Significantly, the parameters that are the focal points of each 
double-ratio test reflect the terms in Equation 1 that dominate innova-
tion dynamics under the particular circumstances in question. Thus, in 
a large-time limit where positive feedback dominates the ongoing 
“push” for innovation, one can have a double-ratio test such as 
Δβ/β > Δγ/γ. When applicable, such a test suggests that the extent to 
which a policy change adds to innovative push without directly en-
hancing positive feedback — i.e., by increasing the push parameter α 
but not the positive-feedback coefficient β — will commonly be less 
important, over relatively long time scales, than the extent to which 
the policy change facilitates positive feedback. For example, to the 
extent that providing grant money for technological development is 
associated with increasing α but not β, the applicability of a 
Δβ/β > Δγ/γ double-ratio test might suggest that such a policy should 
be disfavored relative to one that looks likely to have a greater posi-

                                                                                                                  
120. The Appendix derives these further dynamic-elasticity or double-ratio tests and ex-

plains the circumstances under which they apply.  
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tive impact on β — perhaps by encouraging relevant firms’ reinvest-
ment of profits in research and development. 

In any event, despite constraints on when the various double-ratio 
tests apply, the existence of a multiplicity of such tests that apply un-
der distinct sets of conditions shows that the utility of a double-ratio 
test is not an isolated phenomenon. Further, as Kaplow showed earlier 
for single-ratio tests, such tests’ contributions to analysis and intuition 
can be substantial even when the precise values of their inputs are 
uncertain.121 The preceding discussion of how double-ratio tests can 
help explain current industry and technology divides indicates how 
double-ratio tests can be qualitatively useful.  

V. CONCLUSION 

A relatively simple but intuitively plausible model of innovation 
dynamics indicates that there is likely to be no “natural” form for the 
trajectory of technological progress. Instead, the model generates a 
diverse array of potential trajectories, among which trajectories fea-
turing linear or exponential growth of cumulative innovation are only 
special or even exceptional. Different parameter regimes, involving 
shorter or longer time scales and different values for progress-
promoting and progress-impeding parameters, yield different forms 
for progress’s leading-order behavior. In certain regimes, technologi-
cal advance proceeds approximately linearly with time. In others, 
growth proceeds according to a supralinear power law. In a compara-
tively narrow class of situations, growth proceeds exponentially. In 
still other situations, a technological “wall” or “bottleneck” causes 
growth to slow dramatically after a certain amount of progress is 
made, with the result being an S-shaped trajectory for progress.  

These complexities follow from the tension between the dynamic 
model’s progress-promoting and progress-impeding terms. The pro-
gress-promoting “push” terms can reflect a significant positive-
feedback effect that causes accelerants for technological progress to 
grow as technology advances. The progress-impeding “drag” terms 
feature negative-feedback effects due to, for example, the fact that the 
faster technology progresses, the greater the number of obstacles that 
innovators must overcome in any given time period. Because push 
and drag terms commonly scale differently with time, even Part II’s 
relatively simple model for innovation dynamics yields a rich array of 
contingent behaviors. 

                                                                                                                  
121. See Kaplow, supra note 102, at 1886–87 (“Although one can neither state with cer-

tainty that permitting end-product royalty schemes improves the ratio, nor confidently iden-
tify the range of circumstances under which it might not, the argument for permitting them 
does seem stronger than that for disallowing them.”). 
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For policymakers, a significant implication of this Article’s anal-

ysis is that, even if they can identify the current behavioral form for 
technological progress, they should not generally assume that such a 
form will persist. As Part III’s analysis of different parameter regimes 
shows, a given functional form for technological progress often sows 
the seeds of its own destruction, sometimes by feeding into a positive-
feedback process that ultimately generates exponential or higher pow-
er-law growth, at other times by feeding into a form of negative feed-
back that damps any further acceleration of technological progress. 
Part IV’s illustrative analysis of U.S. patent count data demonstrates 
how the growth in a given measure of technological progress can pass 
through distinct phases of behavior. 

But this Article does more than provide lessons in contingency 
and complication. Consistent with expectations under Part II’s model, 
the cumulative U.S. utility-patent count appears to have exhibited 
substantially constant power-law behavior over decades-long time 
scales. Part II’s model also provides a new framework for policy 
analysis by giving rise to a multiplicity of dynamic-elasticity or dou-
ble-ratio tests for evaluating the desirability of policy changes. These 
tests turn not on a single ratio of raw magnitudes, but instead on a 
comparison of two ratios, with each ratio representing a percentage 
change in a push or drag parameter. Because different technology and 
industry sectors likely have different non-patent-generated pushes and 
drags, such double-ratio tests amplify reasons to believe that a policy 
mechanism like patent law will have disparate effects for different 
technologies and industries. Double-ratio tests thus suggest that ob-
served differences between different technology sectors’ policy sensi-
tivities are even more fundamental than previously appreciated.  

Further, the conditions for applying double-ratio tests highlight a 
further implication of Part II’s model: a particular policy’s success in 
promoting progress can turn not only on the post-policy and pre-
policy values of various push and drag parameters, but also on where 
the relevant technology sits along a trajectory of technological pro-
gress. The current amount of accumulated knowledge or the current 
speed of progress can significantly affect which results of a policy 
change have a dominant role in determining the policy’s desirability.  

Double-ratio tests can also suggest rules of thumb. For example, 
when technological development is characterized by enormous non-
patent-related drag — perhaps due to high regulatory, educational, or 
disruption costs for introducing new technologies — a policy instru-
ment that contributes incrementally to drag parameters but that also 
contributes nonnegligibly to push parameters will often accelerate 
progress. On the other hand, for technological situations in which 
non-patent-related drag is comparatively small, a policy instrument 
like patents that tends to add nontrivially to both pushes and drags 
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might be much more likely to act as a net impediment, rather than a 
net stimulant, to innovation. Such rules of thumb might help explain 
significant industry-based differences in views about patents’ useful-
ness. Companies experiencing high-drag conditions, such as cash-
strapped startups and regulation-saddled pharmaceutical companies, 
have commonly championed strong patent rights. Heavyweights of 
otherwise comparatively low-drag information technologies have 
been more skeptical.  

Part II’s model thus provides policymakers with useful insights 
into (1) the potential for different behavioral regimes for innovative 
progress, (2) the vulnerability of such behavioral regimes to change 
over time, (3) the ways in which a particular policy can contribute to 
push and drag, and (4) the existence of dynamic-elasticity or double-
ratio tests turning on the comparison of a policy’s percentage effects 
on push and drag parameters. On the other hand, Part II’s model pres-
ently is far from providing reliable quantitative predictions.122 Even if 
Part II’s model is the right one to develop such predictions, determi-
nation of input values for its push and drag parameters will likely be a 
nontrivial task. Even for a carefully chosen set of technologies under 
well-controlled circumstances, derivation of precise relations between 
particular policies and the values of push and drag parameters will 
likely be difficult. Systematic characterization of how tuning patent 
law’s various “levers”123 — for example, gatekeeping requirements 
such as nonobviousness and enablement, or patent-scope or remedies 
doctrines such as the doctrine of equivalents — affects push or drag 
parameters constitutes a project of its own. In the embryonic study of 
innovation dynamics, there remains much room for advance. 

                                                                                                                  
122. Cf. SOLOW, supra note 40, at 71 (“Any theory that says something about the real 

world is likely to have implications for policy. But it is only good sense to realize that an 
abstract theory, like the one I have been developing, can only say abstract things about 
economic policy.”). 

123. See generally Burk & Lemley, supra note 115 (discussing patent “levers”). 
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VI. APPENDIX 

A. Behavior at the Top of Two Example S-Shaped Curves 

In Part III.A of the main text, S-shaped curves are described as 
resulting from the following differential equation: 

dv/dt = α + βx – µ – [γ(x)]v    (Eq. 36), 

where γ(x) assumes the functional forms specified by Equations 29 
and 30, respectively. In the former case, x is described by a solution 
that converges to a finite value, xmax, with the difference between xmax 
and x decaying exponentially with time in the limit where 
(xmax − x)/xmax << 1.124 In the latter case, x continues to grow indefi-
nitely according to a power law, at least to leading order at large 
times.125 These leading-order behaviors are derived below. 

1. Asymptotic Behavior in the Vicinity of a Technological “Wall” 

Equation 29 provides that γ(x) = γ0/[1 – (x/xmax)q], where q > 0. 
For values of x sufficiently close to xmax, one can use the formula 
x = xmax(1 – f), where f << 1. Hence, v = –xmax(df/dt), and 
dv/dt = −xmax(d2f/dt2). Further, γ(x) = γ0/[1 – (1 – f)q]. For qf << 1, 
(1 −f )q ≈ 1 – qf. Hence, γ(x) ≈ γ0/qf. Substituting into Equation 36, 
one obtains: 

–f (d2f/dt2) ≈ (α/xmax + β – µ/xmax)f – βf 2 + (γ0/q)(df/dt) 
            (Eq. 37). 

Because f, df/dt, and d2f/dt2 are all expected to converge to zero as 
the “wall” at xmax is approached, second-order terms in these quanti-
ties, f (d2f/dt2) and –βxmax f 2, can be neglected in deriving leading-
order behavior. The resulting leading-order differential equation is 
df/dt ≈ –ζf, where ζ = q(α + βxmax – µ)/γ0xmax. This differential equa-
tion yields the solution f ≈ c5e–ζt, where c5 is a constant. 

2. Large-Time Behavior in the Presence of a Technological 
“Bottleneck” 

Equation 30 provides that γ(x) = γ0[1 + (x/xc)q], where q > 0. Sup-
pose that, for large times where (x/xc)q >> 1 and βx >> (α – µ), x 
grows exponentially with time: x ≈ ceλt. Then, to leading order, the 
[γ(x)]v-term in Equation 36 grows exponentially in proportion to 

                                                                                                                  
124. See supra text accompanying note 91. 
125. See supra text accompanying note 93.  
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e(q+1)λt. No other term in Equation 36 can match this level of exponen-
tial growth. Hence, as long as Equation 36 holds, the supposition of 
exponential growth cannot be correct. 

Suppose instead that leading-order growth proceeds according to 
a power law: x ≈ ctz, where z is a positive real number. In accordance 
with this power-law behavior, v ≈ cztz–1, and dv/dt ≈ cz(z–1)tz–2. To 
leading order in time t, Equation 36 then reduces to 
βctz ≈ γ0(c/xc)qczt(q+1)z–1. This relation holds for z = 1/q and 
c = xc(qβ/γ0)1/q. Consequently, there is a leading-order solution to 
Equation 36 in the large-time limit discussed: namely, x/xc ≈ (ςt)1/q 
with ς = qβ/γ0. 

B. Supplemental Dynamic-Elasticity Tests 

1. Δβ/β > Δγ/γ in a Large-Time Limit for Eq. 6 

For large times t where Equation 12 applies, x ≈ c1eκt. Given the 
exponential dependence of this leading-order behavior on κt and the 
only linear dependence on c1, it might be considered prima facie ob-
vious that, at least in a large-time limit, the leading-order test for 
whether a policy change increases the large-time value of x is whether 
that policy change increases κ.  

More detailed analysis confirms this intuition. Take Δx, Δc1, and 
Δκ to represent the changes in x, c1, and κ, respectively, due to the 
policy change. Then, the ratio of (a) the amount of cumulative techno-
logical progress under the policy change to (b) the amount of such 
progress without the policy change is approximately given by 
(x + Δx)/x = (c1 + Δc1)e(κ+Δκ)t/c1eκt = [(c1 + Δc1)/c1]e(Δκ)t. The policy 
change increases the amount of cumulative technological progress if 
and only if (x + Δx)/x > 1. Thus, to leading order, the policy change 
increases the amount of technological progress expected in the large-
time limit if and only if [(c1 + Δc1)/c1]e(Δκ)t > 1, which is equivalent to 
the condition Δκ > (1/t)ln[c1/(c1 + Δc1)]. As the time t goes to infinity 
(t → ∞) — or more generally, for t >> ln[c1/(c1 + Δc1)] — the latter 
condition can be treated as approximately equivalent to Δκ > 0. 

What is Δκ in terms of parameters such as α, β, and γ? From 
Equation 9, κ = (1/2)[(γ2 + 4β)1/2 – γ]. In a large-β limit where 
2β1/2 >> γ, it follows that κ ≈ β1/2 to leading order. Consequently, in 
this limit, the leading-order condition for a policy change that increas-
es long-term technological process is Δβ > 0. In this large-β limit, pos-
itive feedback so dominates long-term behavior that the leading-order 
question is whether the policy change further increases that feedback, 
without need for initial reference to the effect of the policy change on 
γ.  



No. 1] Innovation Dynamics and Patents 109 
 
On the other hand, in a small-β limit where 4β << γ2, κ can be ap-

proximated by κ ≈ β/γ. The question of whether a policy change in-
creases κ is then directly analogous to the question of whether a 
policy change increases the ratio on the right-hand side of Equation 
34, except with β taking the place of α' in Equation 34. Substituting 
accordingly for α' in Equation 35, one obtains the dynamic-elasticity 
or double-ratio test Δβ/β > Δγ/γ indicating when a policy change can 
be expected to promote progress at large times. 

2. Δβ/β > Δγ/γ in a Large-Time Limit for Eq. 14 

Equation 15 describes the leading-order behavior for cumulative 
technological progress x in a large-time limit where Equation 14 ap-
plies: x ≈ c3t1/(1–ε). Assuming that the policy change in question does 
not alter the exponent ε for the positive-feedback term βxε, one sees 
that, to leading order at large times, the change in x due to the policy 
change is given by the relation Δx ≈ (Δc3)t1/(1–ε). Consequently, the 
change in x is greater than zero if Δc3, the change in c3, is greater than 
zero. The leading-order policy question is whether the policy change 
increases c3. Equation 17 indicates that c3 = [β(1 – ε)/γ]1/(1–ε). Hence, 
where the exponent ε is unaffected by the policy change, the question 
of whether the policy change increases c3 is equivalent to the question 
of whether the policy change increases the ratio β/γ. As seen in the 
last paragraph of Part VI.B.1, this formulation of the leading-order 
question yields the ratio test Δβ/β > Δγ/γ. 

3. Δα′/α′ > Δξ/ξ in a Large-Time Limit for Eq. 18 with η = 1 and 
γ/[2(α′ξ)1/2] << 1 

Equation 24 indicates that, in a large-time limit for Equation 18, 
the speed v of technological progress becomes essentially equal to a 
terminal velocity vT, where vT = (φ – γ)/(2ξ). Hence, as with the analy-
sis that yielded Equation 35 in Part IV.B, the leading-order question 
for large times during which Equation 18 is applicable reduces to a 
question of whether the policy change increases vT. Recall from Equa-
tion 20 that φ = [γ2 + 4α′ξ]1/2. In a small-γ limit where 
γ/[2(α′ξ)1/2] << 1, it follows that φ ≈ 2(α′ξ)1/2 and also that 
φ − γ ≈ 2(α′ξ)1/2. Hence, to leading order, vT ≈ (α′/ξ)1/2. To a first ap-
proximation, the question of whether the policy change increases vT 
thus reduces to the question of whether the policy change increases 
the ratio α′/ξ. This formulation of the leading-order question is direct-
ly analogous to the question of whether a policy change increases the 
ratio on the right-hand side of Equation 34, with ξ taking the place of 
γ. Substituting accordingly for γ in Equation 35, one obtains the dy-
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namic-elasticity or double-ratio test Δα′/α′ > Δξ/ξ indicating when a 
policy change can be expected to promote progress at large times. 

4. Δα′/α′ > Δγ/γ in a Large-Time Limit for Eq. 18 with η = 1 and 
γ2/4α′ξ >> 1 

As in Part VI.B.3 of this Appendix, Equation 24 indicates that, in 
a large-time limit for Equation 18, the speed v of technological pro-
gress becomes essentially equal to a terminal velocity vT, where 
vT = (φ – γ)/2ξ. In a large-γ limit where γ2/4α′ξ >> 1, it follows that 
φ ≈ γ + 2α′ξ/γ and that, to leading order, φ – γ ≈ 2α′ξ/γ. Hence, to lead-
ing order, vT ≈ α′/γ. By following the reasoning appearing after Equa-
tion 34 in Part IV.C, one arrives at a dynamic-elasticity or double-
ratio test identical to that of Equation 35: Δα′/α′ > Δγ/γ. 

5. Δβ/β > Δξ/ξ in a Large-Time Limit for Eq. 1 

In a large-time limit for Equation 1 in which one cannot ignore 
either the supralinear ξv1+η term or the time dependence of the posi-
tive-feedback term βxε, the cumulative amount of technological pro-
gress x has the leading-order behavior indicated by Equation 26: 
x ≈ c4t(1+η)/(1+η–ε). Under the assumption that the policy change in ques-
tion does not affect the exponents ε and η, it follows that, to a first 
approximation, the policy change increases x at large times if the pol-
icy change increases c4. From Equation 28, 
c4 = [(1 + η − ε)/(1 + η)](1+η)/(1+η–ε)(β/ξ)1/(1+η–ε). Recall that, under the 
general assumptions that η > 0 and 0 < ε ≤ 1, 1 + η > ε and therefore 
1 + η – ε > 0. Hence, the exponent of the ratio β/ξ in the formula for c4 
is positive. Thus, where the policy change does not affect ε and η, the 
question of whether the policy change increases c4 is equivalent to the 
question of whether the policy change increases the ratio β/ξ. This 
formulation of the leading-order question is directly analogous to the 
question of whether a policy change increases the ratio on the right-
hand side of Equation 34, with β taking the place of α' and ξ taking 
the place of γ. Substituting accordingly for α' and γ in Equation 35, 
one obtains the dynamic-elasticity or double-ratio test Δβ/β > Δξ/ξ 
indicating when a policy change can be expected to promote progress 
at large times. 


