
Harvard Journal of Law & Technology
Volume 16, Number 2 Spring 2003

PUBLIC SUBSIDIES FOR OPEN SOURCE?

SOME ECONOMIC POLICY ISSUES OF THE
SOFTWARE MARKET

Klaus M. Schmidt† and Monika Schnitzer‡

TABLE OF CONTENTS

I. INTRODUCTION ...474
II. WHAT IS OPEN SOURCE? ...475
III. POTENTIAL FAILURES IN THE SOFTWARE MARKET477

A. Economies of Scale: Static Efficiency ...477
B. Incentives to Innovate: Dynamic Efficiency479
C. Network Effects and Switching Costs ..486

1. Network effects ..486
2. Switching Costs..490

IV. SCOPE FOR GOVERNMENT INTERVENTION AND
POSSIBLE DISTORTIONS ...493
A. Direct Subsidies for Specific Open-Source Projects494
B. Adopting Open-Source Software in the Public Sector...................496

1. Public Subsidies for OSS with Strong Network
Effects..497

2. Public Subsidies for OSS when Network Effects
Are Weak...498

C. Subsidies for Institutions that Coordinate Open-
Source Development ...499

V. CONCLUSION ...499
APPENDIX: A SIMPLE MODEL OF GOVERNMENT ADOPTION

OF OSS IN A SOFTWARE MARKET WITH HORIZONTAL
PRODUCT DIFFERENTIATION ..502

† University of Munich, CEPR and CESifo; Department of Economics, University of

Munich, Ludwigstr. 28 (Rgb.), D–80539 Munich, Germany, Tel.: +49–89–2180 2250, e-
mail: klaus.schmidt@lrz.uni-muenchen.de.

‡ University of Munich, CEPR and CESifo; Department of Economics, University of
Munich, Akademiestr. 1, D–80799 Munich, Germany, Tel.: +49-89-2180 2217, e-mail:
schnitzer@lrz.uni-muenchen.de.

The authors would like to thank David Evans, Joachim Henkel, Justin Johnson, Bernard
Reddy, and participants at the conference “Open Source Software: Economics, Law and
Policy” in Toulouse, June 20–21, 2002, for helpful comments and suggestions. Financial
support by National Economic Research Associates (NERA) is gratefully acknowledged.

474 Harvard Journal of Law & Technology [Vol. 16

I. INTRODUCTION

The open-source movement has been very successful in develop-
ing software products such as Linux, Apache, and Sendmail that are
now serious competitors to well-established proprietary software. It is
attracting a lot of attention not just in the computing community, but
also in the media, by academic economists, and most recently, by
politicians. In many different countries, there are political initiatives
trying to get public support for open source such as direct subsidies to
open-source projects, standards for use of open-source software in
government agencies, and replacement of some proprietary software
with open-source software in schools and universities.1

The body of academic literature on open source is small but rap-
idly growing. Most of this literature tries to understand the governing
structure of open-source projects.2 Why do programmers voluntarily
contribute to the public good of open source, even if there are no di-
rect financial rewards? Why have some projects attracted more volun-
tary support by programmers than others? Why do large corporations
such as IBM, HP, and Intel contribute significant capital investments
to open-source projects? What business models are likely to be suc-
cessful in an open-source market?

The question of the economic merits of direct and indirect public
subsidies for open-source projects has received very little attention in
the literature.3 This paper tries to fill this gap. We use modern eco-
nomic theory to analyze specific aspects of the software market in
general and of the market for open-source software in particular.
Drawing on this analysis, we develop a framework in which the im-
plications of governmental support for open-source projects can be
discussed.

In Section II, we briefly describe what is meant by “open source,”
what objectives and motivations drive the developers of open-source
software, and how this software is protected by different types of li-

1. See §IV for descriptions of several such initiatives.
2. See generally James Bessen, Open Source Software: Free Provision of Complex Pub-

lic Goods, Research on Innovation, at http://www.researchoninnovation.org/opensrc.pdf
(last visited Feb. 7, 2003); David S. Evans, Is Free Software the Wave of the Future?, THE
MILKEN INST. REV., Fourth Quarter 2002, at 32; Dietmar Harhoff et al., Profiting from
Voluntary Information Spillovers: How Users Benefit by Freely Revealing Their Innova-
tions (July 2000, revised May 2002) (Sloan Working Paper), at
http://web.mit.edu/evhippel/www/FreeRevealWP.pdf; Justin Pappas Johnson, Economics of
Open Source Software, at http://opensource.mit.edu/papers/johnsonopensource.pdf (May
17, 2001); Josh Lerner & Jean Tirole, Some Simple Economics of Open Source, 50 J. INDUS.
ECON. 197 (2002). Many additional working papers can be downloaded from
http://opensource.mit.edu.

3. A notable exception is David S. Evans & Bernard Reddy, Government Preferences for
Promoting Open-Source Software: A Solution in Search of a Problem, at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=313202 (May 21, 2002), which exam-
ines instances of government intervention in support of open-source software.

No. 2] Public Subsidies for Open Source 475

censes. In Section III, we discuss potential failures of the software
market. This market differs from standard textbook markets in three
important respects: (i) it is characterized by large economies of scale,
(ii) innovations and rapid technological progress are crucially impor-
tant, and (iii) there may be strong direct and indirect network effects
and high switching costs for consumers. Each of these characteristics
may give rise to inefficient market outcomes. We analyze the differ-
ences between proprietary software and open-source software with
respect to these potential market failures and ask whether open source
can mitigate them. In Section IV, we discuss the economic merits of
various policies of direct and indirect governmental support for open
source, some of which are already being implemented by several
countries. Section V concludes.

II. WHAT IS OPEN SOURCE?

Open-source software (“OSS”) is software for which the source
code is open, that is freely available, to the public: everybody has the
right not only to use the software, but also to extend it, to adapt it to
his or her own needs, and to redistribute the original or modified
software to others. Source code is written in a computer language
such as Java, C, or C++, which is easy to read for an experienced pro-
grammer. However, before it can be processed by a computer, it has
to be compiled, i.e., translated into machine code, which is just a se-
quence of zeros and ones. This machine code is very difficult to read
for humans, and also difficult and time-consuming to retranslate into
source code. Therefore, open source requires the free distribution of
not just the machine code but also the source code. Given the ready
availability of the source code for OSS, firms generally can charge
only low prices for such software. Because any recipient of the source
code can freely redistribute the software, prices are driven down to-
ward average distribution costs for OSS.

In contrast, a license for “proprietary software” is sold like any
other good or service. Because a firm that develops such software
wants to make a profit, it must protect its intellectual property rights.
The creator of a software program can obtain a copyright and (in
some countries) a patent that enables her to prevent others from copy-
ing or modifying her work. However, copyrights and patents are im-
perfect because it is often possible to circumvent them by modifying
the software without violating the legal rights of the owner. Thus, for
the protection of intellectual property rights in the software industry, it
is at least equally important to maintain the “trade secret” of how the
software works. Therefore, most commercial software packages con-
tain only the machine code while the source code is kept secret. As
Lerner and Tirole note, “When the source code is made available to

476 Harvard Journal of Law & Technology [Vol. 16

other firms . . . , it is typically licensed under very restrictive condi-
tions.”4

OSS must also be distinguished from “freeware” and “share-
ware.” Freeware is distributed for free, but users do not get access to
the source code and are not allowed to modify or extend the software.
The same holds for “shareware,” which is often offered for free for a
trial period or in a “light” version, so that consumers can try out the
software before they buy it. There is a great deal of freeware and
shareware available, including such well-known products as the
Adobe Acrobat Reader.

A variety of motivations and objectives underlie the open-source
movement. For example, the Free Software Foundation (“FSF”),
whose founder and most prominent speaker is MIT’s Richard
Stallman, argues that “free software” is, like “free speech,” a moral
principle: “Free software is a matter of freedom: people should be free
to use software in all the ways that are socially useful.”5 Restricting
the use of software and not sharing the source code is unethical, and
the ultimate goal is “that all published software should be free soft-
ware.”6 Other participants in the open-source movement have a more
pragmatic point of view: “When programmers can read, redistribute,
and modify the source code for a piece of software, the software
evolves” and “this rapid evolutionary process produces better soft-
ware than the traditional closed model.”7 They want to make this case
to the commercial world and are prepared to cooperate with proprie-
tary software developers in order to foster software development.

Despite the freely distributed nature of OSS, intellectual property
protections are critical to the open-source movement. If OSS lacked
such protections, anybody could take the software, modify it, obtain a
copyright for the modified version, and exclude others from using it.
Many licenses have been developed that restrict such commercializa-
tion of open-source code. The Free Software Foundation authored one
of the first of them, the “GNU General Public License” (“GPL”). Un-
der the GPL, software distributors must make the source code avail-
able to recipients of the software and may not restrict the rights of
recipients to make the software and source code available to others.8
Furthermore, all enhancements of the code, including code that com-
bines the OSS with some other, separately developed software, must

4. Lerner & Tirole, supra note 2, at 200 n.5.
5. Philosophy of the GNU Project, Free Software Foundation, at http://www.fsf.org/

philosophy/philosophy.html (last visited Feb. 9, 2003).
6. Richard M. Stallman, Speech at New York University (May 29, 2001), at

http://www.gnu.org/events/rms-nyu-2001-transcript.txt.
7. Open Source Initiative, at http://www.opensource.org/ (last visited Feb. 9, 2003).
8. See GNU General Public License §§ 3, 6, Free Software Foundation, at

http://www.fsf.org/copyleft/gpl.html (June 1991). The FSF calls this feature of the GPL
(and similar licenses) “copyleft.” See What Is Copyleft?, Free Software Foundation, at
http://www.fsf.org/copyleft/copyleft.html (last visited Feb. 9, 2003).

No. 2] Public Subsidies for Open Source 477

be licensed according to the terms of the GPL.9 Thus, the GPL is “vi-
ral” in the sense that any program making use of code covered by the
GPL becomes covered by the GPL as well.

The Berkeley Software Distribution (“BSD”) license exemplifies
a more liberal approach.10 A user who redistributes a BSD-licensed
program, whether modified or not, must retain the copyright notices in
the program code, but faces no other serious restrictions. Software
licensed under BSD is not viral and does not turn proprietary software
that builds on or interacts with it into open source. The Open Source
Initiative (“OSI”) publishes a list of other frequently used licenses and
indicates the types of terms a software license should (and should not)
contain in order to be considered open source.11

III. POTENTIAL FAILURES IN THE SOFTWARE MARKET

A. Economies of Scale: Static Efficiency

In a static market (with a given technology and no innovations)
the standard welfare measure is the sum of consumer surplus and pro-
ducer surplus.12 Total surplus is maximized if goods are priced at
marginal cost. If the minimum efficient scale is small compared to the
size of the market, the competitive price in a long-run equilibrium
with free entry equals marginal cost, which in turn equals average
cost. Under such conditions, all firms will make zero profits (which
include a risk-adjusted normal return to capital). However, the pro-
duction of any substantial piece of software requires a significant
fixed cost (sometimes called “first copy cost”) in order to develop the
software, whereas the costs of duplication and distribution are typi-
cally very small and constant or decreasing with the level of output.
For large volumes, the largest component of marginal cost may be
support costs, which may have both fixed and constant marginal com-
ponents. Thus, the production of a given software product is charac-

9. The GPL requires: “You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.” GNU General
Public License § 2, Free Software Foundation, at http://www.fsf.org/copyleft/gpl.html (June
1991). See Evans & Reddy, supra note 3, at 25–26, for a more detailed critical discussion of
the GPL.

10. See BSD Today: Your Daily Source for BSD News and Information, at
http://www.bsdtoday.com; Open Source Initiative, at www.opensource.org.

11. The Approved Licenses, Open Source Initiative, at http://www.opensource.org/
licenses/index.html (last visited Feb. 9, 2003); The Open Source Definition, Open Source
Initiative, at http://www.opensource.org/docs/definition.html (last visited Feb. 13, 2003).

12. Strictly speaking, this measure is appropriate only if there are no income effects.
However, even if there are non-zero income effects, the measure of consumer surplus ob-
tained from a Marshallian demand function serves to approximate the actual welfare change
closely. See Robert D. Willig, Consumer's Surplus Without Apology, 66 AM. ECON. REV.
589 (1976).

478 Harvard Journal of Law & Technology [Vol. 16

terized by economies of scale, and the market for a given software
product is a “natural monopoly.”13 Therefore, static efficiency re-
quires that the whole market be served by just one firm, and that this
firm charge prices equal to marginal costs.

From a static point of view, OSS has the advantage that it is dis-
tributed for free (or for a small fee reflecting distribution costs), which
is socially efficient. A proprietary software developer cannot price at
marginal cost. If he does not charge at least average cost, where aver-
age cost includes a risk-adjusted normal return on capital, he will
make expected losses. Of course, a profit-maximizing software devel-
oper would like to charge higher prices. However, even if she serves
the market as a monopolist, it is not necessarily the case that prices
significantly above average cost can be sustained. There are several
reasons why a monopolist may not be able to achieve supra-normal
profits:

• Even if competition within the market is not possible, there
may be competition for the market.14 If there are no barriers
to entry, competition for the market forces the incumbent
monopolist to price at average cost in order to prevent the
market from being taken over by a competitor. So, the crucial
question is how large barriers to entry are in the software
market. The fixed costs that are necessary to develop a soft-
ware product are largely sunk. Thus, the incumbent monopo-
list may price below average cost if entry occurs, which may
eliminate profits for entrants and deter potential entrants.
Also, there may be network effects (especially if the products
offered by the incumbent and by the entrant are not compati-
ble) and switching costs for consumers, which may prevent
them from adopting the entrant's product even if it is priced
below the incumbent's software.15 On the other hand, rapid
technological progress in the software market may facilitate
entry. The software industry has seen many instances where
new products offered by new companies have driven incum-
bent products with large market shares out of the market.
Therefore, the threat of entry does impose some restrictions
on the pricing policy of incumbent software producers.

• Software is a durable good. Once installed, it could in princi-
ple run forever, and it “wears out” only due to technological

13. Note that increasing returns to scale imply here that the cost function is “strictly

subadditive,” which is the formal requirement for a “natural monopoly.” See WILLIAM J.
BAUMOL ET AL., CONTESTABLE MARKETS AND THE THEORY OF INDUSTRY STRUCTURE 17
(1982).

14. See Harold Demsetz, Why Regulate Utilities?, 11 J.L. & ECON. 55, 56–58 (1968);
BAUMOL ET AL., supra note 13.

15. See discussion infra §III.C.

No. 2] Public Subsidies for Open Source 479

change. Thus, once the monopolist has sold the software at a
high price to those consumers who value it most, she has an
incentive to lower the price in order to sell to others who are
willing to pay more than her marginal cost. So, over time,
prices will tend to fall until they reach marginal cost. If con-
sumers anticipate this effect, they will wait in order to buy at
lower future prices. The Coase Conjecture suggests that such
behavior may force the monopolist to lower her price very
rapidly and to sell at close to marginal cost almost instanta-
neously.16 However, the extreme result suggested by the
Coase Conjecture is unlikely to apply to the software market.
For example, if there is a constant flow of new customers
with high valuations entering the market, the monopolist's in-
centive to lower her price is reduced.17 Furthermore, if there
is rapid technological progress and the monopolist continues
to improve her product, then the software becomes less dura-
ble and “wears out” more quickly. Therefore, old customers
with high valuations may be willing to upgrade at high prices.
Again, this reduces the monopolist's incentive to lower the
price. Finally, sometimes the monopolist can use contractual
provisions in order to commit not to lower her price in the fu-
ture.18

• The monopolist often faces competition from a large stock of
older versions of her own software. Consumers will not buy a
new version if its cost exceeds the value added to the older
version.

To summarize, there are several constraints on the pricing policy

of a proprietary software developer that may induce her to charge
prices significantly lower than monopoly prices. Nevertheless, OSS is
more efficient from a static point of view because it is priced at mar-
ginal cost (i.e., sold at distribution cost or given away for free).

B. Incentives to Innovate: Dynamic Efficiency

In a dynamic market (one characterized by rapid technological
change), efficiency requires not only that goods are sold to all con-
sumers willing to pay more than marginal cost, but also that firms

16. See Ronald H. Coase, Durability and Monopoly, 15 J.L. & ECON. 143, 143 (1972);

Faruk Gul et al. Foundations of Dynamic Monopoly and the Coase Conjecture, 39 J. ECON.
THEORY 155, 168–69 (1986).

17. See Joel Sobel, Durable Goods Monopoly with Entry of New Consumers, 59
ECONOMETRICA 1455, 1463 (1991).

18. For example, she can rent rather than sell the software to her customers. In this case,
if she lowers the price, she has to do so for all customers, not just for new ones. Much soft-
ware can in effect be “rented” through the payment of periodic license or maintenance fees.

480 Harvard Journal of Law & Technology [Vol. 16

have the right incentives to innovate efficiently. In such a Schumpete-
rian world,19 innovation is a high stakes activity because only those
firms who are more successful innovators than their competitors will
survive. Firms engage in costly innovative activities only if they can
protect their intellectual property and only if they can compensate for
the costs of failed innovations by charging more than average cost for
successful ones.

Clearly, the market for software has changed very rapidly over
the last twenty years. Spurred by enormous technological progress in
the production of computer hardware, many new and more sophisti-
cated software products have been developed. Many software prod-
ucts that dominated the market in the 1980’s and early 1990’s have
been leapfrogged by superior offerings from competitors, and are now
almost forgotten. Some companies maintained or extended their mar-
ket position by continuously improving the design and functionality of
their software products, and by adding many new features. Thus, there
can be no doubt that innovation and technological progress play a cru-
cial role in the development of the software market.

A profit-maximizing firm would have an incentive to innovate ef-
ficiently if the expected profit from an innovation equaled its expected
net social gain. In reality, this is very unlikely to be the case. The lit-
erature on the incentives for research and development (“R&D”) and
innovation has pointed out three external effects that may distort in-
novation incentives:20

• The consumer surplus effect stems from the fact that the in-

novating firm cannot perfectly price discriminate and there-
fore cannot capture the entire increase of consumer surplus
generated by an innovation. This is a positive externality of
R&D that tends to reduce the incentive to innovate.

• The R&D effect arises if a new technology developed in one
market may be usefully applied to other markets. It is a posi-
tive externality stemming from positive technological spill-
overs on other markets and technologies. To the degree that
the innovator is unable to fully control the use of her new
ideas by other firms, this effect also tends to reduce innova-
tion incentives.

• Finally, the business-stealing effect occurs when introduction
of a superior technology makes some existing products less

19. JOSEPH SCHUMPETER, CAPITALISM, SOCIALISM AND DEMOCRACY 110 (1st Harper

Colophon ed., Harper & Row 1975) (1942).
20. See e.g., Paul M. Romer, Endogenous Technological Change, 98 J. POL. ECON. 71

(1990); GENE M. GROSSMAN & ELHANAN HELPMAN, INNOVATION AND GROWTH IN THE
GLOBAL ECONOMY 105–06 (1991); Phillipe Aghion & Peter Howitt, A Model of Growth
Through Creative Destruction, 60 ECONOMETRICA 323 (1992).

No. 2] Public Subsidies for Open Source 481

attractive and therefore takes away some of the revenues that
were previously earned by producers of those products. This
externality is negative. Note that there is a private but no so-
cial return from this revenue-shifting, so the business-stealing
effect tends to induce too much R&D.

The net effect of these three externalities is ambiguous. It is pos-

sible to construct examples where the business-stealing effect out-
weighs both the consumer surplus and the R&D effects, so that
incentives to innovate are too strong.21 However, it is generally be-
lieved that the most typical situation is for the overall externality to be
positive, so that incentives to innovate are too weak.22 This is particu-
larly plausible in the software market, where the protection of intellec-
tual property rights is difficult.

What are the incentives of programmers to contribute to the de-
velopment of OSS? At first glance, it seems puzzling that OSS exists
at all. After all, there are no direct pecuniary incentives to develop
software that will be freely distributed. Some commentators have ar-
gued that the open-source community is a “gift culture” that is moti-
vated by altruism and reciprocity.23 According to this view, people
contribute to the public good of open source because they enjoy being
part of the open-source community, helping others, and reciprocating
to those who have helped them. However, it is not clear why being
“part of the community” is more exciting with open source than with
any other industry.24 Furthermore, while it is now widely acknowl-
edged that reciprocity plays an important role in small group interac-
tions,25 it is very unlikely that altruism and/or reciprocity provide
sufficient incentives to explain activity on such an enormous scale; we
do not observe similar patterns of behavior in most other areas of eco-
nomic activity.26 So what additional incentives motivate programmers
to write OSS?

Many contributors to OSS are sophisticated users. For them, the
cost of fixing a bug, customizing a piece of software to their own
needs, or developing a modest new application is often fairly small. If
they have access to the source code, it is relatively easy to spot weak

21. See Aghion & Howitt, supra note 20.
22. For example, in the model by Romer, supra note 20, the consumer surplus effect and

the business-stealing effect just cancel out, so only the positive R&D effect remains.
23. See Eric S. Raymond, Homesteading the Noosphere, 3 FIRST MONDAY 10.2 (Oct. 5,

1998), at http://www.firstmonday.dk/issues/issue3_10/raymond/.
24. See Lerner & Tirole, supra note 2, at 217 n.22.
25. See Ernst Fehr & Klaus M. Schmidt, Theories of Fairness and Reciprocity – Evi-

dence and Economic Applications, in ADVANCES IN ECONOMIC THEORY, EIGHTH WORLD
CONGRESS (Matthias Dewatripont et al. eds., forthcoming 2003), at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=255223, for a survey on the recent theo-
retical and experimental literature on this topic.

26. See id.

482 Harvard Journal of Law & Technology [Vol. 16

points and to write new code for improvements. The opportunity cost
of sharing the new code with others is also small. If the improvement
is modest, it is not worthwhile to copyright or otherwise protect the
idea and try to sell it. Furthermore, the Internet provides a very effi-
cient and inexpensive way to make the innovation accessible to the
public. So why not share it with other colleagues?27

While this argument can explain why bug-fixing and small im-
provements are provided by thousands of programmers from all over
the world, it cannot explain why some people devote an enormous
amount of time and effort in developing a major improvement or a
substantial new program. Like the writing of commercial code, this
has to be done by a small group of people who coordinate their efforts
and work closely together.28 Lerner & Tirole argue that there are
strong signaling incentives that can explain this behavior.29 A pro-
grammer who solved a difficult problem or contributed an important
new piece of software signals her outstanding abilities to the outside
world. She is recognized by her peers, may get better future job offers,
may be invited to participate in commercial open-source projects, or
may have better access to the venture capital market if she wants to
start her own business.30 Economic theory suggests that this signaling
incentive is stronger the more visible the performance of the pro-
grammer and the more informative the performance is about her tal-
ent.31

27. See Johnson, supra note 2, for a formal game-theoretic model of the incentives to

voluntarily contribute to the public good of open-source software. The open-source move-
ment is not the only user-innovation community. See ERIC VON HIPPEL, THE SOURCES OF
INNOVATION 11–26, 28–30, 93–100, 108–15 (1988), and Harhoff et al., supra note 2, §
2.2.1–2.2.3, for many other examples of industries in which customers frequently contribute
to the development of new products and production techniques on a voluntary basis. How-
ever, in all of these industries, user-innovation communities and proprietary innovation
coexist. Harhoff et al. point out several additional incentives to freely reveal innovations. In
particular, a user who made an innovation may reveal it to the manufacturer in order to
induce her to adopt the innovation and improve on it. See id. § 2.2.2–2.2.4. Furthermore, by
freely revealing an innovation, a user may induce other users to adopt the solution as well,
which may set a new “standard” that in turn induces other manufacturers to provide com-
plementary product improvements. See id. § 2.2.1. These incentives are more likely to work
if there is no competition between users. See id. § 2.1.

28. One study reports that 83% to 91% of changes in the code of the Apache server soft-
ware have been written by just 15 top developers. See Audris Mockus et al., A Case Study of
Open Source Software Development: The Apache Server, in PROCEEDINGS OF THE 22ND
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (2000),
http://portal.acm.org/citation.cfm?doid=337180.337209.

29. Lerner & Tirole, supra note 2, at 213–14.
30. These delayed pecuniary incentives are partially acknowledged by open-source advo-

cates. For example, Eric Raymond writes: “It can get you a better job offer, or a consulting
contract, or a book deal.” Raymond, supra note 23. But, according to Raymond, such bene-
fits are “at best rare and marginal for most hackers.” Id.

31. See Lerner & Tirole, supra note 2, at 214; Bengt Holmström, Managerial Incentive
Problems: A Dynamic Perspective, 66 REV. ECON. STUD. 169 (1999).

No. 2] Public Subsidies for Open Source 483

The signaling account is consistent with several empirical obser-

vations. First, giving credit to programmers is strongly emphasized in
the open-source movement. Most projects recognize all contributors
on their website and highlight the contributions of the most committed
programmers.32 Raymond points out that “[r]emoving a person's name
from a project history, credits or maintainer list is absolutely not done
without the person's explicit consent,” and that “[s]urreptitiously fil-
ing someone's name off a project is, in cultural context, one of the
ultimate crimes.”33 Second, most open-source programs are written
for sophisticated users who can evaluate the difficulty of the task and
the importance of the contribution. In particular, server operating sys-
tems and server applications have done very well, while far fewer
consumer applications are written as open source. Third, most open-
source projects have a modular structure. This not only facilitates the
cooperation of many independent programmers who may be spread all
over the world, but also highlights the individual contribution of each
programmer. Finally, there is substantial evidence that contributing to
open source has helped many programmers gain access to venture
capital and receive attractive job offers from commercial software
developers.34

Finally, some programmers devote time to the development of
OSS as part of their employment with commercial software and
hardware companies. These companies have an incentive to invest in
the development of OSS that complements their commercial products.
Some firms, such as Red Hat, VA Linux, and SuSE, provide services
and products that are complementary to Linux but that are not effi-
ciently supplied by the open-source movement.35 If Linux is improved
and becomes more widely adopted, these firms gain access to a larger
market36 Similarly, since server hardware and server operating sys-
tems are complements, server vendors will realize increased profits if
an open-source operating system like Linux takes market share from
the proprietary standard, Microsoft Windows.37 Because companies
cannot prevent others from benefiting from its investment in open-
source, companies have a strong incentive to free ride on the contribu-

32. See Lerner & Tirole, supra note 2, at 218.
33. Raymond, supra note 23. See also The Open Source Definition § 4, Open Source Ini-

tiative, at http://www.opensource.org/docs/definition.html (last visited Feb. 13, 2003)
(“[A]uthors . . . have [the] right to . . . protect their reputations.”).

34. For example, Lerner & Tirole report that “the founders of Sun, Netscape, and Red
Hat had signaled their talent in the open source world.” Lerner & Tirole, supra note 2, at
218. See id. at 219, for a tabular summary of the commercial roles of several other open-
source participants.

35. See id. at 225.
36. See id.
37. See id. Firms employ several other more or less successful open source strategies. See

id. at 225–27.

484 Harvard Journal of Law & Technology [Vol. 16

tions of others to open source, and their subsidies to OSS develop-
ment are likely to remain limited.38

Comparing the incentives to innovate for proprietary and OSS
developers, the open-source movement exploits some incentives in
ways proprietary software developers cannot readily mimic. For ex-
ample, because commercial developers do not make source code pub-
licly available, it is impossible for users to fix bugs or customize the
software to their own needs. The open-source mode, in contrast, al-
lows users to act on their incentives to improve the software. So, by
making the source code available, open-source facilitates low-cost,
large-scale, parallel innovation.39 Furthermore, as Lerner & Tirole
point out, signaling incentives are greatly diminished in the proprie-
tary development context:

[C]ommercial companies will never be able to fully
duplicate the visibility of performance reached in the
open source world. . . . [They] do not like their key
employees to become highly visible, lest they be
hired away by competitors. But, to a large extent,
firms also realize that this very visibility enables
them to attract talented individuals and provides a
powerful incentive to existing employees.40

However, comparing the private benefits accruing to OSS devel-
opers to the increase in social benefits (i.e., consumer surplus) that
can be generated by innovative new software, it is apparent that the
incentives for innovation are far too small in the open-source mode.

A major advantage of the proprietary mode is that it allows soft-
ware developers to capture at least some of the fruits of their efforts,
i.e., to turn at least some of the consumer surplus generated by their
innovations into profit. As in all other industries, the profit motive
provides a very powerful incentive to innovate that is not present in
the open-source world. As Schumpeter pointed out:

It is . . . quite wrong . . . to say, as so many econo-
mists do, that capitalist enterprise was one, and tech-
nological progress a second, distinct factor in the
observed development of output; they were essen-

38. See id.
39. Some commercial software companies try to partially mimic open source by promot-

ing “widespread code sharing within the company,” Id. at 224, and by making the source
code available to some core customers (under restrictive conditions).

40. Id. at 223.

No. 2] Public Subsidies for Open Source 485

tially one and the same thing or, as we may also put
it, the former was the propelling force of the latter.41

Twenty years later, Schmookler summarized his empirical findings on
what drives technological progress:

Despite the popularity of the idea that scientific dis-
coveries and major inventions typically provide the
stimulus for inventions, the historical record of im-
portant inventions in petroleum refining, paper mak-
ing, railroading, and farming revealed not a single,
unambiguous instance in which either discoveries or
inventions played the role hypothesized. Instead, in
hundreds of cases, the stimulus was the recognition
of a costly problem to be solved or a potentially prof-
itable opportunity to be seized; in short, a technical
problem or opportunity evaluated in economic
terms.42

There is no reason to believe that the software industry differs
fundamentally from all other industries when it comes to incentives
for innovation. If it had not been possible to appropriate the profits of
risky software development projects, the rate of technological pro-
gress in the software industry over the past decades would have been
much lower.

Incentives to innovate must be assessed with respect to not only
the amount of effort and investment they promote, but also the direc-
tion of innovation and its responsiveness to consumer demand. A pro-
prietary software developer has a strong incentive to respond to the
needs of all potential users of his software. The larger the group of
consumers who value his software, and the greater the magnitude of
their valuations, the more copies he can sell and the more he can
charge. A proprietary software developer thus has a strong profit mo-
tive to identify the needs of consumers through market research and to
develop software that satisfies those needs.

While the open-source mode allows sophisticated users to de-
velop and customize software to suit their own purposes, it provides
no incentive to cater to mass consumer markets. OSS developers are
sophisticated users and IT professionals who respond to their own
needs for functional software and enjoy challenging programming
tasks. They also respond to the needs of, and seek recognition from,
other sophisticated users and IT professionals. Writing software for
unsophisticated end users involves many tasks that may be intellectu-

41. Schumpeter, supra note 19.
42. JACOB SCHMOOKLER, INVENTION AND ECONOMIC GROWTH 199 (1966).

486 Harvard Journal of Law & Technology [Vol. 16

ally unsatisfying (such as providing a user-friendly interface or de-
tailed and easy-to-read documentation) and that are poorly suited to
gaining peer recognition.43

Furthermore, developing software for the consumer market re-
quires detailed knowledge of the preferences and practices of end us-
ers. For example, in order to write good accounting software, it is
necessary not only to have good programmers, but also in-depth
knowledge of the rules and requirements of accounting. Such pro-
gramming requires the close collaboration of IT professionals with
accountants and experts in several other fields. Similarly, the devel-
opment of a sophisticated computer game requires the collaboration of
programmers with graphic designers, marketing experts, etc. Even the
development of office software, such as a word processor or spread-
sheet application, requires detailed research on the needs and prefer-
ences of the least sophisticated users. In contrast to proprietary
development, the open-source mode provides insufficient incentives
to engage in such activities.

Thus, it is not surprising that the open-source movement has been
most successful in the development of operating systems and server
application software that respond directly to the needs of IT profes-
sionals and other computer experts, while it has been much less suc-
cessful in developing end user applications. To be sure, there are some
end user applications that are licensed as open source. However, the
most successful of these applications have been developed in the pro-
prietary mode and released as open source only after failing commer-
cially (e.g., the Star Office Suite and the Netscape Internet browser).

C. Network Effects and Switching Costs

It is often argued that strong network effects and switching costs
cause market failures on the software market, and that these character-
istics restrict competition.44 In this Section, we give a brief summary
of the main effects that can arise if network effects and/or switching
costs are present. As we will see, the problems that arise apply largely
to both proprietary and OSS.

1. Network effects

Network effects arise if there is a complementary relationship be-
tween the adoption of a good by different customers: additional adop-
tion makes existing users better off (i.e., increases their total utility

43. See Lerner & Tirole, supra note 2, at 217 & n.23.
44. See Joseph Farrell & Paul Klemperer, Coordination and Lock-in: Competition with

Switching Costs and Network Effects 44–45, at
http://www.nuff.ox.ac.uk/users/klemperer/papers.html (Dec. 2001).

No. 2] Public Subsidies for Open Source 487

from adoption) and increases the incentive to adopt (i.e., increases
their marginal utility). The software market is characterized by both
“direct” and “indirect” network effects.45

• Direct network effects arise if my utility from using a good is

directly increased when other people use the same good, as
well. For example, if I want to share files with other people, it
is important to me that my software is compatible with other
people's software.

• Indirect network effects arise if wider adoption benefits users
by changing the behavior of third actors, e.g. sellers of that
good, or sellers or buyers of some related goods. For exam-
ple, if an operating system is widely adopted, then other
software companies who write application software have a
stronger incentive to develop software that is compatible with
this operating system.

Network effects often give rise to external effects.46 If customer A

decides whether or not to adopt a certain software product, he does
not internalize the effect his adoption decision has on other customers.
This suggests that there will be under-adoption of the network good.
Even if priced at marginal cost, too few consumers will buy the net-
work good because they do not take into account the positive external
effects of their adoption on other consumers.

We will say that network effects are strong if they outweigh pref-
erences for product A vs. product B, i.e. a consumer wants to adopt A
if all other consumers adopt A, even if this consumer would have pre-
ferred that everybody adopts software B.47 In this case “all adopt A”
and “all adopt B” are both Nash equilibria of a coordination game,
and efficiency requires that the entire market adopts the same product.
We will say that network effects are weak if for at least two products
there exist groups of customers who prefer one product no matter
what all other consumers adopt.

With strong network effects there may be coordination problems.
If consumers have different expectations about which software prod-
uct will be the standard in the future, several incompatible products
may coexist on the market for an extended period of time, which may
be very inefficient. For example, a potentially serious problem of OSS
is “forking.” If software developers disagree on how a certain soft-

45. There may also be pecuniary network effects, e.g., if the fact that more people adopt a
certain good reduces its price due to reduced production costs or improved terms of trade for
consumers.

46. Note that not all network effects are external effects. First of all, network effects may
be pecuniary. Secondly, it may be possible to internalize network effects through contrac-
tual provisions. See Farrell & Klemperer, supra note 44, at 44–45.

47. See id. at 28.

488 Harvard Journal of Law & Technology [Vol. 16

ware product should be developed, it sometimes happens that differ-
ent groups of software developers disseminate different versions that
are incompatible with each other. A proprietary software developer
who owns and controls his software can easily prevent this from hap-
pening by imposing a development path that must be followed. In
contrast, OSS is not controlled by anybody, so it is much more diffi-
cult to prevent forking. The open-source movement recognizes this
problem and tries to solve it by imposing a social norm against fork-
ing.48

Even if consumers manage to coordinate their expectations, they
may still fail to coordinate on the most efficient network good. For
example, if there are two competing products, then there is an equilib-
rium if all consumers buy software A, but there is also an equilibrium
if all consumers buy software B. Which product is adopted depends
on which good consumers expect to be adopted. Even if everyone
agrees in software A’s superiority, an expectation that everyone will
adopt software B will be self-fulfilling. Thus, with network goods
there may be a market failure if consumers coordinate on the “wrong”
software.

However, there are several arguments suggesting that consumers
may be able to coordinate efficiently. Let us first consider the case
where the network goods can be Pareto-ranked, i.e. all consumers
agree which good offers the highest surplus.

• If consumers' adoption decisions are sequential, a simple

backward induction argument suggests that they will coordi-
nate on the Pareto-efficient network good. This is most easily
understood in the case of just two consumers. The second
consumer will adopt whatever the first consumer bought. An-
ticipating this, the first consumer will buy the network good
offering the highest surplus. This argument is particularly
convincing if there is one large customer — or a large group
of customers coordinating their behavior — who moves first.

• If consumers can coordinate their behavior through commu-
nications or contracts, they will coordinate on the good that
offers the highest surplus.

• If expectations track surplus, i.e. if each consumer expects
that all other consumers will adopt the good that offers the
highest social surplus, then everybody will adopt the Pareto
superior good.

48. Raymond, supra note 23, discusses at length why forking could be a serious problem

of the open source movement and why there is a “taboo” against it: “There is strong social
pressure against forking projects. It does not happen except under plea of dire necessity,
with much public self-justification, and with a renaming.” Id.

No. 2] Public Subsidies for Open Source 489

But it is also possible that consumers coordinate on the wrong

good, in particular if there is inertia in adoption. For example, one
possibility is that after good A has been widely adopted a new good B
is developed that offers a higher surplus on a clean-slate comparison.
But if everybody expects everyone else to stick to good A, nobody is
going to adopt the superior good B. On the other hand, if there is a
large installed base of A and if consumers did make relationship spe-
cific investments that are lost if they switch to B (see the discussion of
switching costs below), it may be more efficient that customers stick
to A rather than switching to B.

If the network goods are differentiated and if some consumers
prefer that everybody uses software A while others prefer product B,
the analysis gets a little more complicated. Suppose again that net-
work effects are strong in the sense that it is efficient that everybody
adopts network good A. If expectations track surplus in the sense that
people expect that eventually the most efficient network good will
prevail, or if a critical mass of consumers who prefer software A can
coordinate their behavior, then software A will again be adopted.
However, if early adopters prefer good B, later adopters may be in-
duced to buy good B as well, even if this is socially inefficient. But,
again, switching costs of early adopters have to be taken into account
when the efficiency of moving to good A is assessed.

Thus, strong network effects make markets “tippy.” One network
will tend to acquire an overwhelming market share. If consumers
manage to coordinate on the right network, this monopolistic outcome
is socially efficient. However, which network wins may depend on
history and be influenced by large early movers, such as the govern-
ment or a group of customers who coordinate their behavior by setting
standards.

If network effects are “weak” so that two or more networks can
coexist in the market, for example because the goods are strongly
horizontally differentiated, then network externalities are much
smaller. If network A wins an additional customer from network B,
network A has a positive external effect on all members of network A
but a negative external effect on all users of network B. The sign of
the net effect depends on the relative sizes of the two networks. If
network A is small as compared to network B, then there are rela-
tively few people who benefit from the positive externality of the cus-
tomer who switched to A, while there are many people who suffer in
network B, so that the net effect is likely to be negative. Two net-
works can also coexist in the market if they are compatible with one
another. In this case, the conventional lesson applies that market
power depends on the degree of product differentiation.

The discussion so far completely ignores pricing. The large body
of literature on pricing with network effects does not offer a clear

490 Harvard Journal of Law & Technology [Vol. 16

conclusion.49 Network effects may weaken price competition, but they
may also intensify price competition as compared to a situation with-
out network effects, because each firm wants to acquire a critical mass
of consumers that tips the balance in its favor.

2. Switching Costs

A product has switching costs if a buyer will purchase it repeat-
edly or if he will purchase complementary goods from the same seller
in the future. The switching cost arises because the consumer has
made an investment specific to the seller that would have to be dupli-
cated if he switches to a different seller.50 This investment may be in
equipment, in learning how to use the software, in buying comple-
mentary software that is not compatible with the other product, or in
setting up a relationship with the seller.51 After consumers are locked-
in with one seller, this seller may have an incentive to exploit his ex-
post monopoly power. However, this does not necessarily imply a
market failure.

• If firms can commit to future prices and qualities, competi-

tion will be for the “lifecycle” of purchases. Each consumer
looks at which seller offers the highest net surplus from the
bundle of goods she wants to consume — now and in the fu-
ture — and prices will be driven down to the competitive
level.

• Even if such complete contracts on future prices and qualities
are not feasible, the outcome may still be highly competitive.
To see this, suppose that there are two firms each offering
two complementary goods, e.g. an operating system and ap-
plication software and that a consumer wants to buy the two
goods in sequence. If she bought the OS from firm A, she
would have to incur a switching cost if using the application
software of firm B. Thus, firm A will charge a price for the
application software that exploits the switching cost of this
consumer and earn a positive rent in the application software
market. However, the prospect of this rent will intensify
competition for the first good and drive its price below cost.
This price pattern of bargains followed by rip-offs is similar

49. See supra note 46 for a survey.
50. See id. at 8.
51. In the following we will assume that switching costs are real social costs. Switching

costs could also be contractual or purely pecuniary, e.g., in airlines' “frequent-flyer” pro-
grams or in “loyalty contracts” that offer rebates for repeated purchases.

No. 2] Public Subsidies for Open Source 491

to the price patterns of other goods with measurable switch-
ing costs.52

Nevertheless, switching costs may give rise to inefficiencies. In

particular, if sellers cannot price discriminate perfectly, there may be
socially excessive consumption of the first good that is priced below
cost and too little consumption of the second good that is priced above
cost. Furthermore, there may be inefficient switching. If a consumer
constitutes a large fraction of the market, it may be profitable to use
goods from both sellers and to incur the switching cost in order to
affect the terms of trade for future goods. While this may be a profit-
able strategy in markets such as the defense industry, where there are
few buyers with substantial market power, it does not seem to make
much sense in the market for packaged software. Even the software
purchases of a big company or of the government of a large country
are small as compared to total market demand. Finally, switching is
inefficient because relationship-specific investments have to be dupli-
cated.

The main concern about switching costs is their effect on market
entry. It is often claimed that high switching costs make it too difficult
for newcomers to enter the market but the effect is ambiguous.53

• If there is a constant flow of new customers, switching costs

may make small-scale entry too easy. Because the incumbent
firms have a stock of customers who are locked in already,
they are not willing to lower their prices in order to compete
for new customers. Therefore, a new entrant with no cus-
tomer base can enter the market and sell to new customers
even if this entrant has higher costs than the incumbent, re-
sulting in excessive entry from a social welfare point of view.

• On the other hand, if entry has to be large scale (e.g., because
of large economies of scale or due to network effects) it may
be very difficult to take over the entire market. However, this
does not imply a market failure. Even if the entrant can pro-
duce the good at a lower total cost than the incumbent,
switching is inefficient if the total cost saving is smaller than
the switching costs that would have to be incurred by all ex-
isting customers. If switching costs are large and there are
real social costs, it is efficient that there is no market entry.

• Entry may also be too hard if switching costs are created arti-
ficially by the incumbent, for example, if the switching costs
are contractual — as with “loyalty” programs — or if the in-

52. A well-known example is the strategy to give away free razors in order to sell more

razor blades.
 53. See Farrell & Klemperer, supra note 44, at 29–32.

492 Harvard Journal of Law & Technology [Vol. 16

compatibility between different products is not warranted for
technological reasons but imposed by the incumbent to deter
potential entrants.

• Entry may also be too easy or too hard for other reasons. For
example, it may be too hard if entry reduces the market price
so that some of the surplus from entry is captured by con-
sumers, or it may be too easy if its main effect is to shift prof-
its from the incumbent to the entrant. However, these
arguments have nothing to do with switching costs and they
are not specific to the software market.

To summarize, if there are significant switching costs it is likely

that locked-in consumers are charged prices above costs by a proprie-
tary software developer, there is little actual switching taking place,
and large-scale entry is difficult and rare. However, this does not im-
ply that markets with switching costs are uncompetitive or that there
is a market failure. As we have shown, competition in switching-cost
markets can be intense and need not generate supra-normal profits.

The general conclusion is that the effect of network effects and
switching costs on the market for software is largely independent of
whether the software is proprietary or open source. Network effects
tend to favor market concentration. However, in most software mar-
kets at least two products maintain significant and stable market
shares over extended periods of time, either because the two products
are largely compatible with each other or because consumer prefer-
ences are sufficiently differentiated so that for most software markets,
network effects seem to be weak. There may be some software prod-
ucts with strong network effects in the sense that it is socially efficient
that a single product dominates the market. These markets are “tippy”
— the software product adopted may depend on what large early
movers are doing. Even if, at a later stage, a new software is devel-
oped that is technologically superior on a clean-slate comparison, it
may be socially inefficient to switch to the new software if there is a
large installed base and if switching costs are high.

One could argue that heightened antitrust scrutiny is warranted if
firms choose to make their products incompatible, or if they create
switching costs by imposing appropriate contracts on customers or
through product design, even though this is not technologically re-
quired. But, even in this case, it is not clear that the government
should impose compatibility standards or force a firm to lower switch-
ing costs because this may expropriate the incumbent's ex ante in-
vestments and discourage future innovations.

No. 2] Public Subsidies for Open Source 493

IV. SCOPE FOR GOVERNMENT INTERVENTION AND POSSIBLE
DISTORTIONS

In recent years there have been many political initiatives trying to
foster the open-source movement and to spread the use of OSS in
public administration and at schools and universities. For example, in
a German initiative called “Bundestux,” members of parliament from
all major political parties declared that the “introduction of a free op-
eration system in the Bundestag” would be necessary to promote “ba-
sic regulation, competition and location policy, as well as for
democratic reasons.”54 In France, three French senators presented a
draft bill to the Senate, seeking a ban on the use of proprietary soft-
ware in government departments. The proposal was defeated, but in
August 2001 French prime minister Lionel Jospin handed down a de-
cree creating the Agency for Technologies of Information and Com-
munication in Administration, whose mission is “to encourage
administrations to use free software and open standards.”55 The U.S.
government has provided substantial support for R&D efforts that
create OSS that must be released under the GPL.56 Several Italian
municipalities, including Florence and Pavia, have passed motions
mandating the use of “software libero.”57 The government of Peru
plans a bill that “makes it compulsory for all public bodies to use only
free software.”58 The Taiwanese government has just passed a “Na-
tional Open Source Plan” that requires all schools and public agencies
to switch to OSS within the next three years.59 In Norway, Statskon-
sult (the Norwegian directorate on public management) has prepared a
report on the usability of Linux in the Norwegian public sector. The
main conclusion is that the government should support the develop-
ment of OSS to promote alternatives to current software and that it
should encourage schools to adopt Linux.60 Finally, the European

54. See Robert W. Smith & Stefan Krempl, Tux Takes Its Seat in Germany's Federal

Parliament, HEISE ONLINE at http://www.heise.de/english/newsticker/data/anw-28.02.02–
006/ (Feb. 28, 2002).

55. See Paul Festa, Nations Uniting for Open Source, at http://news.zdnet.co.uk/story/
0,,t269-s2094089,00.html (Aug. 28, 2001).

56. See Thomas Sterling, Beowulf Linux Clusters, at http://beowulf.gsfc.nasa.gov/
tron1.html (last visited Jan 5, 2003); and Evans & Reddy, supra note 6, § VI(D), for several
other examples.

57. See Festa, supra note 55.
58. Peru: Gesetz soll Nutzung freier Software vorschreiben, at http://www.golem.de/

0205/19653.html (May 6, 2002).
59. Der Staat macht sich für Linux stark; Das offene Computer-Betriebssystem, das mit

der Microsoft-Software konkurriert, gewinnt an Bedeutung; Innenminister Schily schließt
Kooperationsvertrag mit IBM, SUEDDEUTSCHE ZEITUNG, June 5, 2002, at 26.

60. See Rapport 2001:7 Åpen programvare, at http://www.statskonsult.no/
publik/publikasjoner/2001–07/r2001–07eng.pdf (July 2001), for an English translation of
the report.

494 Harvard Journal of Law & Technology [Vol. 16

Commission has recently published an extensive study on the use
OSS in the public sector.61

While there is a lot of public support for these policies, they are
not uncontroversial. Free-market advocates distrust any government
intervention. They argue that the software market, like any other mar-
ket, should not be interfered with, except possibly by antitrust pol-
icy.62 Some proponents of the open-source movement, in particular
those with a libertarian background, come to the same conclusion,
deeply distrusting any public intervention by bureaucrats and politi-
cians and believing that the OSS “bazaar”63 will succeed on its own
merit. They argue that public policy should be limited to promoting
compatibility standards that serve public needs rather than specific
groups or corporate interests.64

In this section we will discuss the economic merits of various
policies of the government that are being suggested to support OSS.

A. Direct Subsidies for Specific Open-Source Projects

The government could directly support a particular open-source
project either by offering direct subsidies to the project or by employ-
ing computer experts at universities or government agencies to sup-
port it. In all developed countries, a large fraction of total R&D
expenditures is paid for by the government.65 However, the govern-
ment should restrict itself to subsidizing basic research. Basic research
is a public good with strong positive external effects that will not be
provided by the market. Typically, it is unclear what the results of
basic research are going to be, how long it will take to find them, and
what they may eventually be used for. The potential positive spillover
effects of basic research are widespread and very difficult to internal-
ize by commercial companies, therefore they have little financial in-
centive to engage in it. This is why basic research has to be carried out
at universities or publicly-financed research labs.

61. See PATRICE-EMMANUEL SCHMITZ & SÉBASTIEN CASTIAUX, EUR. COMM’N,

POOLING OPEN SOURCE SOFTWARE, at http://europa.eu.int/ISPO/ida/export/files/en/
1115.pdf (June 2002).
 62. See, e.g., Jeff Taylor’s comments in the round table discussion issued by The Ameri-
can Prospect at http://www.prospect.org/controversy/open_source/.

63. ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR 21–63 (rev. ed. 2001), avail-
able at http://www.firstmonday.org/issues/issue3_3/raymond/index.html (arguing that the
very decentralized, bazaar-type, bottom-up governance structure of the open source move-
ment is superior to the centrally organized, top-down governance structure of large com-
mercial software companies).
 64. See, e.g., Eric Raymond’s comments in the round table discussion issued by The
American Prospect, supra note 62.
 65. For example, MICHAEL L. KATZ & JAMES A. ORDOVER, R&D COOPERATION AND

COMPETITION, 137–91 (Brookings Papers of Economic Activity, 1990), report a 47 percent
subsidy rate for private sector research in the U.S. in 1988.

No. 2] Public Subsidies for Open Source 495

The development of most software products, however, is applied

R&D for which these problems are much less severe. Applied R&D is
directed to the development of a specific product with certain charac-
teristics or the solution of a well-defined technological problem. Here,
the outcome of the R&D process is more predictable, making it easier
to internalize positive spillover effects by seeking patent or copyright
protection and by licensing the newly developed technology to third
parties. Therefore, applied R&D can be provided by the market.

Furthermore, for applied R&D it is very important that the prod-
uct fulfills the needs of potential customers. A profit-maximizing firm
has a strong incentive to do so. As a product is adapted to meet the
needs of its consumers, consumer interest will increase, as will the
price that can be charged for product. Thus, a commercial company
will focus on what customers want, and it will try to do so in the most
cost-effective way. A firm will only be able to survive on the market
if it develops a better product at lower cost than its competitors. In
contrast, a government-sponsored research lab does not face the con-
straints of the market and has much less incentive to focus on cus-
tomer needs and cost efficiency.

Another problem with public subsidies to applied R&D is that
they invite rent-seeking activities. A project that wants public funding
does not have to beat competing projects on the market, it has to beat
them by lobbying for stronger political support. Researchers typically
do not like to do this. In order for their projects to survive, they some-
times accept the support of large commercial companies who may
have a somewhat different agenda. There are many examples of well-
intended scientific projects that got captured by large companies who
then managed to acquire vast amounts of public subsidies (e.g., in the
space, defense and nuclear industries).66

While the arguments given so far apply to all industries, there are
some additional important arguments that stem from the specific char-
acteristics of the software market. We have seen in Section III that
there may be strong network externalities in software markets that
make markets “tippy.” Because of these network externalities, one
product will capture the lion’s share of the market. If consumers coor-
dinate on the right product, this outcome is also efficient. However,
the product that succeeds on the expectations of consumers, which
may in turn be affected by the behavior of large players such as the
government. Therefore, even modest subsidies to one particular pro-
ject may have a strong impact on the market outcome. In the extreme,
government support for one project could make the market tip to an-
other equilibrium in which the government-sponsored product drives
its competitors out of the market. Governments have a poor track re-

 66. See, e.g., JAMES Q. WILSON, BUREAUCRACY (1989).

496 Harvard Journal of Law & Technology [Vol. 16

cord in picking winners through “industrial policies.”67 The govern-
ment has neither the ability nor the right incentives to determine
which software product is the most efficient. This decision should be
left to the market, and the government should restrict itself to provid-
ing a level playing field.

Finally, if the government decides to subsidize some basic re-
search in software development, it should ensure that this research is
broadly disseminated and that it can be used by everybody. Thus, pub-
licly-sponsored software should be put in the public domain or pro-
tected by liberal licenses such as BSD. Support for projects that are
licensed under the GPL is unsuitable in this respect. Because of the
viral nature of the GPL, proprietary software cannot use GPL software
without turning itself into GPL software. This encourages the devel-
opment of two incompatible networks with significant welfare losses
for consumers.

B. Adopting OSS in the Public Sector

Several governments are currently considering proposals prohibit-
ing government agencies from using proprietary software if an alter-
native open-source product exists, and forcing schools and
universities to switch to open source.68

The proponents of this policy argue that OSS is qualitatively bet-
ter than proprietary software and that the total cost of ownership, in-
cluding the costs of maintenance and technical support, is lower. If
this is the case, which may well be possible for some software appli-
cations, then government agencies as well as private firms and con-
sumers should be happy to switch to open-source products, and no
coercive actions by the government are needed to induce them to do
so.

However, in some cases open source does not seem to be the best
and most cost-effective solution. For example, the German Bundestag
ordered a study from an independent consulting firm, INFORA (based
in Berlin), to compare five different software solutions, ranging from
pure open source to pure proprietary software, for the computer infra-
structure used by all members of the Bundestag. INFORA recom-
mended a solution that is largely based on proprietary software and
uses Linux only as an e-mail server and Groupware solution. It argued
that open-source solutions are yet insufficient for the requirements of

 67. See, e.g., Scott J. Wallsten, The Effects of Government-Industry R&D Programs on
Private R&D: The Case of the Small Business Innovation Research Program, RAND J.
ECON. 82-100 (2000); Linda R. Cohen & Roger G. Noll, Feasibility of Effective Public-
Private R&D Agreements, INT’L J. ECON. BUS. 223-40 (1995).
 68. See the examples given at the beginning of Section IV.

No. 2] Public Subsidies for Open Source 497

the parliamentarians.69 Nevertheless, after a heated debate accompa-
nied by intense lobbying activities from both proprietary software
developers and the open-source movement, the Bundestag decided
that the solution for the 150 servers of the Bundestag would be Linux-
based while the 5000 desktop computers will initially feature Win-
dows XP. This solution is considerably more expensive than the one
suggested by INFORA and cannot be justified on the merits of OSS
alone.70

Therefore, proponents of a move to open source sometimes rely
on the additional argument that OSS should be adopted in order to
strengthen a second source that puts competitive pressure on the in-
cumbent proprietary software developer. It is argued that this is desir-
able in order to force the incumbent to lower her prices.

However, while it is clearly true that the existence and rapid de-
velopment of the open-source movement puts competitive pressure on
proprietary software developers and constrains their pricing behavior,
this does not imply that the government should intervene in the mar-
ket by favoring OSS.

1. Public Subsidies for OSS with Strong Network Effects

Let us first consider the case where network effects are strong in
the sense that only one product will capture the lion’s share of the
market. In this case, the government could make the market tip. For
example, if it forces schools and universities to adopt OSS, it will sig-
nificantly lower the costs of teaching students how to work with OSS.
If there are high switching costs involved in moving to proprietary
software afterwards, OSS may capture the entire market even if it is
not qualitatively superior to proprietary software. Thus, it may be the
government that picks the winner. Second, if a significant part of the
market is directed to open source, the current and future profits of
proprietary software companies are significantly reduced. Therefore,
they have lower incentives to innovate. Third, this policy may dis-
courage the entry of other proprietary software developers if they feel
that they cannot compete with the OSS that is favored by the govern-
ment. Finally, if the OSS favored by the government is licensed by the
GPL or other viral licenses, which make it legally difficult for pro-
prietary software developers to make their software compatible with
OSS, then the government will foster a development in which there
are two incompatible networks on the market. This is inefficient, be-

69. It is estimated to cost an additional Euro 80,000 per year. See Open Source im

Bundestag als `strategischer Vorteil', HEISE ONLINE at http://www.heise.de/
newsticker/data/odi-27.02.02–000 (Feb. 27, 2002); Smith & Krempl, supra note 54.

70. Id.

498 Harvard Journal of Law & Technology [Vol. 16

cause significant positive network effects are lost, and it may reduce
competition in the market.

2. Public Subsidies for OSS when Network Effects Are Weak

The less extreme and probably more realistic case is where net-
work effects are weak and/or software products are largely compatible
with each other so that two or more products can survive on the mar-
ket in the long run. Even in this case, a move to OSS by the govern-
ment is not necessarily going to increase competition or lower prices.
In fact, under natural circumstances the exact opposite will happen.

Suppose that there are two different software products offered on
the market. One is proprietary software that is sold by a profit-
maximizing, proprietary software developer, while the other is OSS
that is distributed for free. We can distinguish three groups of con-
sumers on this market. Some consumers will always buy the proprie-
tary software because they are unsophisticated users who are unable
to use the OSS product. Some consumers will always go for the OSS
because they want to adopt the software to their specific needs. Some
consumers are considering both types of software and base their deci-
sion on the respective qualities, the price of the proprietary software,
and their idiosyncratic preferences.

Suppose now that the government forces some government agen-
cies, belonging to the third group of consumers, to adopt the OSS
product. This reduces the market size of the consumers for whom
there is competition. The proprietary software developer then has less
of an incentive to reduce his price in order to compete for these cus-
tomers. Rather, the developer will raise his price in order to make a
larger profit on the first group of consumers. Thus, the price for the
proprietary software is going to rise. As a consequence, consumers,
government agencies, and the proprietary software developer are
worse off. Consumers have to pay higher prices for the proprietary
software while the price for OSS is unchanged. Government agencies
do not have a choice but are forced to adopt OSS, and the proprietary
software developer loses part of his profits. On the other hand, the
OSS developer does not benefit in financial terms from this policy
because she continues to offer her product at a price of zero.

Let us now consider the incentives of software developers to in-
vest in product improvements. The incentives to innovate for the pro-
prietary software developer are reduced because the size of the market
of undecided consumers, in which there is quality competition, is re-
duced. Thus, a quality improvement will induce fewer consumers to
switch to the proprietary software, and it is less profitable for the pro-
prietary software developer to compete on the basis of quality. On the
other hand, the incentives of the OSS developer are not directly af-

No. 2] Public Subsidies for Open Source 499

fected. Her market size has increased, but she does not benefit finan-
cially from quality improvements in any way.

To conclude, if network effects are weak and if there is competi-
tion on a market for a particular software product, government inter-
vention that fosters the use of open source is likely to reduce
competition, increase prices, reduce the incentives to innovate, and
make decrease net social welfare. In the Appendix, we present a sam-
ple model.

C. Subsidies for Institutions that Coordinate Open-Source Develop-
ment

In the alternative, governments could subsidize institutions of the
open-source movement that try to coordinate software development
and standard setting. An example is BerliOS, a mediator for open-
source developers and customers, which is co-funded by the German
federal government and private companies such as Hewlett-Packard
and Linux Information Systems.71 This policy may have some merit,
in particular if the role of such an institution is neutral towards any
particular open-source project and restricted to encouraging open
standards and compatibility with open-source and proprietary soft-
ware. Thus, as argued above, the government should not promote
open-source projects that are licensed by the GPL, which makes this
software incompatible with proprietary and other OSS.

However, the basic problems of any government intervention re-
main. It is not the job of the government to decide which software is
going to be the standard of the future. Furthermore, any financial sup-
port to particular projects is going to invite rent-seeking activities, and
political pressures will bias the decision regarding which projects will
be promoted.

V. CONCLUSION

In this paper, we have shown that OSS and proprietary software
do have different impacts on the market outcome. OSS is priced at
marginal cost, which is efficient from a static point of view. However,
innovation and technological progress have been extremely important
for the software market since its very beginnings, and this is likely to
continue. From a dynamic perspective, marginal cost pricing is ineffi-
cient, because it gives insufficient incentives for software developers

71. “The goal of BerliOS is to provide support for different interest groups in the area of
Open Source Software (OSS). Our aim is to fulfil [sic] a neutral mediator function. The
target groups of BerliOS are on one hand the developers and users of Open Source Software
and on the other hand commercial manufacturers of OSS operating systems and applications
as well as support companies.” See “BerliOS,” at http://www.berlios.de/
index.php.en (last visited Feb. 11, 2003).

500 Harvard Journal of Law & Technology [Vol. 16

to engage in R&D. There are significant incentives for professional
programmers to contribute to OSS, in particular to fix bugs and to
adopt software meeting their particular needs. However, the social
benefits of a new and innovative software product are far greater than
the modest private benefits that an open-source contributor reaps. Fur-
thermore, a proprietary software developer has a strong financial in-
centive to write software that is as closely adapted to the needs of all
consumers, while OSS developers tend to be more responsive to the
specific needs of sophisticated users and IT professionals.

Therefore, despite the impressive record of OSS development in
recent years, it cannot fully replace proprietary software. If we want
software development to continue to flourish, and if we want better
and more sophisticated software solutions to be developed for new
socially-useful applications, then the profit motive is crucially impor-
tant to spur this innovation. The profit motive aligns the interests of
the software developer and the interests of society. In order to be able
to make high profits, the proprietary software company must make its
software as useful as possible to as many consumers as possible. As
Adam Smith put it more than two centuries ago:

“It is not from the benevolence of the butcher, the
brewer, or the baker that we expect our dinner, but
from their regard to their own interest. We address
ourselves, not to their humanity but to their self-love,
and never talk to them of our own necessities but of
their advantages.”72

This powerful incentive is largely absent for OSS developers.
Nevertheless, OSS is an important complement to proprietary soft-
ware. For some software products the open-source solution seems to
be qualitatively better or at least more cost-efficient than the proprie-
tary software solution, and on some software markets, OSS already
has a dominant market share by some measures (e.g., the Apache web
server or Sendmail).73 For some other products, it is still unclear what
the superior solution will be. For these products, open source is put-
ting competitive pressure on proprietary software developers. This is
beneficial because it reduces prices and spurs competition in quality
and innovation.74

72. ADAM SMITH, AN INQUIRY INTO THE NATURE AND CAUSES OF THE WEALTH OF

NATIONS 17 (Edwin Cannan, ed., University of Chicago Press 1976) (1776).
73. See, e.g., Evans, supra note 2, at 35.
74. Many empirical economists claim that there is an inverted U-shaped relationship be-

tween the degree of competition, as measured by the number of competitors, and the incen-
tives to innovate. See FREDERIN M. SCHERER & DAVID ROSS, INDUSTRIAL MARKET
STRUCTURE AND ECONOMIC PERFORMANCE 646–651 (3d ed. 1990), for a survey. Thus,
incentives are strongest if there are just a few firms who fiercely compete for the market.

No. 2] Public Subsidies for Open Source 501

However, the government should not interfere with the market

and artificially favor any specific product or OSS as a whole. If there
are strong network effects, the market equilibrium depends on con-
sumers' expectations regarding future adoption decisions of other
players. In this case, government intervention may make the market
tip in one direction. Like in any other market, it is not the job of the
government to pick winners and losers. Furthermore, if network ef-
fects are less strong and if two competing products are going to stay in
the market, artificially favoring one product by requiring government
agencies to buy it may actually reduce competition, increase prices,
and lower innovation and social welfare.

Thus the government should restrict itself to subsidizing basic re-
search in software technology at universities and other academic insti-
tutions in order to promote new scientific developments that could be
the basis for new products, whether proprietary or open source, and to
facilitate standard setting and encourage compatibility.

See Klaus M. Schmidt, Managerial Incentives and Product Market Competition, 64 Review
of Economic Studies, 191–214 (1997), for a model of managerial incentives to innovate and
to reduce costs that captures this effect.

502 Harvard Journal of Law & Technology [Vol. 16

APPENDIX: A SIMPLE MODEL OF GOVERNMENT ADOPTION OF
OSS IN A SOFTWARE MARKET WITH HORIZONTAL PRODUCT

DIFFERENTIATION

Consider a software market in which two software products are

offered, proprietary software (PS) and OSS. The proprietary software
producer maximizes profits, while the OSS developer sells at mar-
ginal cost, which is normalized to 0. We will assume that the size of
the market is fixed and that the two software products are compatible
with each other, so that we can ignore network externalities. There are
three groups of customers. Some customers (of mass Np) will always
buy the proprietary software, some (of mass No) will always buy the
OSS, and some customers (of mass Nu) may buy either of the two
products. We model the preferences of these last customers with a
simple Hotelling model of horizontal product differentiation. They are
uniformly distributed on the unit interval. A consumer at location
x∈[0,1] gets a net utility from buying the proprietary software of

 ()u pU PS v t x p= − ⋅ − (1)

where vp reflects her gross utility from using the software, t⋅x > 0
is her “transportation cost” (e.g., her cost of learning how to use this
software or the cost of adapting other software applications), and p is
the price that she has to pay for the proprietary software. If this con-
sumer buys the OSS product, her net utility is given by

 () (1)u oU OSS v t x= − ⋅ − (2)
where v0 is her gross utility from the OSS which may be larger or

smaller than vp. Note that OSS is priced at 0.
Consumers differ only in their location, x. In the following, we

will assume that both software developers serve some part of the un-
decided customers in equilibrium.75 Thus, the marginal consumer, x ,
who is just indifferent between buying PS or OSS is characterized by

75. This is the case if it is neither optimal for the proprietary software developer to focus

just on customer group Np, requiring that
2[() 2]

8
u p o p

p p
u

N v v t tN
v N

tN
− + +

<

nor is it optimal for the proprietary software developer to capture all of the undecided
customers, requiring that

u

popu
upop tN

tNtvvN
NNtvv

8
]2)([

))((
2++−

<+−−

No. 2] Public Subsidies for Open Source 503

 (1)p ov t x p v t x− − = − − (3)
which yields

2

p ov v t p
x

t
− + −

= (4)

Thus, the proprietary software developer maximizes
 []p p up N xNΠ = + (5)
Substituting (4), the first order condition for the profit maximiz-

ing p* yields

 *

2
p o p

u

v v t tN
p

N
− +

= + (6)

Substituting (6) in (4) and in (5) we get

() 2

4
u p o p

u

N v v t tN
x

tN
− + −

= (7)

and

2

* [() 2]
8

u p o p
p

u

N v v t tN
tN

− + +
Π = (8)

Suppose now that the government decides to force some agencies
or schools and universities to adopt the OSS, even though they may
have preferred to buy the proprietary software. We can model this as
an increase of No at the expense of Nu, i.e. ∆No=-∆Nu >0. The effects
of this policy are described in the following proposition:

Proposition 1: If ∆No = -∆Nu > 0, then the market
share of proprietary software is reduced and the price
for proprietary software increases. The welfare effect
of this policy is unambiguously negative, i.e. all
players (consumers, producers, and the government)
are worse off.

The proof of the proposition and its intuition are straightforward.

Differentiating (6) and (7)
with respect to Nu yields

*

2 0p

u u

tNdp
dN N

−
= < (9)

and

Both conditions are satisfied if, e.g., Np is not too large as compared to Nu and vp-vo is

not too large as compared to t.

504 Harvard Journal of Law & Technology [Vol. 16

2 2

()4 4 [() 2]
0

8
p o u u p o p

u u

v v t tN t N v v t tNd x
dN t N

− + − − + −
= >

 (10)
Thus, if the market of undecided consumers shrinks, the proprie-

tary software developer will focus more on the customer group Np and
the competition for the undecided consumers is reduced. Therefore, he
will raise prices and lose market share.

The proprietary software developer is worse off after the policy
change. To see this formally, note that

2

2

2[() 2]()8 8 [() 2]
.

[8]
p o u p p o u u p o p

u u

v v t N tN v v t tN t N v v t tNd
dN tN

− + + − + − − + +Π
=

 (11)
This term is positive if and only if
 () 2u p o pN v v t tN− + > (12)

which is implied by x > 0. Consumers also suffer because they
face higher prices. Finally, the government is worse off, because some
of its agencies have been forced to adopt OSS even though they
would have preferred to buy proprietary software. Furthermore, all
other government agencies also suffer from higher prices and less
competition in the market for undecided customers.76

Let us now consider how the incentives to innovate are affected
by this policy. Suppose that before the market game described above
is played, there is a stage 0 at which the proprietary software devel-
oper can increase vp by y if he invests c(y) in R&D, where c(y) is
strictly increasing and convex in y. Thus, his profit in the market
game is given by

2

* [() 2]
() ().

8
u p o p

p
u

N v y v t tN
y c y

tN
+ − + +

Π = − (13)

Differentiating with respect to y and simplifying terms yield the
following first-order condition for the profit-maximizing investment
in R&D:

* () () 2

'() 0.
4

p u p o pd y N v y v t tN
c y

dy t
Π + − + +

= − =

 (14)

76. The open-source software developers make zero profits before and after the policy

change, so they are not affected. However, they may derive some non-monetary benefits
from the wider adoption of their software product.

No. 2] Public Subsidies for Open Source 505

We are interested in the question of how the incentives to inno-

vate are affected if the government increases No at the expense of Nu.
Using the implicit function theorem, we get

(14)

.(14)
u

u

d
dNdy

ddN
dy

= − (15)

The denominator is negative which is implied by the second-order
condition of the profit- maximization problem. The numerator is
given by

(14) 0.

4
p o

u

v y v td
dN t

+ − +
= > (16)

Thus, we get

Proposition 2: If the government reduces Nu by
forcing some agencies to adopt OSS, the incentives
of the proprietary software developer to improve the
quality of his software are reduced which further re-
duces the welfare of all market participants.

Note that if the government decides to adopt OSS, this does not

imply that open-source developers are going to innovate more or de-
velop new OSS. There is no financial incentive to do so, because OSS
is given away for free.

To conclude, this simple model demonstrates that forcing gov-
ernment agencies to adopt OSS need not increase competition and
foster the development of new and better software, but it may have the
exact opposite effect. Competition is reduced because the decision by
a significant part of the market about which software to adopt is po-
litically determined and thus independent of prices and qualities that
are offered by the contestants.

