
Harvard Journal o f  Law & Technology 
V o l u m e  10, N u m b e r  2 Winter  1997 

COMPUTER SCIENCE CONCEPTS IN COPYRIGHT CASES: 
THE PATH TO A COHERENT LAW 

Marci A. Hamilton* 
Ted Sabety'" 

~ TABLE OF CONTENTS 

I. INTRODUCTION ..................................... 240 

II. THE COMPUTER SOFTWARE COPYRIGHT CONTROVERSY: 

THE NEED TO SPEAK WITH COMPUTER SCIENCE WORDS 

AND TO THINK WITH COMPUTER SCIENCE CONCEPTS . . . . . . .  243 

III. "PROGRAM STRUCTURE," DATA STRUCTURES, 

AND ALGORITHMS. ................................. 247 

A. A Brief Primer on Computer Science Relevant 
to Copyright Law ............................... 252 

1. What  Is an Algor i thm?  . . . . . . . . . . . . . . . . . . . . . . . . .  252 

2. Wha t  Is a Data  Structure? . . . . . . . . . . . . . . . . . . . . . .  254 

B. The Legal Implications o f  the Dependence o f  Algorithms 
on Data Structures • 259 

IV. "PROGRAM STRUCTURE" AND COPYRIGHT 

OF A COMPUTER LANGUAGE . . . . . . . . . . .  . . . . . . . . . . . . . . .  

A. 

B. 

C. 
L 

D. 

265 

What is a Computer Language? . . :  . . . .  : . .  ~ . . . . . . . .  265 

Computer Languages Should Not Be Copyrightable . .  : .  269 

"Program Structure"and Non-Literal Infringement 
o f  a Computer Language Grammar . . . . . . . . . . . . . . . . .  272 

Computer Language Grammar, Copyright, 
and Lotus  v.  Bor land . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274 

V. SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . .  278 

A. What a Judge Should Ask the Plaintiff . . . . . . . . . . . . . . .  278 

B. Computer Terms o f  Art and Copyright Analysis . . . . . . .  279 

* Professor of Law, Benjamin N. Cardozo School of Law. We owe a large debt of 
gratitude to Pamela Samuelson, whose comments (and former writings) wcm very helpful. 
We also thank Mark I~mley, Bill Patty, and Stewart Stork for their comments On an earlier 
draft and Cynthia Cook and Roni Jacobson for research assistance. 

** J.D., Class of 1997, Columbia University School of Law, 
C 



,240, Harvard Journalof Law & Technology [Vol. 10 

I. INTRODUCTION 

The law surrounding computer software copyright' is on a collision 
course with Computer science. One of  the main reasons for this is that 
legal terms of art in copyright case law do not reflect accepted computer 
science terminology. For example, the cases have coined phrases like 
"structure, sequence, and organization ''2 and "program structure, ''3 but 
neither termaccurately reflects computer science reality. The use of 
these court-made terms has tended to make the application of copyright 
law to computer sot~ware frustrating for judges and litigants and 
confusing for the billion-dollar computer software industry. 

Because the Copyright AcP unambiguously protects computer 
programs: bu t  the discourse has not yet accurately identified the 
noncopyrightable elements bound up within programs, there is a serious 
likelihood that authors of computer programs are receiving and will 
receive more protection than copyright law and policy justify. This 
inadvertent overprotection of computer software introduces powerful 
negative externalities into the software industry. 

For example, Sun Microsystems requires that users enter into a 
detailed licensing agreement before writing a program that implements 
their programming language, "Java." A dispute between Sun and one of 
their licensees, Microsoft, is emerging because Microsoft has modified 
its version of  Java to increase compatibility with their Windows 

I. C°mputer Programs have been recognized as copyrightable bY the U'S" C°pyright 
Office since 1964. See George D. Cary, Copyright Registration and Computer Programs, 
I 1 ]~ULL. COPYRIGHT SOC'Y 362 (1964); Second Supplementary Report of the Register of 
Copyrights on the General Revision of the U.S. Copyright Law: 1975 Revision Bill 2 
(I 975) (explaining that the definition of literary works was intended to be broad enough to 
encompass computer programs); see also Apple Computer, Inc. v. Franklin Computer 
Corp., 714 F.2d 1240, 1249 (3d Cir. 1983) (holding that the Apple system program object 
code embodied in read-only memory ("ROM") was copyrightable subject matter). 

"Soflwa, e" and "program" are two terms that are used interchangeably in the computer 
science field. However, the connotations in certain contexts may be different. For example, 
a program is the sequence of instructions that are executed by the computer when it 
performs a desired task. Software, on the other hand, sometimes refers to a finished- 
program product ready for retail sale, e.g., a copy of the program as well as instruction 
manuals, help files, tutorial programs, and other aspects that make the program consumable 
by the public. Often a software product is a collection of  several programs that together 
constitute a single product for sale. This Article follows computer science convention and 
uses the terms essentially interchangeably. 

2. Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1224 (3d Cir. 
1986). 

3. Computer Assocs. Inr/i !ac. v. Altai, Inc., 982 F.2d 693, 702, 707 (2d Cir. 1992).: 
4. 17 U.S.C. §§ 101-121 (1994). 
5. See 17 U.S.C. § 101 (1994) (defining "computer program" and "literary work"); 

see also Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1519 (9th Cir. 1992). 



No. 5] Computer Science Concepts in Copyright Cases 241 

operating system wi',hout Sun s permission: This dispute may erupt into 
litigation centering on the questionof whether computer languages are 
copyrightable subject matter - -  and it may turn out that Sun's rigorous 
licensing requirements are unenforceable. 

To be fair, courts, Congress, and the commentators have not known 
what they did not know. The tests proffered in the leading software 
eases, Whelan Associates, Inc. v. Jaslow Dental Laboratories, Inc.7 and 
Computer Associates International, Inc. v. Altai, Inc., 8 draw on two 
different branches of  settled copyright doctrine, but both suffer from a 
lack of  accurate terminology for discrete aspects of the soRware. On the 
one hand, the Whelan court protect5 the structure, sequence, and 
organization o f  the program, drawing upon well-settled copyright 
doctrine that structure and organization are copyrightable even when the 
component pieces of  a work are not. 9 On the other hand, the Altai 
decision tells courts to excise the noncopyrightable aspects of the 
program before assessing the program's overall copyrightability, drawing 
upon well-settled copyright precedent regarding infringement analysis) ° 
The approaches in these two leading computer software copyright cases 
threaten to protect noncopyrightable elements in computer programs 
because they fail to use scientifically relevant terms to identify those 
noncopyrightable elements. 

While the courts have been crafting new legal terms to deal with 
computer software cases, important computer science terms that could 
contribute to more accurate application of  copyright law have not found 
their way into the courts' copyright lexicon. The use of  computer 
science terms such as "data structure," "algorithm," and "computer 
language", would assist courts as they attempt to determine that which is 
copyrightable in a computer program and that,which is not. Although 
some commentators have offered compelling arguments that computer 
programs, and other types of  "know-how," do not fit neatly Within 
existing intellectual property paradigms, H the fact is that the 1976 

6. See Sun Wakes Up and Smells the Java, Bus. WK., Dec. 23, 1996, at 46. 
7. 797 F.2d 1222 (3d Cir. 1986). 
8.. 982 F.2d 693 (2d Cir. 1992). 

9.  See infra note 51 and accompanying text. 
10. See Altai, 982 F.2d at 707; see also infl'a notes 52-55 and accompanying text. 
11. See Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of  

Computer Programs, 94 COLUM. L. REv. 2308 (1994) (proposing a sui generis legal 
protection for computer software); Jerome Reiehman, Legal Hybrids Between the Patent 
and Copyright Paradigms, 94 COLUM. L. REv. 2432 (1994) (surveying hybrid legal regimes 
for protecting industrial arts) [hereinafter Reichman, Legal Hybrids]; Jerome Reiehman, 
Charting the Collapse of  the Patent:Copyright Dichotomy: Premises for a Restructured 
International lnteUectualProperty System, 13 CARDOZO A I ~  & ENT. L.J. 475 (1995) 
(suggesting that a newintelleetual property paradigm is needed to replace a proliferation of 
hybrid legal regimes). 



242 Harvard Journal of Law & Technology [V01. I0 

Copyright Act explicitly covers computer programs and therefore 
requires courts to grapple With the application of  copyright concepts to 
programs. 

This Article's thesis is that it is time to accurately name the 
copyrightable elements of  computer sottware using computer science 
terminologyso that copyright analysis can go forward on more solid 
footing, The monopoly created by imprecise application of copyright 
law to computer software is leading to anti-competitive effects that could 
be corrected through the use of  more exact computer science terminology 
in the case law. t2 This Article takes a step toward mitigating the case 
law's unintended externalities by bringing the two discrete worlds of 
copyright law and computer science directly into contact with one 
another. ~ Now is the time for such a project because of  the current 
explosion in soRware authorship and the widespread computer use 
attendant upon the arrival of  the global information infrastructureY 

Part I provides an overview of  the computer software copyright 
controversy. Part II suggests that the terms "structure, sequence, and 
organization" and "program structure" obscure the question of  whether 
the program's data structure is copyrightable. By employing the 
appropriate computer language terminology, we illustrate that many 
computer software copyright eases have coined terminology that leads 
courts to provide copyright protection for elements of  programs 
unworthy of  protection. In particular, we conclude in Part II thatdata 
structures necessary to a particular algorithm should not receive 
copyright protection because such protection would confer a de faeto 
monopoly,over the uncopyrightable algorithm. Part III makes the point 
that computer languages should not be protected because such protection 
confers a priori copyright protection on unfixed expression. The same 
reasoning leads to the conclusion that computer language grammars also 
fail to qualify for copyright protection. 

S' 

12. ProfessorRundallDavisinifiatedthisimportantprojectwithhisarticle, TheNature 
of Software and Its Consequences for Establishing and Evaluating Similarity, 5 SOFTWARE 
LJ. 299 (1992). 

International law would also benefit from more specificity. See Multilateral 
Negotiations, Marrakesh Agreement Establishing the World Trade Organization, signed at 
Marrakesh (Morocco), Apr. 15,1994, Appendix F: Agreement on Trade-Related Aspects 
of Intellectual Property Rights, Including Trade in Counterfeit Goods [hereinafter TRIPS 
Agreement]. The TRIPS Agreement is as vague on this score as American law. 

13. Fourth quarter 1995 worldwide revenues in software were $2.01 billion. See Don 
Clark, Sales for Large-Computer Software Surge, WALL ST. L, Apr. 4, 1996, at B2. 



No. 2] Computer Science Concepts in Copyright Cases 243 

II. THE COMPUTER SOFTWARE COPYRIGHT CONTROVERSY: 
THE NEED TO SPEAK WITH COMPUTER SCIENCE WORDS 

AND TO THINK WITH COMPUTER SCIENCE CONCEPTS 

The application of  copyright law to computer programs has 
produced a prodigious amount of commentary, and controversy for over 
twenty yearsJ 4 Even though the copyright statute has been written and 
re-written in order to accommodate emerging technologies) 5 and 
computer programs in particular) ~ there is still considerable uncertainty 
when it comes to the copyrightability of  computer program elements. 

In general, any creative work that is "fixed in any tangible medium 
of expression" may be protected by copyright l a w J  7 Fixation means that 
the expression 's is somehow recorded in some kind of medium. Canvas, 
paper, magnetic tape, and now computer memory and computer disk 
storage are considered mediums of  expression. An important aspect of  
copyright law doctrine, and one that fundamentally distinguishes it from 
patent law, is that expression may be afforded copyright protection but 
the underlying idea embodied in that expression is not copyrightable. ~9 
This means that processes and procedures described by a text (or a 
computer program) may not be protected by copyright even though the 
text (or the program code) itself can be. 

In addition, the Supreme Court has held that only work that meets 
some de minimis threshold of originality and creativity can be protected. 
"Sweat of the brow" alone does not justify copyright protection for a 
work. a° The Court decided that the act of compiling phone numbers in 
alphabetical order for a phone book did not meet the de minimis 

14. See generally Anthony L. Clapes et aL, Silicon Epics and Binary Bards: 
Determining the Proper Scope of Copyright Protection for Computer Programs; 34 UCLA 
L. REV. 1493 (1987); Steven R. Englund, Idea, Process, or Protected Expression: 
Determining the Scope of Copyright Protection of the Structure of Computer Programs, 
88 MICH. L. REV. 866 (1990); Morton D. Goldberg & John F. Burliegh, Copyright 
Protection for Computer Programs: Is the Sky Falling?, 17 AM. INTEL. PROP. L. ASS'N Q. 
J. 294 (1989); Peter S. MeneU, Computer Copyright, 41 STAN. L. REV. 1045 (1989); Arthur 
R. Miller, Copyright Protection for Computer Programs, Databases, and Computer 
Generated Works: Is Anything New Since CONTU?, 106 HARV. L. P~V. 977 {1993); 
Samuelson et al., supra note 1 I. 

15. "Copyright protection subsists, in accordance with this title, in original works of  
authorship fixed in any tangible medium of expression, now known or later developed . . . . . .  
17 U.S.C. § 102(a) (1994). 

16. See supra note I and accompanying text. 
17. 17 U.S.C. § 102 (1994). 
18. See id. § 101 (giving the statutory definition of"fixed"). 
19. See, e.g., Baker v. Selden, 101 U.S. 99, 103 (1879). 
20. See Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 359-60 (1991). 



244 H a r v a r d  Journal  o f  L a w  & Technology [Vol. 10 

creativity standard regardless o f  how much work  was required. 2~ 
However ,  collections o f  unprotected elements that are compiled in a 
creative way  can be protected as compilations: the protection extends to 
the compilat ion aspec '~ut not to the unprotected underlying elements. 

A literal copy  o f  ,york is infringing. ~ But a non-literal copy  can 
infringe as well. "[Copyright] cannot be limited literally to the text, else 
a plagiarist would escape by immaterial variations. '''~ The test as to 
whether one work is a non-literal copy o f  another requires a determina- 
tion o f  whether they are substantially similar. 24 To that end, courts will 
compare  the sequence, structure, and organization o f  the underlying 
elements that make up the w o r k Y  

Al though these broad principles o f  U.S. copyright law are well 
settled, applying them in the context o f  computer programs has not been 
straightforward. That the two leading approaches, Whelan and Altai, are 
as different as they are is a testimony to the landscape o f  confusion. 26 

Because o f  this confusion, computer  software entrepreneurs have 
been placed in the position o f  not knowing the scope o f  copyright 
protection (and therefore the market value) for the works they create and 
simultaneously not knowing  what  they can legitimately borrow from 
existing programs. Furthermore, the consumers o f  computer  programs 
have been leit at a disadvantage whenever  new software technology 
remains unavailable to them because one vendor  cannot provide a 
"migration path" to users o f a  competitor 's  program for fear o f  copyright 
infringement. 27 Naturally, .these are serious externalities in the computer  
market, which is driven to both standardize and to revolutionize its 

21. See id. at 362. 
22. See 17 U.S.C. § 106 (1994). 
23. Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930). 
24. See Warner Bros. v. American Broadcasting Cos., 720 F.2d 231,245 (2d Cir. 

1983). 
25. See Nichols, 45 F.2d at 121-22. 
26. See infra text accompanying notes 51-52; cf. Miller, supra note 14, at 1001-02 

(arguing that the Altai court merely modified the Whelan approach, but noting that some 
observers, and the majority in Altai, ~,iewed the Altai opinion as a distinct break with the 
Third Circuit's reasoning in Whelan). 

27. A migration path is typically a translation program that allows users of program A 
to convert their own work to a format useable by program B. The vendor of program B will 
write this translator to attract users of program A. lfvendor B cannot produce a translator 
without infringing on vendor A's copyright, then the users of program A will not be able 
to use program B unless they re-enter their data by hand - -  a prohibitively expensive 
process. See Clapes et al., supra note 14, at 1503. A migration path from Lotus 1-2-3 to 
Borland Quattro Pro is the center ofthe dispute in Lotus Dev. Corp. v. Borlandlnt 7, Inc., 
831 F. Supp. 223 (D. Mass. ! 993), rev 'd, 49 F.3d 807 ( I st Cir. i 995), affd by an equally 
divided court, 116 S.Ct. 804 (1996). 



No. 2] Computer Science Concepts in Copyright Cases 245 

products. ~ Uncertainty impedes the risk-taking inherent to innovation, 
and this impedes the purpose of  the Copyright Clause of the Constitution 
"to promote the Progress of  Science and the useful Arts. ''29 

The legal world's studious avoidance of  computer science terminol- 
ogy arises from the vexing reality that computer programs are a form of 
expression not intended to be "consumed" by a human. 3° Although a 
human is the ultimate consumer of  the program's results, the program 
itself is written for the machine to read and act upon. 3t A reasonable 
person employing five senses is not adequate to analyze such works. 
Rather, the determination of  the extent of  copyright protection for a 
computer program requires recourse to experts who are familiar enough 
with the oeuvre to identify elements that are not in fact expression and 
then to identify which expression is sufficiently original to justify 
copyright protection. Some courts and commentators draw analogies 
between computer programs and existing copyrightable works, such as 
literary works, in an attempt to simplify or avoid this problem. 32 Yet, the 
analogies frequently create more problems than they solve. They lead 
courts and theorists away from computer science-- with its more precise 
definitions - -  into a discourse unsupported by scientific reality that 
obscures the underlying copyright issues. 

Because computer programs are not typical expression and require 
a fair degree of  sophistication to analyze for copyright purposes, precise 
terminology is required. The terms of  art used in the law to define the 
non-literal aspects of  a computer program fit uncomfortably with 

28. See, e.g., SJ. Liebowitz & Stepben E. Mergolis, Should Technolo~ Choice Be a 
Concern o f  Antitrust Policy?, 9 HARV. J.L. & TECH. 283, 290 (1996) (discussing the 
economic impact of  selecting standards in high-tech industries). 

29. U.S. CONST. art. I, § 8, el. 8; see Mcneil, supra note 14, at 1049 (describing 
software copyright as the solution to the public goods problem). 

30. See, e.g., White-Smith Music Publ'g. Co. v. Apollo Co., 209 U.S. 1, 16 (1908) 
(superseded by statute as stated in Apple Computer, Inc. v. Franklin Computer Corp., 714 
F.2d 1240, 1248 (3d Cir. ! 983)) (stating that player piano rolls posed a similar problem in 
trying to divine how something not easily read by a human could be copyrightable 
expression). 

31. Cornmissioner Hersey ofthe National Commission on NewTechnologieal Uses of 
Copyrighted Works proposed that computer programs be precluded from copyright and that 
only their product for human consumption be copyrightable. NAtiONAL COMMISSION ON 
NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FrNAL REPORT 29 (1978) 
[hereinafter CONTU]. That is, copyright law would be restricted to expression directly 
perceived for humans. His view was rejected. See id. at 27. 

32. See 17 U.S.C. § 101 (1994) ("A computer program is a set of  statements or 
instructions to be used directly or indirectly in a computer in order to bring about a certain 
result."); H.R. Rm,. NO. 94-1476, at 53, reprinted in 1976 U.S.C.C.A.N. 5659, 5666-69, 
§ 102 (explaining that the term "literary works" includes computer programs); see also 
TRIPSAgreement, supra note 12 ("Computer Programs, whether in source or object code, 
shall be protet~ted as literary works under the Berne Convention (1971)."). 



• 246 Harvard Journal ofLaw & Technology [Vol. 10 

computer science. The court-created phrases such as "structural 
similarities, '' do not have precise analogues in computer science. For 
example, the phrase "structural similarity" between two programs could 
refer broadly to how the data is organized as well as how the program 
code is organized, or more narrowly to the program code itself) 3 There 
is a tremendous factual difference among these meanings. A more 
precise definition will be found by integrating computer science terms of 
art into the legal discourse. 

The legal community should not shy away from coming to terms 
with "computerese." Computers and their programs are plainly here to 
stay. The lack of  a precise set of  terms to describe program components 
has unnecessarily complicated application of  copyright doctrine to 
software. Without labels for the various parts of a program, courts 
cannot accurately identify where the program's copyrighted expression 
ends and its non-copyrightable aspects begin, or distinguish its expres- 
sive aspects from its purely utilitarian ones. Always a difficult line to 
draw with any work, the precise identification of  the work's protectable 
expression poses daunting problems where the work is not naturally 
readable and its components are unnamed. 

Although plainly applicable to new technological forms of expres- 
sion, the copyright statute itself is not specific about how to separate 
protected expression from non-protected aspects of  these emerging 
technologies. 34 For traditional copyright goals to be achieved, reference 
must be made to the new meanings arising within the new technological 
world. Careful use of  computer science terms of art and the p roper  
integration of  that lexicon into the orbit of  copyright law will provide a 
firmer foundation upon which to build a coherent jurisprudence of  
computer program copyright. A more coherent doctrine derived from 
more accurate computer science terminology will, in turn, produce a 
more predictable legal environment conducive to furthering the computer 

33. See, e.g., Englund, supra note 14, at 871 (defining "structure" in terms ofthe 
organization of programming subtasks). Many cases, specifically ComputerAssocs. lnt'l, 
Inc. v. ,41taL Inc., 982 F.2d 693, 698 (2d Cir. 1992) and Lotus Development, Inc. v. 
Paperback Software lnt'l, 740 F. Supp. 37, 53 (D. Mass. 1990), cite Englund's article as 
an explanation of "program structure"; however, his work does not directly address the 
issue raised in this article. Englund's explanation and analytical test are aimed at program 
code organization ("control flow") rather than data organization ("data structure"). See 
Englund, supra note 14, at 901-08. 

34. See 17 U.S.C. § 102(a) (1994) (extending protection to "any tangible m~ium of 
expression now known or later developed"). 



No. 2] Computer Science Concepts in Copyright Cases 247 

software art and the "progress" encouraged by the Constitution? 5 The 
industry and consumers should benefit. 

I I I .  "PROGRAM STRUCTURE," DATA STRUCTURES, 

AND ALGORITHMS 

Large computer programs can be divided into three basic parts. 
First, there is the "user interface, ''36 which includes all means by which 
a user can interact with the software and the hardware? 7 User interfaces 
address the human side o f  the human-computer relationship. 

Second, within the program itself, there are low-level hardware and 
software drivers. They are short, fast, and compact code modules that 
directly command the computer hardware. For example, one driver 
controls the disk drive while another controls, the computer display 
screen. The driver control modules directly perform the most elemental 
level o f  computer input and output functions. 

Third, there is a data processing section m the heart o f  any program. 
The data processing portion of  the program Solves the computational 
problem that the humat~ has input into the computer via the user 
interface. While solving the problem posed, the data processing section 
may request the hardware drivers to provide it with information stored 
on disk. When the data processing section needs to notify the human 
operator regarding its status, it will call on the video display drivers to 
display the result. 

The easiest copyright cases involving computer software are the 
ones that naturally draw upon existing copyright doctrine. For example, 

35. SeeTwenfieth Century Music Corp. v. Aiken, 422 U.S. 151, 156 (1975) ("'The 
sole interest of the United States and the primary object in conferring the [copyright] 
monopoly' . . .  "lie in the general benefits derived by the public from the labors of 
authors.'") (quoting Fox Film Corp. v. Doyal, 286 U.S. 123, 127 (1932)); see also Mcneil, 
supra note 14, at 1058 ("The Supreme Court has interpreted the law implementing this 
language to mean that the author's benefit is 'secondary' to advancement of the arts and 
sciences for.society's benefit.") (citing United States v. Paramount Picture., Inc., 334 U.S. 
131,158 (1948)). 

36. "User interface" is a computer science term that describes the method or process 
by which a human interacts with a computer program. Aside from the display on the 
computer screen, the user interface may also include paper output and pictures, and the 
input can range from inserting a credit card into a cash machine at a bank to some kind of 
advanced brain wavedeteetion in the future. In typical usage, however, userinterfaee refers 
more narrowly to the screen display. We hew to this convention because the hardware 
aspects of user interfaces fall under the purview of patent law. See generally RAY E. 
EBERTS, USER INTERFACE DESIGN (1994). 

37. Examples of  user interface include everything from screen displays to verbal 
commands received by the computer. See generally Pamela Samuelson~ Computer 
Programs, User lnteoraces, and Section 102(b) of  the Copyright Act of  1976: A Critique 
of Lotus v. Paperback, 6 HIGH TECH. L.J. 209, 264 (1991) (discussing user interfaces). 



248 Harvard Journal of Law & Technology [Vol. 10 

the user interface portion of  a program is copyrightable as part of  an 
audiovisual work. 38 The principles to be applied to this aspect of  
compmer software are fairly well-settled and therefore will not be 
addressed in this Article) 9 

The hardware drivers are not likely candidates for copyright 
protection under existing copyright principles. Less than de minimis 
creativity is involved in the creation of  these small programs. 4° Typi- 
cally, they are written within strict hardware and software engineering 
constraints. ° These constraints limit the possibilities of  expression, 
making it improbable that the expression chosen is original. 42 Computer 
programs do not pose new problems for copyright law on this score and 
therefore will not be addressed in this Article. 43 

More difficult computer software copyright questions involve the 
data processing section. Inside the data processing section lies the 
collection of  algorithms and data structures that actually perform the 

38. We use user interface in its narrow sense: referring to the screen display. See 
supra note 36; Registration and Deposit of  Computer Screen Displays, 53 Fed. Reg. 21, 
817-23 (1988); see also Atari Games Corp. v. Oman, 888 F.2d 878 (D.C. Cir. 1989) 
(deciding that the visual appearance of  a video game was proper subject matter of  
copyright); Apple Computer, Inc. v. Microsoft Corp., 821 F. Supp. 616 (N.D. Cal. 1993) 
(denying "look and feel" protection for Apple Macintosh user interface); Apple Computer, 
Inc. v. Microsoft Corp., 799 F. Supp. 1006 (N.D. Cal. 1992) (modifying previous order to 
protect specific icons that were identically copied); Broderbund Software, Inc. v. Unison 
World, Inc., 648 F. Supp. 1127 (N.D. Cal. 1986) (holding that copyright protection extends 
to a program's audiovisual display). Public domain elements and sc6nes ~ fairo act as 
limitations on user interface copyright. See, e.g., Atari, 888 F.2d at 886. 

39. See, e.g., Atari, 888 F.2d at 885-86; Apple, 799 F. Supp. at 1020; Apple, 821 F. 
Supp. at 619, 626. 

40. See NEC Corp. v. Intel Corp., 10 U.S.P.Q. 2d 1177, ! 178 (N.D. Cal. 1989) ("It 
may well be that, considered alone, several of  the microsequences in Intei's raicrocode 
consist of  forms ofexpressinn directed solely by functional considerations lacking even 
minimal creativity.") (internal quotations omitted); cf. Feist Publications, Inc. v. Rural Tel. 
Serv. Co., 499 U.S. 340, 348 (1991) (discussing requirement that work exceed de minimis 
standard of  creativity to achieve copyrightability). 

41. When writing a hardware driver, the programmer must use as few instructions as 
possible in order to achieve peak execution speed. Also, the sequence of  events that the 
driver must request of  the hardware are exacting requirements with no room for variation: 
the requirements are set by the hardware itself, not by the expressive choice of  the 
programmer. 

42. See Feist, 499 U.S. at 348 {discussing the relationship between choices and 
originality; where there are a limited number of  expressive choices, there is a presumption 
of  less originality); Menell, supra note 14, at 1086; Marei A. Hamiltog/:f~iice O'Connor's 
Intellectual Property Opinions: Currents and Crosscurrents, 13 WOMEN'S RTS. I.,. REI'. 
71, 75-76 (1991) (stating that where there is "no choice ofarrangament . . .  there can be no 
creativity" in a compilation). 

43. See Computer Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992); 
see also Miller, supra note 14, at 1005 n.134; Samuelson et al., supra note 11, at 2358 
n.197. 



No. 2] Computer Science Concepts in Copyright Cases 249 

computations that users demand. For example, when a program that 
simulates an airplane cockpit is running, the data processing section 
calculates all of  the geometry necessary to present a picture to the user 
and when finished, presents the picture by using the video display 
hardware driver. Thus, the data processing section of  a program is where 
most of  the creativity and critical advancement in the programming art 
Occurs. 

The courts have created their own terminology for computer 
software cases in an attempt to deal with the difficulty of applying the 
law of copyright infringement to programs. Generally, copyright 
infringement encompasses both literal and non-literal copying. 44 Literal 
copying is comparatively easy to identify, even in the computer software 
context. It occurs when either the source code or the object code are 
copied verbatim: s Non-literal copying in the literary works cases can 
also be fairly easy to identify. For example, an author of a play could 
copy certain elements from another play without taking the verbatim . 
expression of the former play, thereby giving rise to a finding of 
subs'tantial similarity and infringement. 46 Specific terms are available to 
identify the noncopyrightahle elements that should be exempted from a 
finding ofinfi-ingement between two plays, such as sc~nes ~ faire: ~ plot, 
and theme. 4s The music industry offers many examples of non-literal 
copying. In those cases, musicologi~ testify to the non-literal similari- 
ties between two musical composigbns: 9 

44. See Nichols v. Universal Pictun'~ Corp., 45 F~.d 119, 121 (2d Cir. 1930). 
45. Source code is the human-z~dable versinn of  a program that is tben t r a n s l ~  h m  

a machine-readable format called object code using another program called a compiler. 
Apple Computer. Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), 
established that copyright in source code covers its object code translation. See 1984 
Compendium of  Copyright Office Practices § 321.03 C~he Copyright Office considers 
source code and object code as two rcprescatatious o f  the same computer program."). A 
computer itself can compare two files to see i f  they are exactly the same. See T~.,~: 
PROTECTION OF COMPUTER SOFTWARE h ITS TECIiNOLOGY AND APPLICATIONS 122-~:  
(Derrick Grover ed., 1989). 

46. See, e.g.,Nichols, 45 F.2d at 121. 
47. In genm-al, if  the structure and organiTut~on o f  two plays are too similar, it may be 

found that one infringes the other. See, e.g., Sheldon v. Metro-Goldwyn Pictm~ Corp, 81 
F.2d 49 (2d Cir. 1936) However, some stories share aspects that are considered essential 
components for any original story in a similar setting called sc~es  ~ faire. For example, 
any play about pirates would h~ly  have images ofrevel~ at some exotic port o f  call. Thus, 
the fact that two plays contained a similar scene is not in itselfcvidencc o f  copying when 
comparing the ~cquence and organization ofboth plays. See Nichols, 45 FA2d at 121. 

48. See Altai, 982 F.2d at 709. 
49. See Bright Tunes Music Corp. v. Harrisongs Music, Ltd., 420 F. Supp. 177 

(S.D.N.Y. 1976), aft.d, 722 F.2d988 (2d Cir. 1983); see also Miller, supra note 14, at 1009 
("Additionally, a court is free to appoint an expert to analyzr the more technical issues in 
a case, and thus need not confront complex issues unaided."). 



/ 250 Harvard Journal ofLaw & Technology [Voi. 10 

In computer cases, non-literal infringement has been harder to 
identify. It is difficult enough for courts to compare the source or object 
codes of two programs without resorting to software tools to determine 
if they are identical. The difficulty in comparing two non-identical but 
similar programs has driven courts to devise two tests: the structure, 
sequence, and organization test and the abstraction-filtration test. 

The legal notions of  "structure, sequence, and organization" and 
"program structure" were introduced in an attempt to define what could 
be copied non-literally, s° These terms seem to be a neutral, uncontrover- 
sial choice, but they obscure more than they clarify. Both tests employ 
a legal description of  computer software concepts that glosses over the 
fundamental question: what are ~heco~lpcnents of  any program that 
may or may not be copyrightable? The legal terms of art must be refined 
in light of  the underlying computer science so that they do not overpro- 
tect or underprotect copyrightable aspects of  computer software. 

The idea of  comparing computer programs in a non-literal infringe- 
ment analysis was first introduced by the Third Circuit in Whelan v. 
Jaslow, where all aspects of  program "structure, sequence, and organiza- 
tion" were considered copyrightable expression. 51 The Second Circuit, 
in Computer Associates International, Inc. v. Altai, Inc., found program 
structure worthy of  protection but took a more restrictive approach than 
Whelan. 52 Drawing upon the abstractions tes~ devised in Nichols v. 
Universal Pictures Corp., 53 the court began its analysis of  program 

50. See, e.g., Altai, 982 F).d 693 (introducing "program structure" as a legal term); 
Whelan v. Jaslow, 797 F2d 1222 (3d Cir. 1986) (introducing "structure, sequence, and 
organization" as a legal term). 

51. Whelan, 797 F.2d at 122445. 
The [district] court also found that Rand Jaslow had not created the 
Dentcom system independently, and that the Dentcom system, 
although written in a different computer language fi'om the Dentalab, 
and although not a direct transliteration of Dentalab, was substantially 
similar to Dentalab because its structure and overall organization 
w~ere substantially similar. 

Id. at I228-29. In its affirmance, the Third Circuit went on to quote the district court 
opinion: '~fhe conclusion is thus inescapable that the detailed structure o f  the Dentalab 
program is part o f  the expression, not tile idea, of  that program . . . .  Because there are a 
variety ofprogram structures through which that idea can be expressed, the structure is not 
a necessary incidentto that idea." Id. at 1239-40. 

52. The court in Altai stated: 
As we have already noted, acomputerprogram's ultimate function or 
purpose is the composite resnit o finteracting subroutines. Since ench 
subroutine is itselfa program, and thus, may be said to have its own 
"idea," Whelan's general formulation that a program's overall 
purpose equates with the program's idea is descriptively inadequate. 

Altai, 982 F.2d at 705. 
53. 45 F.2d 119,119(2dCir. 1930) (holdingthatbackgroundcharacteristicsofsetting 

and genea~l aspects are not considered in assessing similarity). 



No. 2] Computer Science Concepts in Copyright Cases 251 

structure by attempting to filter out uncopyrightable elements o f  the 
program. Unfortunately, the court did not incorporate the computer 
science terms that could define what the filtered elements ought to be. 
Instead, the court in Altai employed existing copyright terminology and 
doctrine applicable to other types o f  works, such as merger, sc6nes 
faire, and public domain restrictions. 54 The analogy once again, 
however, proved to be rough and likely misleading. The court's attempt 
to explain what sc~nes ~. faire might be in the computer software context 
is inevitably unsuccessful, s5 

Both courts would have been better served by piercing the surface 
o f  computer science to understand the components comprising a 
program, which include "data structures," "algorithms," and "lan- 
guages. "56 By failing to identify these components, protection for the 
program structure threatens to provide a de facto monopoly over 
unnamed elements that may not deserve copyright protection. 

To make coherent copyright protection in computer programs, 
Professor William Patty has proposed that programs be understood as 
compilations ofuncopyrightable elements, s7 He has made an important 
contribution to the discourse on computer programs and copyright. Yet, 
like Whelan, this approach runs the risk o f  treating computer programs 
as though they have no underlying components that must be judged 
separately for copyright purposes. The risk o f  this approach is that it too 
does not draw a precise line between what is uncopyrightable and what 
is copyrightable within a program. Even i f  two expressions are compila- 
tions, it is often necessary to determine whether specific aspects o f  the 
compilations are expression worthy o f  protection. Unless the courts 
acquire more accurate terminology and understanding o f  the components 
of  computer programs, they are likely to sweep less deserving aspects o f  
the program under a ruling for copyright protection o f  the program as a 
whole. Thus, we turn to a brief  primer on computer science terms that 
would assist courts in their copyright decisions. 

54. See Altai, 982 F.2d at 707-10. 
55. The court in Altai correctly points out that external factors like mechanical 

considerations o fthe computer hardware may limit programmer expression, see supra note 
39, but then includes "widely accepted programming practices within the computer 
industry" as an example ofsc~nes ~t faire, without giving fu~erexplanatiom Id at 709-10. 

56. Cf. Davis, supra note 12, at 329 ("[R]eferences to "structure, sequence, and 
organization' as ~ in Whe/an are inherently technically defective and often unanswer- 
able."). 

57. See William F. Patty, Copyright and Computer Programs: It's All in the 
Definition, 14 CARDOZO ARTS & Era'. IrJ. I (1996). Note that the use o f~e  word 
"compilation" here is in the copyright law sense, not the computer science sense. 



252 Harvard Journal of Law & Technology [Vol. 10 

A. A Brief Primer on Computer Science Relevant 
to Copyright Law 

The computer science concepts of  "algorithm" and "data structure" 
are highly relevant to the software copyright discourse. Algorithms and 
data structures are two elements of  computer software that should 
~teceive separatc consideration in software Cases. Algorithms lare not 
protecte6:by copyright because they are procedures. A data structure, 
expla;.ned in more detail below, is an organizationof data in computer 
memory which permits a given algorithm to work. Data contained in a 
data structure might be eligible for copyright as a compilation, ss 
Hbwever, the dependence of  algorithms on data structures means that 
copyright protection thatlimits the use of  a given data structure may in 
turn l imit  the use of  a corresponding algorithm. Theretbre, a data 
structure necessary ,'o use a p .articular algorithm should not be copyright- 
able. To fully undetamnd tliis argument, algorithms a~zd data structures 
will,be d~fined and their relationship examined. 

1. What Is an Algorithm? 
~ 

An algorithm is "[a] procedure or set of  rules for calculation or 
problem-solving. ''s9 Because the 1976 Copyright Act explicitly excludes 
procedu~'es from:protection, algc:rithms are not copyrightable. 6° 

/ i '  Algorithms-are fundamental to computer science because they are the 
calculation procedures that a computer can follow at an extremely high 
speed to reach a desired res'~lt: The procedure may require a human to 
develop it and prove how it works, but it requires only a calculating 

Cmachine. t ° perform::it and reach the result. This is the "magic" that 
makes t~e:computer such an extraordinary tool. . : , .  
' Take, for example, ~ algorithm called Mailsort, consisting of  a 
simple set of  procedures for alphabetizing fi stack of  mail. 6~ Direct 

~ t  

>58. See infra note 86 and accon~panying text. / 
. 59. THE NEW SHORTER OXTORD ENGLL~H DIcnoNARY 50 (Lesley Brown ed., 1993). 

60. The 1976 Copyright Act excludes processes, procedures, and methods from 
copyright protection. See 17 U.S.C. § 102(b) (1994); see also Donald S. Chisum, The 
pa.tentability o f  Algorithms, 47 U. PiTt. L. REV. 959 0956); Pamela Samuelson, Brief 
Amicus Curiae o f  Ca~pyright Law Professors in Lotus Development Corp. v. Bodand 
International, Inc, 3 J. INT. PROP. L. 103 ( 1995); Pamela Samuelson, Benson Revisited: The 
Case Against Patent Protection for Algorithms end Other Computer Program-Related 

g • . Inventions, 39 EMORY L.J. 1025 (1990) [ae, reinafter Samuelson, Benson Revisited]. 
61... Here is an:algorithm to complete the task: 

START MAILSORT: 
Stet'~ i. Ifth, e out-pile is empty,pla~ the fop envelope office in-pile on the - 

out=pile, and go to Step 5. ~ 
Step 2. Read the name on '.he top tqhvelope of the in-pile and call that the "in" 

t "~ . .  



No. 2] 'i! Computer Science Concepts in Copyright Cases 253 

copyright protection of this algorithm is barred by the Copyright Act's 
express elimination of processes or procedures ~om its zone of 
protection. 62 In addition, the Copyright Office expressly forbids 
registering any algorithm for copyright protection. 63 However, expres- 
sion describing that algorithm, whether it .~o~'English or a computer 
language, is protected by copyright. ~ As a'ct~ult, an originator ~0ulci not 
exert a monopoly over the Mailsort algorithm process, but could obtain 
copyright protection for an original description of  it. 

Every program involves an algorithm of some kind. ~5 Obviously, 
more difficult problems are solved by using more sophisticated algo- 
rithms, and simple problems can often be solved more quickly using 
sophisticated algorithms as well. In the case of  the simple mail. ~orting 
algorithm described above, the larger the pile of  mail gets, the longerit 
takes to sort. In fact, given N pieces of  mail, the time it would take to 
sort using the Mailsort algorithm would be proportional "~o N 2, which 
means that it is very slow. one proposed solution to this problem has 
been a better general purpose sorting algorithm called "Quicksort," 
which has been widei~:described in computer literature, c~ 

envelope. 
Step 3. ,' Starting at the top ofthe out-pile, read through names until you :,each .. 

an envelope whose name alphabetically follows the "in" envelope. 
.Step 4. Insert the "in" envelope into the out-pile right before that envelope: 
Step 5. If  the in-pile still has an envelope in it, then go to Step 2. 
Step 6. If the in-pile has no envelop~ left, then the algorithm has FINISHED. 
This is a so?ring algorithm. It may take a human a minute to understand that this 

algorithm will work, but having done so, it takes no additional thought to execute it. Except 
for the first envelope, which is placed on the empty out-pile to start, this algorithmworks 
by taking each successive piece of mail, running t l~ugh the out-pile until the correct place 
is found, inserting that envelope, and then p!cking up the next envelope from the in-pile. 
The algorithm is finished when the in-pil/~is empty. 

62. See 17 U.S.C. § 102(b) (1994). 
63. See 1984 Compendium of Copyrigh~ Office Practices § 325.02(c) (1990). 
64. The expression describing a system is copyrightable, but the system itself resides 

in the public domain. See Baker v. Selden, 101 U.S. 99, 103 (1879). 
65'./The typical soRware product is a program that contains a number of different 

algorithms. Each algorilhm is used to solve a particular aspect of the fimctionality problem 
pre~ented by the soRware application. 

66. See ALFRED V. AHO ET AL., DATA STRUCTURES AND ALGORFfHMS 260 (1983). 
It was originally reported by Charles A.R. Hoare.~ See Charles A.IL Hoare, Quic~ort, 5 
COMPUTER J. 1, 10-15 (1962). ~ 

Quicksort employs an algorithm that sorts at a much faster speed. It requires a running 
time proportional to N times the Iogaritl~ofN (algebraically Nlog(N)). As N gets very 
large, Nlo~,fN) becomes a small fraction ofN%~.~Consider N=l, 10, 100, or 1000. N ~ would 
be l, 100,10,000, or 1,000,000 while NLog(N)!,~vonld be 0, 10, 200, or 3000. Therefore, 
for lOOO pieces of mail, Quicksort would run over 300 times faster than Mallsort. The fact 
that there a~-e better sorting algorithms than Mailsort, however, is inconsequential to the 
legal argument. One c~.~ imagine a sophisticate0 algorithm that is the only known solution 
to an important problem. 



254 Harvard Journal of  Law & Technology [Vol. 10 

From the vi6-A, point of a software vendor, a faster algorithm can 
make one software product outperform another at the same function, 
providing a major competitive advantage. Therefore, there is a great 
incentive for software vendors to protect their algorithms in whatever Ofl~ ~ 
way possible, ineludirig by characterizing something close to the /i 

' l  j~ • 

algorithm itself as expression about the algorithm and hence protected. 
Yet, regardless of whether the algorithm is complicated or simple, it is 
not deemed w/Jflhy of  copyright protection. Protection for significant 
advances in algorithm sdience may, however, reside un~/~'patent law? 7 

/ /  ! 
2. What Is a Data Structure? 

Data structures pose a different problem for computer software 
copyright analysis, and reveal an inherent ano.maly in how the 1976 
Copyright Act applies to computer programs. Even if courts properly 
exclude algorithms from copyright protection,:~hey may inadvertently 
provide copyright protection for algorithms by  protecting certain data 
structures under the aegis of  program structure. This untoward result 
should be avoided by refusing to protect any data structure that is 
necessary to a particular algorithm, ~ 

Data resides in computer memory. It is easiest to vist~lize computer 
memory as being like a wall of post office boxes. Each box has a unique 
numerical "address," but the content, of each box can be changed at will. 
The computer's central processing unit ("CPU") 6s can look at a location 
in memory specified by the address and retrieve the piece of  data 
residing there.,:Alternatively, th~ CPU can store a piece of data at a given 
address. One'ipart of  a program organizes the data in such a way that the 
other part, which embodies th+e algorithm, can work with it..The more 
sophisticated the data organization, the more opportunity there is to 
employ sophisticated algorithms that run faster and do more• This 
organization is referred to as a data s t ructure .  69 

67. The law surrounding algorithm patents has been in flux. See RAYMOND NIMMER, 
THE LAW OF COMPUTER TECHNOLOGY § 2.06 at 2-28 (1992); Chisum, supra not¢ 60; 
Samuelson, Benson Revisited, supra note 60. Compare Gottschalk v. Benson, 409 U.S. 63, 
73 (1972) (denying a patent for an algorithm to convert binarSr ~-coded decimal numbers into 
pure binary numerals), with Diamond v. Diehr, 450 U.S. 175, 187 (1981) (holding .that a 
computer program designed to work in conjunction vfith a rubber molding machinv"~us 
patentable), and U.S. Patent No. 4,744,028, issued to N. Karmarkar and assigned to AT&T 
Bell Labs (for an in:~.~,~ovement on the "simplex method" of  solving simultaneous linear 
equations). 

68. In a d~ktop computer, the CPU is embodied in an integrated circuit, or "chip." 
The In~l Penfium chip and Motorola Power PC chip ace examples. See generally DAVID 
A. PATIr..RSON & JOHN L. HENNESSEY, COMPUTER ORGANIZATION AND DESIGN 14, 270 
(1994). Y" -~ 

69. See AHO ETAL., supra note 66, at 13. 



No. 2] Computer Science Concepts in Copyright Cases 255 

The Mailsort algorithm explained above employs a data structure 
known as an array. Each envelope in either pile physically follows the 
other in succession. This is the simplest way to organize data in 
computer memory. In terms of  the post office box visualization, the in- 
pile would initially be a row of full boxes ("in-boxes") and the out-pile 
would be a row of empty boxes ("out-boxes"). When running Mailsort, 
each successive in-box would be emptied and its contents placed 
somewhere in the row of out-boxes. Obviously, for each insertion into 
the middle of  the row of out-boxes, the contents of  all subsequent out- 
boxes would have to be shifted down by one box to make room. Figure 
1 illustrates how a data structure is transformed by the Mailsort 
algorithm. 

Figure 1: Simple Data Arrays 7° 

Before Sorting ARer Sorting 

Address Data Address 

TOP--t 1 TC " I Rehnquist 

2 Scalia 

3 O'Connor 

4 ,, Kennedy 

5 Ginsburg 

6 Souter 

7 

8 

9 

Thomas 

Breyer 

Stevens 

2 

3 

4 

6 

Data 

Breyer 

Ginsburg / / ~  

g e n n e ~  " 

O'Connor 

Rehnquist 

Scalia 

Souter 

Stevens 

Thomas 

All algorithms depend on data  structures. In fact, certain data 
structures are uniquely necessary to certain algorithms. For example, to 
run a different algorithm such as Quicksort/~ the array organization 
described above is insufficient; a different data structure is required. 

70. Note that TOP remains Address I aRer sorting. 
71. See Atto ET AL., supra note 66, at 260. 



256 Harvard Journal of  Law & Technology [Vol. 1,O 

Quicksort runs on a data structure called a "linked list, ''72 and can only 
work on data organized into a linked list data structure. 

The linked list is a common data structure that is significantly more 
Complicated than the array described above. First, it requires grouping 
the post office boxes in pairs and calling each pair a "cell." Physically, 
there is still a unique numerical address for each box, but the contents 
are handled differently depending on whether the box is the first or the 
second constituent of  the cell. Returning to mail sorting, an envelope 
may be placed (with a name on it) without regard to order in the first box 
of  each cell B that is the data. A slip of  paper that has a num~,i:ical 
address of  another box written on it called a "pointer" is placed in the 
second box That box is the databox of  the next cell in the list. This 
results in two boxes being used for each envelope. Each odd box has an 
enve)gpe in it while each even one contains a pointer. Figure 2 illustrates 
how our data set of.the Justices would be handled as a linked list data 
structure under Quicksort. 

In Figure 2, there is a list of  nine names, each having a pointer to the 
next cell in the lis~. Given a particular cell, the pointer is the address of  
the next cell in the list. Therefore, to store the nine names in a linked 
list, eighteen memory locations are required. One "follows the pointers" 
to read out the list. Starting at TOP (box 1), look at the data in that cell 
(Rehnquist), then go to the address referenced by the cell's pointer (box 
3), look at the data contained there (Scalia) and then follow its pointer 
(box 5), and continue until null is reached. In so doing, we have moved 
down a linked list and read the names out of  alphabetical order. When 
the Quicksort algorithm is run, the names stay in their current boxes. 
Instead of  moving them, Quicksort reassigns the pointers, including 
TOP. When Quicksort is finished, it is possible to start at the new value 
for TOP (box 15), follow the pointers, and read the names out in 
alphabetical order. See Figure 2. None of  this is possible without the 
linked list data structure. 

"%. 
72. See generally DON~mD E. KNUTH, T~E ART OF COMPUTER PROGRAMMING, VOL. 

l: FUNDAMEIqTAL ALGORITHMS (196g). ~ • ,- , 



No. 2] Computer Science Concepts in Copyright Cases 257 

Figure 2: Linked Lists 

TOP~ 

Before So~: 
Top is Address 1 

Ad&e~ 

1 

3 

4 

Data 

Rehnquist 

3 

Scalia 

5 

O'Connor 

Data Item-t 

Pointer to Next Cell'-t 

After Sort: 
Top is Address 15 

Address Data 

1 Rehnquist 

2 3 

3 Scalia 

4 II  

5 O'Connor 

6 7 
-I 

7 Kennedy 

8 9 

9 Ginsburg 

10 11 

1 i Souter. 

12 13 

13 Thomas 

14 15 

6 1 

7 Kennedy 

8 5 

9 Ginsburg 

I0 7 

I I Sourer 

12 17 

13 Thomas 

14 null 

Breyer 

9 

Stevens 

13 

15 Breyer New TOP after sort"~ 15 

16 17 ~ ,!: 16 

17 Stevens 17 

18 null ,:~ 18 

Not~:that the data structures presented here are so basic that they :~;e 
mostJi~ely part of the public domain, hut that does not change the legal it 
argument. Advances in programming technique and algorithm de;/elop- 
merit involve creating complex data structures to facilitate equally 
complex algorithms. 

Computer science ha~ developed more complex data s~actures in 
order to enable computers to solve more complicated problems. For 
example, a "tree" data structure is used for running very fast database 



258 Harvard Journal of Law & Technology [Vol. 10 

algorithms. 73 This data structure groups boxes by threes, with each cell 
consisting o f  a data box and two pointer boxes. One pointer points to a 
"left child" cell and the other to a"fight child" cell, as shown in Figure 3. 
Another tyl3e o f  data structure is the "graph" structure. TM Graph data 
structures are useful for running pattem-matching algorithms, such as 
those used in speech recognition or artificial intelligence. 75 Although the 
examples of  data structures provided here m'iy not be original enough to 
be copyrightable, that does not mean that, apriofi, all data structures lack. 
originality. Any restrictions on the us,." of  a given data structure will 

. ~ ,  . . . . .  o 

necessarily restrict the use of  any flew algor:tnms:desIgned to take 
advantage of  that particular data structure, : :  

Figure 3: "Treeii~Data Structure 76 

Top ~ Data Item 

Left Right . 

f Pointer I Pointer!. 

Data Item ] 

Left Right / 
Pointer Pointer/ 

/ \ 
/ 

Data Item 

Left Right 
Pointer Pointer 

/ \ 

Data Item 

pLoe~er [ Roiignht~ r 

Cells 

Child Ceils 

l 
Data Item Data Item Data Item [ 

Left Right L e f t  Right [ Left Right Leaf Cells 
Pointer Pointer Pointer Pointer Pointer Pointer 

V V V V V V V V 
Null Null Null Null Null Null Null Null 

73. SeeAHO ETAL., supra note 66, at 75. 
74. See id. at 3. 
75. See Y. ANZAI, PATTERN RECOGNITION AND MACHINE LEARNING 3 (1992). 
76. Note that the tree structure can be many levels deep, and that the LeafCells always 

point to null. 
1- 



b. ~. 2] Computer Science Concepts in Copyright Cases 259 

Though this clarifies the importance of data structure to the 
algorithm copyright question, it is unfortunately still unclear whether 
current law has effectively carded out congressional intent to prohibit the 
monopolization of  algorithms through copyright." Even though 
algorithms have been explicitly excluded from copyright protection, 
defining program structure in a manner that does not effectively exclude 
the embedded algorithm from protection may have the unintended effect 
of defeating that exclusion. Furthermore, even if courts understand that 
algorithms may not be copyrighted, they may not understand that the 
protection of  a data structure that is necessary to a particular algorithm 
may provide a de facto monopoly over the algorithm. 

B. The Legal lmph'cations of  the Dependence of Algorithms 
on Data Structures 

If algorithms should not receive copyright protection, neither should 
any data structures necessary to particular algorithms. As demonstrated 
above, algorithms are dependent on data structures because data 
structures organize datawithin computer memory for manipulation by an 
algorithm. Creating an algorithm in a computer programming language 
requires organizing the data in an appropriate data structure. 78 The 
implications of this fact are enormous: restrictions on the use of  a given 
data structure will necessarily restrict the use of  dependent algorithms. 

If a court holds that two programs are substantially similar in 
program structure becausethe datastructures are the same, that ruling 
will confer a de facto monopoly over any algorithm that requires that 
particular data structure to run." For example, consider the linked list of 

77. See supra notes 62-64 and accompanying text. 
78. A computer science reference text explains: 

[W]e shall design algorithms in terms of  ADT's [abstract data types, 
e.g., integer, real, character, boolean], but to implement an algorithm 
in a given programming langnag¢ we must find some way of 
representing the ADT's in~:erms of  the daia types and operators 
supported by the programmiag language itself. To represent the 
mathematical model underlying an ADT we use data structures, 
which are collections of  variables, possibly of several different data 
types, connected in various ways. 

AHO ET AL., supra note 66, at 13. 
79. The data structures described in this Article are extremely common and may be part 

of the public domain, but no case law has authoritatively said so other than AItai in dicta. 
See Computer Assoes. Int'l, Inc. v. Altai, Inc., 982 F.2~693, 710 (2d Cir. 1992) (referring 
to 'common programming practices"). More importat~fly, future algorithm development 
will go hand in iiand with future data structure development. A newly crafted data structure 
that permits a new algorithm to run could be sufficiently original; however, it should not be 
copyrightable since doing so would restrict the use of  the newer algorithm designed to run 
on it. 



260 Harvard Journal of  Law & Technology [Vol. I0 

• the names of  the Justices described above. Assuming for argument's 
sake that the linked list structure is copyrightable, then the only party 
able to use the Quick.sort algorithm - -  or any other algorithm dependent 
upon the linked list data structure is the one holding the copyright to 
the linked list data structure. This result may dramatically impede the 
development of computer applications by permitting a lengthy de facto 
monopoly to attach to a particular algorithm.S0 

By introducing simple computer science terms of art such as "data 
structure" into the legal discourse, a court can make clear that separate 
analysis must be given to the data structure when examining, the 
copyrightable aspects of computer programs. A conclusion that a given 
program is in some respects copyrightable should not automatically 
compel the same legal conclusion with respect to t!~, data structure. 

Data structures are potentially protectable under the 1976 Copyright 
Act's provisions for the protection ofcompilatious. 8j The Act designates 
the "selection" and "arrangement" of data as the indici~i..~:'~ determining 
when copyright protection is appropriate and further requires that the 
selection or arrangement of  the information be original. 82 The data 
structure may be expressed in code in any one of a number of ways, 
which absent merger s3 - -  is protected from illicit copying, whether 
literal or nonliteral. Data itself is never protected: 4 Nor does the effort 

;~ and investment expended in collecting data justify protection: s But the 
selection of  what data to include and the chosen arrangement of that data 
are legitimate candidates for protection under a compilation theory: 6 

A data structure has two components: the data residing in the cells 
and a structure that defines how the cells are arranged. The ~,wrangement 
of the cells poses thorny problems for copyright law because of the data 

80. See 17 U.S.C. § 302(a),(c) (1994) (setting the duration of  copyright protection to 
the life of  the author plus 50 years or 75 years i fa  work for hire). 

81. See 17 U.S.C. § I03(a)(1994). 
82. See William F. Patty & Shira Perlmutter, Fair Use':Misconstrued: Profit, 

Presumptions, andParody, I I CARDOZO ARTS:~& ENT. L.J. 667 (1993). Compare Feist 
Publications, Inc. v. Rural Telephone Serv. Co., 499 U.S. 340, 350, 354 (1991 ) (finding that 
a telephone book did not meet the modicum of originality), with Key Pubi'g, Inc. v. 
Chinatown Today Publ'g Enters., Inc., 945 F.2d 509, 514 (2d Cir. 1991) (finding the 
selection process for Chinese yellow pages phone directory sufficiently original). 

83. "Merger" is the doctrine holding when expression ofan idea is inseparable from 
the idea itself, no copyright protection is given. See,41tai, 982 F.2d at 707. Thus, if there 
are only a few ways to code a particular data structure, merger would preclude copyright 
protection, even from literal copying. See id. at 708. 

84. See Feist, 499 U.S. at 347-48. 
85. See id. at 349 (rejecting "sweat of  the brow" nsjustification for copyright). 
86. See id. at 348-49. 



No. 2] Computer Science Concepts in Copyright Cases 261 

s t ruc ture ' s  potential ly unique fit with particular algorithms. 87 I f  the 
a r rangement  is the only one that works  with a particular algorithm, 
copyright protection for the a r rangement  confers monopoly  power  over  
the algorithm. Ironically, protecting a data structure in this manner  uses 
the compila t ion doctrine to dominate  the market  in a nonprotectable 
subject matter  the algorithm. Apply ing  the plain terms o f  the statute 
thus leads to a logical conundrum: protection for  a compilat ion confers 
protection ~ ; , an  unprotectable process. Courts are left with two options: 
either find the structural aspect  o f  the data structure protected under the 
compilat ion provisions o f  the Act  and thus confer  a monopoly  on the 
algorithm, or find the structural aspect  unprotectable because it confe~s 
an unacceptable  monopo ly  on the algorithm. 

The solution to this conundrum was not provided by Congress in the • 
1976 Copyright  Act. Rather, courts are left to resolve the conflict, using 
several  possible  guides including the Const.~tution, legislative history, 
copyr ight  policy,  and the relative fit between copyright  and patent 
protect-ion for  computer  software elements. Taken together, these criteria 
s t rongly  suggest  that  courts should choose the second solution: the 
structural aspect  o f  data structures (considered separately f rom the data 
itself) that are necessary to particular algori thms should not be granted 
copyright  protection. 

The  Consti tut ion grants  Congress  the power  to make  laws "[t]o 
promote the Progress o f  Science and useful Arts, by securing for limited 
T imes  to Authors  and Inventors  the exclusive Right to their respective 
Writings and Discoveries.  ''s8 Contrary to common  perceptions regarding 
monopol ies ,  the copyright  monopo ly  is, as a constitutional matter,  
supposed  to spur  scientific and literary development ,  s9 Indeed, the 

87. Th,~,' a,'r iuthor may select the data to be arranged in a particular data structure may 
imply origin,d authorship with regard to the selection step. See supra note 71 and 
accompanying text. The selection of data that resides within the cells does not pose the 
same potential for algorithm monopoly because algorithms are dependent on the 
arrangement of the data and not on any particular instance ofthe data itself. Considering 
the linked list example, it may be original authorship to have selected the names of justices, 
but that is separate from arranging them in a linked list data structure. By analogy, selecting 
particular judges for a specialized phone book may satisfy the requirement of originality, 
but the use ofnumbered pages or an alphabetical listing does not. The focus here is upon 
the arrangement ofthe data. J 

88. U.S. CONST. art. I, § 8, cl. 8. 
89. The Supreme Court has noted: 

Creative work is to be encouraged and rewarded, but private 
motivation must ultimately serve the cause o fpromoting broad public 
availability of literature, music, and the other arts. The immediate 
effect ofour copyright law is to secure a fair return for an "author's" 
creative labor. But the ultimate aim is, by this incentive, to stimulate 
artistic creativity for the general public good. 

Twentieth Century Music Corp. v. Aiken, 422 U.S. |51, |56 (1975). Fora discussion of 



262 Harvard Journal ofLaw & Technology [Vol. 10 

congressionally-created Commission on New Technological Uses of  
Copyrighted Works has spoken on the importance of  furthering 
innovation in the software industry. 9° Courts may presume that Congress 
intended to follow constitutional directives, and therefore that the statute 
is intended to effect a regime whereby innovative development of  
computer software is enhanced rather than diminished. Because the 
progress of  computer science development is impeded by conferring a de 
facto monopoly protection on algorithms through protection of necessary 
data structures, this consideration weighs against protecting the data 
structures necessary to certain a lgor i thms .  91 

Copyright policy generally favors extending the copyright monopoly 
• only to the extent that doing so will spur further original creations. 9z The 

statute does not provide authors absolute rights in copyrighted works, but 
instead explicitly recognizes certain exceptions to the copyright holder's 
monopoly where exercise of  those rights would not induce more 
authorship in the field. Most notably, the "fair use" affirmative 6efense 
permits individuals to use portions of  copyrighted works for certain 
socially valuable purposes even if the copyright owner were to object. 93 

- . ' , ,  

the impor'~nce of encouraging the soft, rare industry to the United States economy, see 
Computer Software Rental Act o f  1988: Hearing on S. 2727 Before the Subcomm. on 
Patents, Copyrights and Trademarks o f  the Senate Comm. ~n the Judiciary, 100th Cong. 
2 (1988). 

90. See CONTU, supra note 31, at 10-11. 
91. See supra text accompanying notes 6546 (explaining how better algorithms are 

the key to better software products). 
92. For example, the fair nse doctrine allows a critic to quote portions of  a copyrighted 

workbe is reviewing without obtaining the author's permission. See 17 U.S.C. § 107 
(1994). This type of  approach was explicitly recommended by CONTU in the case of  
computer software copyright. See CONTU, supra note 31, at 12; see also Mcneil, supra 
note 14, at 1049 (finding copyright to be a solution to the public goods problem); see also 
Computer Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992) (discussing 
monopoly problem with protecting data structures). 

93. See 17 U.S.C. § 107 (1994); see also Pierre N. Leval, Toward a Fair Use 
Standard, 103 H~V.  L REv. 1 ! 05, 1108 (1990) (finding fair use do~.lxinejustified by the 
purposes of  the Copyright Clause); H.R. REp. No. ! 02-836, at 3 (i992), reprinted in 1992 
U.S.C.C.A.N. 2553, 2555 (quoting Leval's article). Also note that 17 U.S.C. § 117 
explicitly allows owners ofan authorized copy of  a program to make a"backup" copy in 
case.the computer accidentally erases the first copy. 

Other restraints on the author's rights over the work also exist. For example, 
American cop-a;i'?~h t ~:aw recognizes the"first sale" doctrine which limits copyright holders' 
rights over the corporeal versions of  copyrighted works. However, the U.S. ha.~ been 
exuemely slow to recognize the moral rights mandated by the Berne Convention, which 
would increase the scope of  the copyright author's monopoly. 

[Adherence to the Berne Convention] will not, and should ~.ot, 
change the current balance ofrights between American authors and 
proprietors, modify current copyright rules and relationships, or alter 
the precedential effect of  prior decisions . . . .  The provisions are 
intended neither to reduce nor expand any rights that may now exist, 



No. 2] Computer Science Concepts in Copyright Cases 263 

Such a defense has been accepted in American copyright law with the 
understanding that such uses do not appreciably decrease the author's 
opportunity to benefit from her work. To the contrary, it spurs even 
further creative development by fostering a competitive environment. 
Likewise, prohibiting the author of  a data structure from exercising 
monopoly control over an algorithm through control of  the data structure 
copyright spurs creative development in the field. 

Copyright protection for data structures that are necessary to 
particular algorithms also creates a potential ei~nflict between the 
copyright, t and patent spheres. 94 If the algorithm tieff:to a particular data 
stru~u~ is patented, then the copyright protection afforded the smaeture 
permits the author to control the use (and profitability) of  the patented 
algorithm. Thus, copyright protection of  a data structure necessary to a 
particular algorithm can impede innovation in algorithms by diminishing 
the power of  the algorithm's patent holder during the comparatively short 
patent term of  protection to exploit the work. 9~ This devalues the patent 

nor to create any new rights under federal or state statutes or the 
common law. 

BERNE IMPLEMm,q'ATXON ACT, S. PEP. NO. 100-352, at i0 (1988), reprinted in 1988 
U.S.S.C.A.N. 3706, 3715. Butsee 17 U.S.C. § I09CoXIXA) (1994) (prohibiting rental of  
lawfidly purchased copies ofpbonorecords and computer programs). 

94. A collision betwetm pateat law and copyright law would also occur i f  both laws 
consider~ data structmes as subject matter. Patent law has far m~,'re stringent requirements 
than copyright law before conferring a monopoly. It is important to note that a patent was 
issued for a "data structure" to Lowry, who then assigned it to Digital Equipment Corp. See 
In re Lowry, 32 F.3d 1579 (Fed. Cir. 1994). This was a specific organization o f  data for 
use within computer-aided design and manufacaaing systems. The patent examiner initially 
rejected the patent application as improper subject matter, but was revel' "~1 by the Federal 
Circuit. The Federal Circuit held that because the "data structure" resided in computer 
memory, it was a method to be used with a machine and therefore the case fell under the 
holding of  Diamond v. Dieh,-, 450 U.S. 175 (1981). See id- Patentability of  data 
organization methods is beyond the scope of  this Article, although the same relationship 
between data structmes and algorithms exists regardless of  what law is appfied.: See supra 
note 71 and accompanying text. 

95. Note that there arc many cases of  one programmer making an improvement to 
another's existing algorithm. Those improvements would be less profitable i f  the use of  the 
data structure they both use were restricted by copyright. 

For discussion of  the conflict between patent and copyright coverage of  computer 
soRware, see_ Reichman, legal Hybrids, supra note I 1, at 2486; Samuelson, "-~enson 
Revisited, supra note 60; John Swinson, Copyright or Patent or Both: An Algorithmic 
Approach to Computer Software Protection, 5 HARV. J.L. & TECH. 145, 212 ( 1991 ); see 
also Denffts S. Katjala, Recent United States and International Development in Software 
Protection (Part 1), 16 Eu1L INTELL. PROP. REX'. 13 (1994); Recent United States and 
International Developments in Software Protection (Part 2), 16 EU1L INTELL. PROP. REv. 
5g (1994) (arguing that copyright law should be applied to computer programs in a way that 
avoids distortion of the distinctions between patent and copyright law). 

Computer languages as intellectual property may be better governed by patent law. 
An argument can be made that computer languages are patentable subject matter. A 



264 H a r v ~ d J o u r n a l  o f  L a w  & Technology [Vol.  10 

pro tec t ion  and results .;n d is incent ives  to produce  newer  and more  
sophist icated a lgor i thms which  are dependent  on the da~a structure and 
a decelerat ion in the progress  o f  compute r  science.  Given  the high cost  
o f  bringing software to m a r k e ~  ~ in the mi l l ions  o f  dol lars  - -  such a 
devaluat ion o f  patent protection and the resulting disincentives are lil:ely 
to cause considerable  harm to the progress o f  computer  science. 97 ThtLs, 
courts  mus t  be exh-emely careful  to recognize  the a lgor i thms and data  
structures that exist  within the program structure and also be sensi t ive td!, 
the impl ica t ions  o f  approv ing  copyr ight  protect ion for a part icular  d a t a  
structure. 

In sum, all  o f  the enumera ted  indicators  weigh  against  the copy-  
r ightabi l i ty  o f  da ta  structures necessary  io par t icular  algori thms.  
Although Congress  would  do  well  to make  this rule clear  in the statute, 
the legal analysis  is avai lable which can result in the proper  allocation o f  
p roper ty  r ights in da ta  structures and a lgor i thms ~ data  structures 
necessary  to par t icular  a lgor i thms should  not  be given copyr ight  
protect ion even i f  they sat isfy  the requirements  o f  a compilat ion.  9s 

C~:~: ..... 

computer language can be considered an algorithmic process for converting one set of 
symbols ("source code") into another set ("object code"). Algorithms have been found to 
be patentable subject matter under 35 U.S.C. § 101. See Karmarkar, U.S. Patent No. 
4,744,028. Languages developed in corporate R&D labs, like C, C++, and Java, are 
sufficiently novel upon their release to satisfy the priority requirements ofpatent law under 
35 U.S.C. § 102. Some languages, like LISP, C, C++, and Java, were radical departures 
from the prior programming art and therefore satisfy the statutory requirement for non- 
obviousness. See 35 U.S.C. § 103 (1994). Furthermore, for those kinds of languages the 
objective indicators of market success and long-felt need might also support a finding of 
non-obviousness. Cf. Hybritech, Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367,1382 
(Fed. Cir. 1986) (discussing market success as an indicator ofnon-obviousness). Some of 
the problems associated with a monopoly over a computer language (see Part IV.B) may be 
mitigated in the patent sphere through the doctrine ofpatent misuse. Although controver- 
sial, this aspect of patent law could prevent a patent holder in a computer language from 
using that monopoly to block consumers from migrating toward competing languages or 
program applications. Cf. Windsurfing lnt'! v. AMP, Inc., 782 F.2d 995, 1001 (Fed. Cir. 
1986) (discussing the patent misuse doctrine). 

96. "[S]oftware development now costs five to 15 times more than hardware 
development on a typical embedded processor project." Z~ernard Cole, EmbeddedSystems: 
Part 1: Chips and Tools, ELECTRONIC ENGINEER~G TIMES, Feb. 5, 199~'~ ', at 45, available 
in 1996 WL 797:,-~419. :.i 

97. See Computer Software Rental Amendments Act of  1988: Hearing on (3. 2727 
Before the Subeomm. on Patents, Copyrights and Trademarks of  the Senate Comnt on the 
Judiciary, 100th Cong. 2 (1988) (statement of Sen. On-in G. Hatch); see also Peter S. 
Mcneil, An Analysis o f  the Scope of  Copyright Protection for Applicatio~7. Programs, 41 
STAtq. L. REv. 1045, 1058-71 (1989) (discussing economic analysis of~i:, ~;~ter program 
copyright issues). ,: , ~ :: 

98. The decision to include particular data may still be copyrightab;~: ;It is0nly the 
architecture o fthe data structure that should be prohibiLod from protection fiii(ter this theory. 



No. 2] Computer Science Concepts in Copyright Cases 265 

IV. "PROGRAM STRUCTURE" AND COPYRIGHT 
OF A COMPUTER LANGUAGE 

The other noncopyrightable component of computer programs that 
s!- ~,uld not be swept within the protection of  a program structure is 
computer language and its attendant grammar. This Part will demon- 
strate that computer languages do not qualify for copyright protection, 
but if the legal term program structure is given too much breadth, de 
facto monopoly over both computer languages and their attendant 
grammars will follow. Once again, computer science c~ help us refine 
the meaning of  the legal term "program structure" so tha~ ~re straight- 
forward copyright analysis can ensue. In particular, the te~ program 
structure should exclude computer language grammar t~ ?revent 
copyright in a computer language. Before arguing that copyright of  a 
computer language is not legally justified, we turn our attention to a 
definition of  computer language. If 

. ] ,  

A. What ts a Computer Language? 

Computer languages are composed of  a set of  grammar rules and a 
set of  symbols. 99 The typical computer language grammar is "context- 
free, "°° which means that a sentence written in the computer language 
can be anaiyzed.t0 find its grammatical construction without any need to 
understand the meaning of  the words. This is es~entiaI because 
computers do not understand meanings: they are simply machines that 
manipulate symbols, t°l 

To illustrate how context-free languages work, consider how an 
English speaker, without knowing what a "smorg" is, nor what it is to 
"vit," can parse the silly sentence: "The smorg vittedthe blag.'" First, 
we know where the sentence begins and ends, and using on~,- grammati- 
cal rule, we decompose the sentence into a subject and an object phrase: 
"smorg" is the subject, and "vitted the blag" is the object phrase. We use 
another grammatical rule to decompose the object phrase into its 
constituent pieces: "vit" is the verb, and "blag" is the object. Thus, we 

99. See JEAN-PAUL TREMBLAY & PAuI. G. SORENSON, THE THEORY AND PRACTICE OF 
COMPILER WRITING 30-31 (1985). 

100. See JOl~ E. HOPCROFT & JEFFREY D. ULLMAN, INTRODUCTION TO AITI'OMATA 
THEORY, LANGUAGES AND COMPUTATION 2.33 (! 979) ("~M]odern compiler writing systems 
usually require that the syntax of  the language for which they are to produce a compiler be 
described by a context-free grammar of  restricted form."). 

101. Natural languages, like English, are distinct from typical computer languages 
because they are context=sensitive: the meaning ofthe words can affect the grammatical 
structure of a sentence. 



266 Harvard  Journal  o f  L a w  & Technology [Vol. 10 

have deduced the components of the sentence without understanding the 
meaning of the words. This sort of formalism makes computer lan- 
guages work. 

A context-free computer language is useful because its grammar can 
I~e ~ used mechanically to generate correct sentences in the computer 
language Or to check that a given sentence is within the set of acceptable 
sentences in that computer language. Understanding this mechanical 
function depends on one further distinction: the symbols used by a 
computer language are either "terminal" or "non-terminal." Those which 
are terminal cannot be decomposed into other symbols. Considering the 
context-free example in English above, "smorg," "vit," and "blag" are 
terminal symbols. "Subject phrase" and "object phrase" are also 
symbols in English, but they are non-terminal because they can be 
decomposed further using grammatical rules. In formal language theory, 
then, a computer language G with a context-free grammar is defined as 
the quadruple V, E, R, S, where V is the entire set of symbols used by 
language G, E is the set of all terminal symbols, R is the finite set of 
grammatical rules that transform non-terminal symbols into constituent 
terminal and non-terminal symbols, and S is the start symbol that tells the 
computer there is a sentence to parseJ °2 

Using this formalism, a computer program called a "parser" can be 
written that accepts strings of symbols consistent with the grammar and 
rejects those that are grammatically incorrectJ °3 The acceptance of a 
string of symbols by a parser is the first step any computer program takes 
when it responds to symbolic input. If the string is accepted, the parser 
will have constructed a tree data structure ~°4 that represents the grammat- 
ical construction of the sentence it was presented. 

A computer mechanically responds to instructions that are presented 
to it in binary code through combinations of ones and zeros, t°5 Humans 
cannot easily read binary instructions; therefore, we prefer to write 
programs in an understandable computer language ("source code") and 
then use a compiler program to translate that computer language into 
binary-coded instructions ("object code"). These are the instructions that 
the computer hardware can respond to without interpretation. 

For example, consider the statement X = A + B. A computer will 
parse this statement in the following manner. First, the parser uses a 
grammatical rule that the value of any expression after the "=" sign must 
be assigned to memory location X. Another rule specifies that expres- 

102. See TREMBLAY • SORENSON, supra note 99, at 31. 
103. See ROBERT SEDGEWlCK, ALGORITHMS 307 (1988). 
104. See supra notes 73-76 and accompanying text. 
105. See generally PA'I'rERSON & HENNESSEY, supra note 68, at 270; see also supra 

Part II. 



No. 2] Computer  Science Concepts  in Copyright  Cases 267 

s ion ' s  value to be the result o f  an addition. Finally, the inputs to the 
addi t ion will be specified as the contents o f  locations A and B. The 
resulting parse trees for both this example and the silly sentence example 
are presented in Figure 4.1°6 

Figure 4: Parse Trees 1°7 

"The smorg vitted the blag" X = A + B 

Sentence: "The smorg vitted the" blag" = 

Subject: The smorg Object Phrase X + 

J \  / \  
Verb: vitted Object: the blag A B 

A n y  computer  program that is supposed to generate or accept 
sentences in a computer  language requires some kind o f  parser. I°8 The 
computer  program that parses input sentences (or generates sentences) 
from a given computer language G must  contain within it some v e r s i o n  
of  the quadruple V, E, R, S. 1°9 This typically requires H° that the program 

L 

106. Once the statement is parsed, the compiler generates object code starting at the 
bottom of the parse tree and working up. This process is called "bottom-up" parsing. See 
TREMBLAY ~Z, SORENSON, supra note 99, at 52. It first produces a computer instruction that 
moves the content of a memory location to the inputs of the addition unit of the CPU. See 
supra note 8 (explaining CPU). This is done twice: once for the content of A and once for 
that of B. An instruction for the computer to add is then produced. Finally, the compiler 
produces an instruction that moves the resulting sum to memory location X. 

As a result of compiling, the single statement X = A + B is translated into these four 
(hypothetical) 8-bit binary instructions that tell the CPU to perform these four steps in 
sequence: 

1. "10011101" (move contents of Memory Location A to the Addition 
Unit Input #1) 

2. "10011 ! 10" (move contents of Memory Location B to the Addition 
Unit Input #2) 

3. "10101110" (execute the sum of the inputs) 
4. "10111100" (move contents of the sum into Memory Location X) 

107. Each"leaf' is an indivisible symbol, therefore a"terminal" symbol. Each non-leaf 
node represents a non-terminal symbol. Each node in the tree represents the application of 
a grammar rule. 

108. See SE[X;EWICK, supra note 103, at 269. 
109. See id. 
110. The other choice is to create a list of all possible sentences in G, a task that is likely 

to be impossible. See TREMBLAY & SORENSON, supra note 99, at 3 I. 



268 Harvard Journal o f  Law & Technology [Vol. 10 

access a file listing all of  G's symbols and all of  G's grammatical 
rules. III Without such a list, the human equivalent would be to hand 
someone a German dictionary but no grammar text and demand she 

• translate sentences. Figure 5 illustrates how an input sentence is parsed 
generally. 

Figure 5: Parsing an Input Sentence 

How Data Processing Programs Use a Parser and Grammar To 
Read Sentences in Language G: 

Sentences in Language G - - ~ "  Parser - - ~ "  Data Processing 
l Engine 

Language G: 
Grammar Rules 

Symbols 

The application of  parser programs is not limited to converting 
human readable source code into machine executable object code. 
Parsers are needed almost anytime two programs intend to communicate 
by sharing command sequences or data files. Parsing is essential when 
computer files are to be translated from one format to another: it is the 
first step along a migration path)12 

If  it were possible to prevent a programmer from using a language 
specification G (i.e., some V, E, R, S), or even just the grammar R of  
language G, it would be impossible for that programmer to write a parser 
for G. I fa  programmer is prevented from writing a parser in G, she will 
be unable to use language G to communicate between her programs or 
data files and whatever other programs use language G to communicate. 
This is an example of  blocking a migration path by preventing translation 
of  the language G. 

111. See SEDGEWICK, supra note 103, at 270. Another type of parser program builds 
the grammatical rules directly into an algorithm. These programs are known formally as 
"finite automata." The grammar rules are represented inside the automata as a list of"IF- 
THEN-ELSE" conditions that select program behavior based on each new symbol presented 
to the program. In other words, for each new symbol presented, the program will decide 
which state to go into based on its current state and the next new symbol in the sentence. 
Nonetheless, both methods of  parsing (using a table of rules or a finite automata) are 
equivalent. See HARRY R. LEWlS& CHRISTOS H. PAPADIMITRIOU, ELEMENTS OF THE 
THEORY OF COMPUTATION 102 (1981). 

112. See supra note 27 (defining migration path and explaining its importance in 
copyright law). 



No. 2] Computer Science Concepts in Copyright Cases 269 

B. Computer Languages Should Not Be Copyrightable 

The Copyright Act 9 f  1976 does not directly address the copy- 
rightability of  computer laiaguages, m Computer languages should not be 
copyrightable subject matter for two reasons. ~ ~4 First, language copyright 
is doctrinally suspect because that would provide copyright protection 
for expressions not yet fixed. Fixation, of  course, is aprerequisite for 
copyright protection, t ts If the author of a computer language sought to 
claim copyright protection for a computer language, either of  two files 
would have to be covered: a list of  all possible sentences in that 
language, or an expression of  its specification (i.e., a copy of the 
quadruple V, E, R, 6") that fully describes the language. The first choice 
is likely to be impossible: a computer language contains a huge number 
of  possible sentences, possibly of unbounded size. Although more 
practical, the second choice is problematic: the specification only tells 
us how to decide whether a given sentence is within the language and is 
not fixation of  the sentence itself. If the given sentence has been fixed 
for the first time by a party other than the hypothetical copyright holder 

113. The text of the statute does not mention computer language. See 17 U.S.C. § 
102(b) (1994). CONTU does not address the copyrightability of computer languages either. 
See CONTU, supra note 31 The only inkling that the Copyright Office has given thought 
to this is in the 1984 Compendium of Copyright Practices § 325.02(c) (including under the 
heading "Noncopyrightable elements" the entry "language (alone)" without any further 
explanation). 

The cases are no more illuminating. The court in Bull HN Info. Sys., Inc. v. American 
Express Bank Ltd., 1990 WL 48098 (S.D.N.Y. Apr. 6,1990), studiously avoids confronting 
the de fendant's claim that a computer language is not subject to copyright. See id. at* 2 n.2. 
The only other cases that consider copyright of a language are the so-called "code book" 
cases. See Brief English Sys., Inc. v. Owen, 48 F.2d 555 (2d Cir. 1931) (finding that 
shorthand technique, as a language, was not copyrightable); Reiss v. National Quotation 
Bureau, Inc., 276 F. 717 (S.D.N.Y. 1921) (holding that a book of meaningless code words 
w ~  copyrightable); but see NIMMER, supra note 68, at § 1.06, 1-47 ("A programming 
l~guage constitutes potentially copyrightable subject matter. [They are] compilations of 
commands and terms developed by a particular author . . . .  "). 

114. See Richard H. Stem, Copyright in Computer Programming Languages, 17 
RtrrOERS COMPLr~R & TEC8. LJ. 322 (1991) (finding language uncopyrightable for the 
following two reasons: that language is a process, and that some languages are ideal to 
solve certain programming problems and, therefore, merger applies); see also Elizabeth G. 
Lowry, Copyright Protection for Computer Languages: Creative Incentive or Technologi- 
cal Threat?, 39 EMORY L.J. 1293, 1296 (1990) (reasoning that languages are a system and 
hence unprotectable by copyright); John P. Sumner & Steven W. Lundberg, Patentable 
Computer Program Features as Uncopyrightable Subject Matter, 17 AM. IWI'ELL. PROP. 
L. ASS'N Q.J. 253 (1989) (finding a computer language uncopyrightable because it is a 
system, but possibly patentable). Lowry's treatment of computer languages lacks 
mathematical rigor yet raises a host of legitimate and interesting issues, most notably that 
the Lotus 1-2-3 macro language satisfies the definition of a real computer language. See 
Lowry, supra, at 1296. 

115. See 17 U.S.C. § 102(a) (1994). 



270 Harvard Jot~.rnal ofLaw & Technology [Vol. 10 

in the language, the quadruple V, E, R, Scan be used to determine if that 
sentence is within the supposedly copyrighted language. If that 
determination supports a claim of infringement, then it would be 
infringement of an expression not previously fixed. This is contradictory 
to the statutory requirement that an expression must be fixed to be 
copyrighted. 

Second, even if language copyright were consistent with copyright 
principles, it would violate First Amendment principles. "6 By authoriz- 
ing protection for languages, the Act would be authorizing prior restraint 
of any expression in that language. N7 Ifa programmer cannot lawfully 
include a copy of the grammar in a parser program, the parser cannot 
lawfully create expression in that language. Similarly, a parser could not 
lawfully read any sentence in that language. It is not clear that just 
because such expression is machine-generated it is not protected by the 
First Amendment: the law already recognizes that machine-generated 
expression - -  the output of a video game, for example--  is protected by 
the Copyright Clause.ll8 

Although copyright law does not violate the First Amendment when 
it permits individuals to preclude others from substantially copying their 
original expression, it exceeds First Amendment boundaries when it 

. permits authors to own the rights to form any expression from the 
building blocks of  language. ,9 Indeed, protection of  linguistic building 
blocks impedes the progress of originality sanctioned by the Copyright 
Clause in addition to violating the First Amendment rule against 
suppressing speech before it has been expressed. 

The implications of copyright in a computer language are extreme: 
ifa language can be protected through copyright in its specification (i.e., 
the quadruple V, E, R, S), then any use of the language would have to be 

! ! 6. Computer program source code has been found protected speech. See Bemstein 
v. U.S. Dep't. of State, 922 F. Supp. 1426, 1436 (N.D. Cal. 1996) ("For purposes of First 
Amendment analysis, this court finds that source code is speech."); see also Karn v U.S. 
Dep't. of" State, 925 F. Supp. i, 9 (D.D.C. 1996) ("[T]he Court will assume that the 
protection of the First Amendment extends to the source code..."). 

117. For examples of prior restraint cases see, for example, Nebraska Press Ass'n v. 
Stuart, 427 U.S. 539, 556 (1976); New York Times Co. v. United States, 403 U.S. 713, 713 
(1971); Near v. Minnesota, 283 U.S. 697 (1931). 

118. See Atari Games Corp. v. Oman, 888 F.2d 878 (D.C. Cir. 1989). 
119. The restriction ofexpression to protect an idea has been found unconstitutional by 

the Supreme Court: "[C]opyright's idea/expression dichotomy 'strike[s] a definitional 
balance between the First Amendment and the Copyright Act by permitting free 
communication of facts while still protecting an author's expression.' No author may 
copyright his ideas or the facts he narrates." Harper & Row, Publishers, Inc. v. Nation 
Enters., 471 U.S. 539, 556 (1985) (citations omitted). 



No. 2] Computer Science Concepts in Copyright Cases 271 

licensed since use of  a language requires a parser program which must 
contain the specification of the language) 2° 

The dependence of a parser program on the quadruple V, E, R, S is 
strong: the same problem would arise even if only the set of grammar 
rules R is protected while the symbols (elements of V) are in the public 
domain. As explained in Part IV.C., it is no solution to say that there 
could be two different expressions of  a given language specification or 
grammar. Any two distinct expressions of the same language specifica- 
tion will always contain the same inherent hierarchy among the symbols 
that under traditional non-literal similarity tests will support an infringe- 
ment claim. 

That "major" computer languages are already in the public domain 
does not solve the conundrum. For example, Sun Microsystems has 
made a major investment in creating Java, which is designed to make it 
easier to write internet-based graphical user interfaces. Sun has 
recognized the large potential value of a computer language as intellec- 
tual property and currently requires programmers to sign a licensing 
agreement if they wish to use Java or to write a compiler that implements 
Java) 2j Microsoft, a Java licensee, has created its own extensions to 
Java that optimize Java for use with their Windows operating system. 
Such language extensions are the natural adaptations of existing 
computer languages to new computing~environments, m Microsoft's 
extensions to the Java language could make their Java compiler more 
attractive than Sun's compiler. Sun is now positioning itself to prevent 
Microsoft from running away with the language standard by promoting 
an industry standards committee including itself but not Microsoft) 23 If 
computer languages really are copyrightable, Sun could sue Microsoft 

120. See supra Part IV.A. For program A to communicate in language L, it must 
contain its own copy of L's grammar. If that grammar has already been copyrighted, then 
distributing copies of  program A will infringe on the existing copyright in L's 
grammar. 

121. See Sun Microsystems Inc., Technology License and Distribution Agreement I 
(April 1996) ("WHEREAS Sun wishes to license its Java programming language...") (on 
file with author). Interestingly, the contract refers to the "Java Language Specification" as 
part of  the technology documentation but not directly as the technology. Instead, the 
technology is a set of  files that contain object class descriptions for implementation of Java. 
These files would play the role of  a language grammar file analogous to the menu tree in 
LotusDev. Corp. v. Borlandlnt'l, Inc., 831 F. Supp. 223 (D. Mass. 1993), rev'd, 49 F.3d 
807 (Ist Cir. 1995), aff'd by an equally divided court, 116 S. Ct. 804 (1996). See supra 
Part IV.D. 

122. For example, the Very popular C++ computer language was developed as an 
extension of  the now less fashionable C language. See BJARNE STROUSTRUP, THE C++ 
PROGt~,MMn~G LANGUAOE 627-28 (2d ed. 1991). Competing sottware companies now 
release C++ compilers that include new extensions to the language to attract programmers 
to buy their product. 

123. See supra text accompanying note 6. 



272 Harvard Journal o fLaw  & Technology [Vol. 10 

for creating an unauthorized derivative work. Even more disturbing is 
that the company could demand licenses from other application 
programmers who intend to use their compiler to write other software 
products: they would be using a copyrighted language. This would 
impede the progress ofcornputer programming because entrepreneurial 
software ventures that might become a threat to a large manufacturer 
could be instantly shut down if  the large manufacturer terminated their 
license to use the computer language extensions. TM 

The existence o f  other programming languages or language 
extensions does not solve the problem because the software entrepreneur 
will be forced to select a compiler not on the basis of  its technical merits 
or consumer demand but rather based solely on the terms offered by the 
copyright monopoly holder. Larger companies with larger research and 
development staffs will have b e t t e r - -  or at least more widely employed 
- -  compilers and at the same time will likely offer more onerous 
licensing terms. The new venture must either use inferior compilers or 
succumb to the demands o f  the larger company. This is an undesirable 
externality resulting from computer language copyright. ~25 In sum, 
copyright in computer languages is at odds with both the statute and the 
First Amendment,  and uses the copyright monopoly to impede the 
progress o f  computer science. 

C. "Program Structure" and Non-Literal Infringement 
o f  a Computer Language Grammar 

A key observation about a set o f  grammatical n~les is that they must 
necessarily create a hierarchy among the symbols contained in the 
language. This is so because one characteristic of  grammatical rules is 
that they specify how the non-terminal symbols of  the language can be 
decomposed into their constituent symbols. 

In the context-free English example, we know that the following 
sentence does not make sense because the 'word order is incorrect: 
"Vitted the blag the smolg." That observation is a result o f  our reeogni- 

124. Such an action would theoretically be proscribed under the antitrust laws, b u t  

depending on antitrust laws to fix problems in copyright doctrine is foolish. Cf. Alfred Bell 
& Co. v. Catalda Fine Arts, Inc., 191 F.2d 99, 106 (2d Cir. i 951 ) (''We have here a conflict 
of policies: (a) that ofprewnting piracy ofcopyrigh~d matter and (b) that of enforcing the 
anti-trust laws. We must balance the two... [on these facts] we think the enforcement of 
the first policy should outweigh enforcement of the second."); see also Rosemont v. 
Random House, 366 F.2d 303 (2d Cir. 1966) ("Thus, it is not the fact of a constitutional and 
statutory monopoly which is disfavored, only abuses of the lawful monopoly.") 

125. See CONTU, supra notc 31, at 23 ("One of the hallmarks of a competitive industry 
is the ease with which entrepreneurs may enter into competition with finns already doing 
business."). 



No. 2] Computer Science Concepts in Copyright Cases 273 

tion that there is no rule that decomposes a sentence with the verb "vit" 
first. '26 In other words, we must successfully decompose the sentence 
into a subject phrase followed by an object phrase before we decompose 
the object phrase itself. This hierarchy results from the grammatical 
rules of  English and would be inherent in any expression o f  those rules. 
In the computer language example above, the sentence A + B = X is 
incorrect because the "+" rule cannot be exercised before the "=" rule. 
That hierarchy is why the parser would reject the sentence A + B = X as  
not belonging to the language. 

At some level of  abstraction, all possible expressions of  a given 
grammar will contain the same hierarchy among the symbols because 
that is the hierarchy inherent in the relationship between the non-terminal 
and terminal symbols o f  the language. I f  the legal term program 
structure is deemed to include the grammatical hierarchy in a given 
language G, then any implementation o f  a parser for language G, which 
necessarily will contain that hierarchy, will infringe on any other 
instance of  that hierarchy through the non-literal similarity test. 
Therefore, no program could be written to read or write language G 
without infringing on the copyright in the grammar o f  G. 

In conclusion, if grammatical rules and symbols are copyrightable, 
then copyright law has once again introduced a conundrum. As 
demonstrated earlier, providing cop) right protection to grammatical rules 
and symbols confers a de facto monopoly over any sentence within that 
computer language whether fixed or not) 27 Therefore, the legal term 
program structure should exclude from copyright protection any 
expression o f  a language specification or the inherent hierarchy among 
the symbols contained in it. This prevents de facto monopoly over 
computer languages as a result of  copyright in language specification) 2s 

126. In English, this is because of the tense of the verb "vit." If the sentence started 
'Witting carefully, the smorg... ," then a rule would allow decomposition with the verb 
first. Similarly, the verb "is" would be acceptable at the beginning: "Is this your smorgT' 
This, however, moves beyond the scope of the example. 

127. This aspect of formal language theory is the essence of Lotus's goal in its lawsuits 
against Paperback and Borland with respect to the "Key Reader" macro language discussed 
below. See Lowry, supra note 114, at 1294. Lotus's original complaint included 
infringement of the macro language. 

128. We are not advocating excluding copyright of human readable specifications of a 
language, i.e., textbooks that teach humans howto understand and write in a language. This 
legal proposition is limited to expressions of language grammar for use by the computer 
itself. 



274 Harvard Journal o f  Law & Technology [Vol. 10 

D. Computer Language Grammar, Copyright, 
and Lotus v. Borland 

Examination o f  the Lotus Development Corp. v. Borland Interna- 
t ional lnc. ~29 case is an excellent way to observe how inaccurate 
terminology introduces unintended externalities into the software 
copyright doctrine. By revisiting Lotus v. Borland with accurate 
computer science terminology, we can demonstrate how improved 
software copyright analysis will result. 

Considering Lotus v. Borland in light of  our understanding of  
computer languages leads to the conclusion that in one portion of  the 
suit, Lotus could have obtained a monopoly over a computer language 
they devised. '3° The two spreadsheet programs at issue do not express 
the idea o f  a spreadsheet program using the same expression but rather 
are only similar in their purposes and results. To enhance the utility o f  
Lotus 1-2-3, a Lotus 1-2-3 user typically writes her own small programs 
(using the "macro language") that encompass repetitive sequences of  
Lotus 1-2-3 commands. TM Each sequence is assigned to a single key on 
the computer keyboard: when that key is pressed, the corresponding 
sequence of  commands is sent to Lotus 1-2-3. This aspect o f  the dispute 
centers on the fact that Borland's Quattro Pro program contains a "Key 
Reader" program that accepts the same symbolic sentences that are 
accepted by the Lotus 1-2-3 program, x32 Having parsed these sentences, 
it is able to control the Quattro Pro program to produce the same result 
as if  Lotus 1-2-3 had been running. A diagram o f  the process is shown 
in Figure 6. In human terms, this is equivalent to having a language 
translator work between two individuals with different native languages. 

129. 831 F. Supp. 223 (D. Mass. 1993), rev 'd, 49 F.3d 807 (lst Cir. 1995), a.O"d by an 
equally divided court, 116 S. Ct. 804 (1996). 

130. Lotus also raised other issues not addressed in this Article, most importantly 
whether a program that had a user interface substantially similar in organization to Lotus 
1-2-3 infringed on the copyright in its user interface display. See Lotus Dev. Corp. v. 
Borland lnt'l, Inc. 788 F. Supp. 78, 81 (D. Mass. 1992). 

! 31. See Lotus, 49 F.3d at 809. 
132. See id. 



No. 2] Computer Science Concepts in Copyright Cases 275 

Figure 6: Reading Sentences in the Lotus 1-2-3 Macro Language 

How the "Key Reader" uses the "Menu Tree File" to Read 
Sentences in Lotus 1-2-3 Macro Language: 

Sentences in Lotus 1-2-3 
Macro Language 

Borland Quattro Pro Key Reader 
~ "  (Parser) - - ~ -  Data Processing 

Engine 

"Menu Tree File" containing: 
Grammar Rules 

Symbols 

If the Key Reader parsing program cannot read Lotus 1-2-3 macro 
language sentences, then users who want to switch to Quattro Pro from 
Lotus 1-2-3 would have to rewrite their macro programs to conform with 
Quattro Pro's macro language, m The significance of  this result is that 
consumers of commercial software will be forced to choose between re- 
writing their macro command programs by hand or passing up the 
opportunity to use a competitor's preferred product because there is no 
migration path between the new product and their existing software. 
More generally, it opens the door to the possibility that a software 
consumer cannot simply apply a translation program to his work to 
switch from using one vendor's product to using another'sJ a4 This 
capacity to block a migration path for software consumers is anti- 
competitive rather than the result of  a legitimate copyright monopolyJ 35 

Judge Keeton found infringement in the Borland Key Reader 
program because it contained a file that described the entire menu 
hierarchy of  Lotus 1-2-3: 

Put another way, the point is that to implement Key 
Reader[,] Bodand used a program file containing the 
same copy of  the 1-2-3 menu tree structure and com- 
mands that Borland had used in its emulation interface, 

133. Seeid. at821. 
134. Translation would be: accomplished with a program quite similar to a compiler, See 

supra Part IV.A. 
135. See CONTU, supra note 31, at 23 (finding that anti-competitive practices are 

beyond the scope of  patent and copyright protection); see also Clapes et al., supra note 14, 
at 1560 ("[Narrow protection is warranted to prevent] giving authors of original programs 
the power to preclude others from writing programs that interact with those original 
programs. If  valid, such concerns would be serious indeed."); Paul Goldstein, Infringement 
o f  Copyright in Computer Programs, 47 U. Pl'f-l'. L. REV. I 119, 1129 (1986) (reasoning 
that in cases hot rising to the level of misuse, courts could seek to resolve the compatibility 
issue through the doctrine of fair use). 



276 Harvard  Journal  o f  L a w  & Technology [Vol. 10 

but with each menu command name stripped of  every- 
thing after the first letter. Borland then appended this 
copy of  the "stripped menu tree" to its quattro.mu file 
. . . .  In sum, to interpret macros, Borland's programs 
use a file with phantom menus consisting of  a virtually 
identical copy of  the Lotus menu tree that Borland used 
for its emulation interface, but with only the first letter 
of  each menu command name where the complete 
menu command name previously appeared. ~36 

According to Judge Keeton, Borland's Key Reader infringed not 
because o f  literal copying of  the Lotus menu screen, but as a result of  the 
non-literal copy of  the Lotus command menu hierarchy within the hidden 
Borland file. t37 He did not address the question of  the menu hierarchy 
as a computer language grammar. The Court o f  Appeals reversed and 
held that the Lotus 1-2-3 menu command hierarchy was a method of  
operation and hence uncopyrightable, j3s Although this decision 
ultimately prevents an anti-competitive monopoly over a grammar, the 
court did not face the macro language grammar issue head-on. Once the 
menu hierarchy was found uncopyrightable, Borland's non-literal copy 
of  the menu was non-infringing as a matter o f  law. t39 The Supreme 
Court did not confront the computer language grammar issue because it 
was equally divided on the case and therefore affirmed without opinion 
the decision o f  the Court o f  Appeals. ~4° In examining this history, the 
intention is not to reargue the case but rather to consider Judge Keeton's 
district court opinion as a symptom of  the problem presented: that to 
ignore basic computer science concepts when deciding software 
copyright cases produces bad case law. 

The "stripped menu tree" file identified by Judge Keeton is a 
representation o f  the symbols and grammatical rules that define the Lotus 
1-2-3 macro language. TM This list is necessary for the Borland Key 

136. Lotus Dee. Corp. v. Borland Int'i, Inc., 831 F. Supp. 223, 228-29 (D. Mass. 1993). 
137. Seeid. at224. 
138. See Lotus Dee. Corp. v. Borland [nt'l, Inc., 49 F.3d 807, 815 (lsL Cir. 1995). 
139. Seeid. at 819. 
140. See Lotus Dec. Corp. v. Borland Int'l, Inc., ! 16 S. Ct. 804 (1996). 
141. An irony is that the.judge had been presented the language issue before in Lotus 

Development. Inc. v. Paperback Software International, 740 F. Supp. 37, 53 (D. Mass. 
1990). and regarded the argument as a "word game": "An even more striking word-game 
argument is defendant's contention that in copying the I-2-3 user interface, they have only 
copied a language, and that languages are not copyrightable . . . .  I conclude that defendant's 
language argument about the macro facility of Lotus i-2-3.., is totally without merit." Id. 
at 73. See Samuelson, supra note 37 at 236. 



No. 2] Computer Science Concepts in Copyright Cases 277 

Reader to parse and accept Lotus 1-2-3 macro language sentences) 42 
The hierarchical listing of  the macro commands is a grammar because 
the hierarchy determines which symbols may follow which other 
symbols.  By doing so, it performs the function o f  a formal language 
grammar: to determine which sentences are within the language and 
which are not. For example, the sentence "WORKSHEET,  FORMAT, 
FIXED" is acceptable only because FORMAT appears under the 
WORKSHEET heading and FIXED under the FORMAT h-_~ading) 43 The 
sentence "WORKSHEET,  RANGE, LABEL" is syntactically incorrect 
because RANGE is not under the WORKSHEET heading: it is its own 
heading. Thus, the hierarchical table within the menu tree file is a 
representation of  the macro language grammar and its symbols. The 
grammar represented by the menu tree file is used by the Key Reader to 
parse and accept the Lotus 1-2-3 macro language) ~ 

According to Judge Keeton, anyone who expresses the Lotus 1-2-3 
menu command hierarchy in any way infringes on Lotus 's  copyright. 
However, because the Lotus 1-2-3 macro language itself is derived from 
the menu commands presented on the computer screen to the Lotus 1-2-3 
user, any expression o f  the macro language grammatical rules will 
always contain the hierarchy inherent in the Lotus 1-2-3 menu com- 
mands that appear on the screen) 45 To put it another way, no one can 
express the grammatical rules of  the Lotus 1-2-3 macro language without 
expressing in some form the menu command hierarchy. Therefore, 
following Judge Keeton's reasoning, the only programmers that can write 
a parser that will read or write the Lotus 1-2-3 macro language sentences 
are those that are allowed to express the menu command hierarchy 
inherent in the grammatical rules o f  the Lotus 1-2-3 macro language: 
presumably Lotus and its licensees. By misunderstanding the computer 
language grammar  aspect o f  the Key Reader dispute, Judge Keeton 
accidentally opened the door to a de facto monopoly of  the Lotus I-2-3 
macro language in finding copyright protection for its grammatical rules 
and symbols through non-literal infringement. As a result, he disserved 

142. A grammar specifies which sentences are in a language and which are not. See 
supra Part IV.A. 

143. See Lotus Dev. Corp. v. Borland lnt'l, Inc., 831 F. Supp. 202, 210 (D. Mass. 
1993). 

144. See supra Figure 5. 
145. Seesupra Part IV.C (explaining the hierarchy in grammatical rules). In the Lotus 

1-2-3 program, the menu display itself had a hierarchy: some menu choices had to be 
selected to reach other choices. The Key Reader technology allows users to make the same 
sequence ofmenu choices by inserting a sentence of symbols (a macro) directly into the 
program instead of making the selections on the screen. Each symbol represents a menu 
choice. See Samuelson, supra note 37, at 236. 



278 Harvard Journal of  Law & Technology [Vol. 10 

copyright policy and created the potential for a system which impedes 
the optimal progress of  computer software development. 146 

Given that computer language grammar', are not copyrightable, the 
menu tree file used by Quattro Pro's Key Reader should be found non- 
infringing. This is because the menu tree file is merely a representation 
of the Lotus 1-2-3 macro language grammar. That the macro language 
grammar was derived by Lotus from the appearance of the Lotus 1-2-3 
command menu is immaterial. On balance, this is a limit to copyright 
protection from non-literal copying only, not literal copying of the Lotus 
1-2-3 menu appearance. This relative loss of protection would be slight 
compared to the greater advancement of  the policies behind copyright 
protection and greater doctrinal coherence overall. 

V .  S U M M A R Y  AND C O N C L U S I O N  

The integration of  computer science terminology into the legal 
discourse increases the precision with which judges can analyze the 
software copyright cases in front of them. To that end, fundamental 
questions should be asked of  the plaintiff in a non-literal software 
copyright infringement suit to be sure that the infringed portion of their 
program is clearly within the sphere of copyright protection. Further- 
more, that any infringement claim must survive these threshold tests 
establishes a clear boundary line for programmers seeking to discern 
what is theirs and what is in the public domain. 

A. What a Judge Should Ask the Plaintiff 

Once a judge has learned what a data structure and a computer 
language grammar are, she has the tools to step around some of the 
pitfalls inherent in a computer program copyright case. If the plaintiff is 
arguing that the defendant's program is infringing because it organizes 
the subject data in a substantially similar way, the judge should ask the 
plaintiff: "Is this organization a data structure that is uniquely necessary 
to run your algorithm?" If yes, then that organization is excluded from 
copyright protection in order to ensure the free use of the algorithm. If 
no, then the judge can decide whether the organization of the data meets 
the de minimus standard for copyrightability without concern that a 
monopoly over the organization will prohibit public use of the 
algorithm) 47 Of course, the two parties will litigate whether the 

146. See supra Part IV.B. 
147. One can imagine an algorithm that could run on two different data structures, one 

being practical and efficient and the other introducing some gross degradation in algorithm 
performance. The latter data structure is not copyrightable because of the limitations in 



No. 2] Computer Science Concepts in Copyright Cases 279 

algorithm requires the underlying data structure. Note that the judge 
must determine that based on the usual "battle of  the experts"; however, 
the dependence of  the algorithm on a particular data structure can be 
determined with mathematical precision. ~4s As a result of  employing the 
appropriate computer science terminology, the court's reasoning will 
hew to traditional copyright reasoning while giving full consideration to 
cutting edge software technology. The court's attention will be focused 
right at the center of  the issue. 

In a case where the plaintiff is claiming that some kind of  hierarchy 
of  commands or input symbols that controls the plaintiff's program has 
been infringed, the judge must ask: "Is this hierarchy of  symbols 
equivalent to a formal language grammar?" To pin the plaintiff down, 
she can ask whether it would be possible to write a program to accept the 
same sentences usable by the plaintiff's program without relying on a 
literal or non-literal copy of  the symbols and hierarchy i n dispute. If  the 
answer is yes, then the hierarchy in dispute is not essential to represent 
a grammar. I f  the answer is no, then the hierarchy ha dispute is essential 
to represent a grammar. Again, the answer to that question can be 
determined with mathematical precision. 

B. Computer Terms o f  Art and Copyright Analysis 

Non-literal copying of  a computer program is inherently difficult to 
analyze without understanding relatively simple computer science 
concepts and integrating them into the  legal discourse. By using 
computer science terms of  art, the risk of  overprotection posed by the 
existing computer program jurisprudence is significantly reduced and 
more efficient progress in computer software development is assured. 
The Whelan and the Altai courts were correct to the extent that they both 
recognized that copyright protection for computer programs cannot 
extend to noneopyrightable elements. Their approaches fall short, 
however, to the extent that they fail to acknowledge precisely those 
program components that deserve independent consideration under 
copyright analysis. As long as the courts considering computer 
software copyrightability persist in crafting new terms of  art and ignoring 
the more precise and relevant computer science terms, we will have 

expression arising from the practicalities involved. This reasoning is the same as the 
reasoning used in Kern River Gas Transmission Co. v. Coastal Corp., 899 F.2d 1458 (5th 
Cir. 1990). With respect to computer progrmn~this point is raised in ComputerAssociates, 
International, Inc. v. Altai, lnc., 982 F.2d 693, 708 (2d Cir. 1992). See also supra note 83 
and accompanying text (discussing merger doctrine and compilation protection for data 
structures). But see Miller, supra note 14, at 1009 n.156. 

148. -Either an algorithm is dependent on a data structure or it is noL That dependence 
will be apparent from the algorithm itself, separate from any instant expression of it. 



280 Harvard Journal ofLaw & Technology [Vol. 10 

unpredictability in computer so . r a r e  copyright law, which in turn will 
impede full throttle progress in the development of computer software. 
That result is bad for the economy, bad for consumers, and contrary to 
the directive of  the Constitution's Copyright Clause. 




