
Volume 5, Fall Issue, 1991

C O P Y R I G H T O R P A T E N T O R BOTH:
A N A L G O R I T H M I C A P P R O A C H T O

C O M P U T E R S O F T W A R E P R O T E C T I O N

J o h n S w i n s o n *

I N T R O D U C T I O N

The creation of an efficient legal protection system for computer
programs has been a difficult process. The growth of programming
occurred rapidly. Lawyers knew tittle about computers and computer
scientists knew scant about the details of the law. Because of this lack of
knowledge, lawyers pigeonholed computer programs into the existing
intellectual property framework of copyright and patent without ac-
knowledging the potential problems. Legal rules relating to other types
of works such as novels and plays were applied with little adaption to
computer software. The chaotic expansion of protection caused by the
transfer of these preexisting rules to the computer programming field
continues to worry many computer scientists.

The theme of this Article is that algorithms, fundamental to the
growth of computer science, must be understood and taken into account
to sensibly formulate and apply a legal protection system to computer
software. An algorithm can be expressed in different ways or at dif-
ferent levels of abstraction. When asked to detail a solution to the prob-
lem, that solution will be written at various levels of sophistication by
people using divergent expressions, but an intelligent human should be
able to examine the solutions and determine which are the same. Can
the law do likewise for computer programs and algorithms?

The Article starts with a brief introduction to algorithms and com-
puter programs. It then analyzes whether the application of the patent
system to algorithms and computer programs provides a coherent, rea-
sonable approach to the legal protection of computer software. The
software indnstry's criticisms of the application of the patent system to
computer software, namely the inapplicability of traditional patent
justifications to this field and the current patent system's counter-

* Barrister-at-law, Queensland, Anstrali~ B.A. Computer Science, 1986, University of
Queensland; LL.B. (I-Ions.) University of Queensland, 1988; LL.M., 1991, Harvard Law
School. The writing of this Article was made poss~le through the support of the Fulbright
Foundation, the Frank Knox Memorial Fellowship, and MaUesons Stephen Jaques. The
author wishes to thank Professor Terry F'Lsher of the Harvard Law School, and Mr. Peter
Treyde of the Attorney General's Department of Australia for supplying materials concern-
ing the Copyright Law Review Committee.

146 Harvard Journal of Law & Technology [3/ol. 5

productive effects on the growth of this industry, are shown to be little
different than grievances aimed at the patent system in general. Yet, the
unique nature of computer programming exacerbates traditional faults in
the system.

Before resolving the issue of whether patents should be granted for
computer programs and algorithms, the other major form of protection,
copyright, is examined. The Article assumes the desirability of some
protection for software to encourage innovation. The contentious issue
becomes the extent of protection. What should be protected as a com-
puter program? How can one teU if two programs are the same? Should
the test be whether they perform the same function or whether a user
believes them to be the same? An examination of the law in the United
States and Australia, where the cop)right systems are somewhat similar
but where different problems have stretched them in different directions,
reveals the need for one set of rules that can be applied in both juris-
dictions. The policy arguments for and against protecting user interfaces
will be outlined. An algorithmic approach will be used to formulate the
optimal protection plan to be applied to computer programs.

In conclusic::, the Article suggests that only a modified version of
copyright protection is needed for the proper level of protection of com-
puter software. The value of software is its form of expression--a com-
puter can understand and carry out instructions expressed as a program.
The thesis of this Article is that patent protection is too broad and that
copyright, if limited, will provide the necessary incentives in an efficient
way to encourage progress in software development.

I . B A C K G R O U N D

A. Algorithms

In order that legal rules can sensibly be appfied to computer software,
a system of intellectual property law, and the lawyers practicing it, must
comprehend and account for algorithms. An algori~.hm is shnply a series
of steps telling a processor how to perform a given task. For example,
the algorithm for knitting a sweater is a knitting pattern, in which a typi-
cal step is "knit one, purl one," and the processor is a human being.
Recipes, instructions to build model planes, and computer programs are
all algorithms.

An algorithm can be expressed in different ways, using divergent
expressions at varying levels of sophistication and abstraction. For
example, an algorithm for sorting a list into order may be expressed in
the form of a computer program, in which case a typical step may be

Fall, 1991] Copyright or Patent or Both 147

"while n > 0 do," and the processor will be a computer. That same algo-

rithm may be written for a human to carry OUL but the language used

would be different, enabling the human processor to understand the algo-

rithm. Still, the two expressions would be the same algorithm.

The steps o f the algorithm must be written to be understood and

executed by a processor. Algorithms are not dependent on digital

computers. Many algorithms were written for humans, long before

computers were invented, by people such as Pythagoras, Beethoven,

and Newton. Algori thms are processor-independent in the sense that the

same algorithm can be carried out by many different types of processors,

provided that the processor understands the form of expression used to

communicate the algorithm, l Each algorithm must be designed to tell a

certain processor what to do, but the processor need not be specified.

However, as instructions for accomplishing a task, all algorithms by

definition have at least one defined or implied processor.

A processor must be defined for an algorithm m exist, but how

specific does the definition o f the processor have to be? Some argue that

a series o f instructions, written in a high-level form of expression, that

can be carried out by a "generic" machine, is not an algorithm, but rather

a law of nature, a mathematical formula, or an idea. Because an

algorithm must be tied to a specific device that will be used in the

problem-solving process, "until the device is specified, an algorithm can-

not be construc~,d. "2 I f this is true, is a program written in a general

high-level language that can be executed by any computer with the

correct compiler just an idea? High-level languages are designed so that

they are not device-specific. The better view is that at least one proces-

sor must be defined or implied for an algorithm to exist. In identifying a

processor, the higher the level o f abstraction of the algorithm, the lower

the level o f specificity needed in defining the processor.

Every computer program is an algorithm. 3 Fo r computers to perform

any useful task, they need to be instructed what to do. These instructions

1. ~ idea of the "algorithm, or the general description of the solution to the problcrr
can be expressed in different languages for different processors, but the algorithm is still t2
same. For example, a recipe (which is an algorithm) to bake a cake can be written in
English or French, and so long as the English cook and the French cook can undcrstand the
language, thc same calm should result. In fact, given any algorithm, it is possible m code it
in any programming language. See Allen Newell. Response: The Models Are Broken, The
Models Are Broken. t, 4.7 U. PITT. L. REV. 1023, 1029 (1986).

2. Mitchell P. Novick & Helene WaUenstcin, Algorithm and Safnc.are Patemabili~., 7
RUTGERS COMPI.rrER & TECH. L.J. 313, 335 (1980).

3. See NewcU, supra note 1: "An algorithm is just an abstract program.., the only dis-
tinction is the degree of abstraction." But see Paine, Webber, Jackson, & Curtis, Inc. v.
Merrill. Lynch, Pierce, Fenner, & Smith, Inc., 564 E Supp. 1358 (D. DeL 1983) (Defining
"algorithm" narrowly, the court held that a computer program is not an algorithim).

148 Harvard Journal of Law & Technology [Vol. 5

make up the algorithm called the program. However, algorithms for
which a computer is the intended processor ate no different from other
algorithms, except for the manner and level of expression. 4 A computer
program may just be one form of expression of an algorithm.

The travelling salesman problem offers an illustration, s The solution,
an algorithm, is expressed by network theorists partly in English and
partly in symbols. The algorithm could be used by the post office in an
instruction manual for letter carriers telling them how to determine the
most efficient delivery route: That use would be one manner of express-
ing the algorithm. A computer scientist may take the algorithm and,
with only a "generic computer" in mind as the intended processor,
express the algorithm in pseudo code (an abbreviated form of English) or
a flow chart. At this stage, the algorithm is expressed in a form of code
at a high level with no particular processor in mind. After the intended
application and the programming language are chosen, the algorithm is
refined, step by step, until it is in a form understandable to the computer
(the computer program). The level of expression depends on the level of
sophistication of the chosen computer language. 6 The identical algo-
rithm could be written in a second programming language. The expres-
sion would be different, but the fundamental idea (of how to solve the
problem) and the results of running the program would be the same.
There is nothing to stop the programmer from refining the algodthin still
fiu'ther, so that it is expressed in a less advanced computer language,
such as machine code. 7 The refinements express the same algorithm in a
more detailed way, or as described by computer scientists, at a lower
level. There is a continuum between the high-level descriptio:~ of the
solution to the problem and the low-level machine code. The only
change is the detail of expression.

4. h was predicted in 1980 thax i f "a court dewnnines that a program is identical to the
algorithm it expresses, then the court will find the program unpazentable." Michael C.
Gemignani, Legal Protection for Software, 7 RUTGERS COMPtYIER & TECH. L J . 269,
294 0980). Such a test would render all programs u n ~ l e ; a program is a way of
expressing an algorithm so that a computer can understand it.

5. The algorithm determines the shorlest route around a network so ".hat the "salesman"
visits all "towns."

6. As technology advances, the detail of expression required to communicate with and
program a computer will decrease. High-level languages look mere like natural languages
d~an like machine code. Some database query languages allow questions to be asked in
natural languages such as English. Any dividing line between an algorithm written in a
language that only a computer can understand and one that a human can unders',and is
disappea~g rapidly. Indeed, this is a goal of compnmr science.

7. This is, in effect, what a in~zam called the compiler does.

Fall, 1991] Copyright or Patent or Both 149

B. Computer Programs

A computer program uses a number of algorithms to produce a cer-
tain result. This fact prompts some commentators to advocate protection
of the function of the program, rather than its expression. However,
since a given result can generally be reached by more than one program,
several complications are created for such a function-based definition.
For example, a second programmer may write a different program that,
to a user, operates in the same way and has the same user interface, s
The program, although achieving the same end, may do so by a com-
pletely different route or, in other words, by using a different algorithm.
Alternatively, the algorithm may be the same, but the actual code may be
different, because the programming language or operating system used is
different, or because the programmers have different programming
styles. Another variation occurs wl-en the same algorithm is used to
accomplish the same result but the user interface and output are dif-
ferent; the user would then be unaware that the algorithm is the same.
Finally, two programmers may use different algorithms and interfaces,
but write programs t~mt accomplish identical goals. For example, both
programs may prod~,ce useful airline boarding passes with the same
information, but theprograms look different to the user and result from
dissimilar algorithms.

To say that one computer program has the same function as another
program really says nothing about the expression used in the progrmn,
the expression produced by the computer as output, or the algorithm
used when coding the program. Simply, the function of a program is its
purpose, as distinguished from how it accomplishes that purpose (the
algorithm) or what is produced (the outpu0.

It is often stated that the underlying algorithm of a computer program
is the idea, and that the computer program is the expression of that idea.
This is an over-simplification. A program may contain many algorithms,
to control the data flow, to control the screen display, to sort things into
order when needed, and to accomplish the overall task. Some of a
program's algorithms may perform a very small part of the overall func-
tion, whereas others may define the whole operation of the program. All
of these individual algorithms can be expressed at different levels of
abstraction. The computer program as written is only one of the possible
expressions. In one sense, the compumr program is the only expression

8. The user interface is the program's external appearance; two programs with identical
imafaces woald appear, to the user, to be identical, even though they might have com-
pletely different internal program workings.

150 Harvard Journal of Law & Technology [Vol. 5

that correctly maps the algorithm of the program. It is convenient, how-
ever, to think of the unexpressed method of accomplishing the task as an
idea; to call the algorithm of the program an idea merely states a conclu-
sion and tells nothing about the idea itself.

In summary, one should understand the following basic features of

algorithms:

a. An algorithm is a set of instructions that are followed by a proces-
sor to carry out a process, which need not have anything to do with

mathematics.
b. Algorithms are not dependent on having a digital computer as the

processor.
c. Algorithms are fundamental to computer science. Every computer

program is the expression of at least one algorithm.
d. Algorithms can be used to solve many problems, not just

mathematical problems.

II. PATENT

Computer software, like any other invention, is currently the proper
subject for patent protection if it is a "new and useful process, machine,
manufacture, or composition of matter, or any new and useful improve-
ment thereof. "9 Excluded from patent protectioa are laws of nature,
natural phenomena, and abstract ideas) ° There has been much debate as
to whether algorithms and computer prograns are more like processes
and machines, therefore eligible for patenting, or more like the laws of
nature, therefore unpatentable, lz Part of the confusion has been caused

9. Patent Act § I01, 35 U~.C. § 101 (1988).
I0. See Le Roy v. Tatham, 55 US . (14 How.) 156, 175 (1852) (' A principle in the

abstract . . , cannot be patented."); Diamond v. Diehr, 450 U.S. 175 (1981); Pm-ker v. Hook,
437 U.S. 584 (1978).

11. See, e.g., Gregory L Maier, Software Pratection--Integrating Patent Copyright and
Trade Secret Law, 69 J. PAT. & TRADEMARK OFF. SOC'Y, 151, 165 (1987) ('paxem pro-
tection is presently available for virtually all software inventions"); Alan C. Rose, Protec-
tion of Intellectual Property RigMs in Computers and Computer Programs, 9 PEPP. L
RE'/. 547, 556 (1982) ("at least some subject matter involving ctnnpute~ may be
patented"); ffack F_ Brown, The Current Status of ColD, right and Patent Protection for
Computer Software, 12 COMPUTER L. PEP. 406, 407 (1990) ("Provided it is not expressed
as a pure mathematical a l g ~ software that qualifies as nonobvious invention also is
protected by patent'3; David Bender, The Case for Software Patents, 6 CO~.[PUTER LAW_
2 (1989) ("software patents" are often available on a cost effective basis and may be quite
valuable"); Donald S. Chismn, The Patentability of Algorithms, 47 U. PITT. L. REV. 959,
960 (1986) (' ~ c a l algorithms "as such" or "in the abstract" do not conslimm patent-
able subject matter"); Comment, The Patenting of MIS Computer Programs, 21 PAC. L. J.
761,762 (1990) ("no con~ has been willing to grant patent protection to a computer pro-
gram of and in itseli"):

Fall, 1991] Copyright or Patent or Both 151

by the judicial system's unfamiliarity with algorithms.

A . A l g o r i t h m s a n d P a t e n t L a w

Courts have problems with the term "algorithm," It is not defined in

the Patent Act, nor has the Supreme Court considered the word in great

depth. The Supreme Court, in its most prominent case on this question,

adopted the view that an algorithm, behig a "prccedure for solving a

given type of mathematical problem," is not patentable, but the applica-

tion of an algorithm "t, a known structure or process may well be

deserving patent protection. "12 The Court is underinclusive in saying

that an algorithm is a procedure for solving a mathematical problem,

unless such procedures as knitting a sweater or building a model plane

are regarded as mathematical problems,

The Patent Act does nor explicitly prevent the patenting of algo-

rithms. However, in practice, because of the lack of understanding of

the distinction between algorithms and computer programs, and because

the inherent nature of an algorithm is to carry out a process (which is one

subject matter of patent), the distinction that. the Supreme Court articu-

lated has proven to be of little use. i3 The United States Patent and

Trademark Office ("the PRO") has interpreted the Supreme Court 's deci-

sion as allowing patents for computer software but has disregarded the

limitations that decision imposes, t4 Many of the patents granted to date

12. Diehr, 450 U S . at 187.
13. The Supmnz Court decided that a claim "does not become nonstamtmy simply

because it uses a mathematical formula, computer program or di#ffal device." ld. The
Court held that insignificant post-sohnion ~ will not transform an unpat~ntab[¢ prin-
ciple into a pa~mable ~ , but when a claim containing a mathematical formula imple-
meres or applies that formula in a process that performs a function the patent laws were
designed to protect (such as transforming an article to a different state or thing), then the
claim satisfied tbe requirements of tbe Patent ~ The ln~blcra with ff~ decision is tha~ all
compumr programs are applied processes. The teat has not been timited, in its application,
to Im~Cesses physically transforming mauer, and was regarded as the "go-ahead" for'paten-
tability of algorithms and software. See, e.g., In re Pardo, 684 F.2d 912 (C.C.P.A. 1982);
In re Abeie, 684 F.2d 902 (C.C.P.A. I982); cf. In re Bmdi~, 600 F.2d 807 (C.C.P.A.
1979), sunmmr//y a~'d, 450 US. 381 (1981) (no algorithm in an invention in firmwa~
module that directs data flow transfers between register and memory); Paine, Webber,
Jackson, & Curtis, inc. v. Merrill Lynch. Pierce, Fenner, & Smith, Inc,, 564 F. Supp, 1358
(D. Del. 1983) (suggesting that any new computer program c~mble of ¢onmmrci~ use will
be patentable, wovided only that it avoids reciting a mathematical algotitlmx that was
defined in a very narrow way). See generally COLIN TAPPER, COMPWIER LAW 20-22
(4th ed. 1989).

14. Many of the patents granted by the Patent Oflice "are "pure" software patents which
indicates the Patent Office is now wiging to grant patents for novel and nonobvinus com-
puter programs opex-ating on conventional off-the-shelf computer hardware."
PROPRIETARY RIGH'T~ COMMITTEE. COMPUTER LAW SECTION. STATE BAR OF
MICHIGm~. A SURVEY OF US SOFTWARE FAT~VTS ISStmD FROM JULY 1987
THROUGH DECEMBER 1987, quoted in Bender, supra note 11, at 4. See also U.S, PAT. &

152 Harvard Journal o f Law & Technology [Vol. 5

T~7

are regarded by many computer scientists as patents for pure algorithms.
The PTO allows the patenting of algorithms, but not mathematical

formulas. It regularly applies a two-step test to determine whether an

invention involving a computer program ;.s directed to stamtm3, subject
matter. The first step is to decide if the claims in the patent directly or
indirectly recite a mathematical algorithm. For example, if the claim
contains words or equations that look like a mathematical formula, the
claim recites a mathematical algorithm.

Secondly, the claim as a whole is analyzed to determine whether it
preempts the "algorithm. ''t5 The claims are looked at without the "algo-
rithm" to see if what remains is otherwise statutory. If what remains is
data gathering or non-essential post-solution activity, such as the
transmission of data or the display of output, the claim is held to be non-

statutory.
It would seem then that when the PTO talks of mathematical algo-

rithms, it really means mathematical formulas. A recent decision of the
Board of Patent Appeals and Interferences, Ex parte Logan,! 6 has said
that this is not so. The Board noted that mathematical algorithms could
be computational procedures. 17 But the Board then held that the claims

before it

did ~ot recite a mathematical algorithm, because neither claim
essentially recites, either directly or indirectly, a method of
calculation, i.e., a method of computing one or more nurabers
from a different set of numbers by performing a series of
mathematical computations.tS

This definition of a mathematical algorithm seems close to that of a

mathematical formula.
The line the PTO draws is between algorithms and mathematical for-

mulas In effect, all algorithms, so long as not simply algorithms insert-
ing data into a mathematical formula (or a computational procedure
where the input and output are numbers) are patentable subject matter.
The Logan test would render only a small number of claims non-
statutory. Any claim where either the input or result of the process is not

TRADEMARK OFF.. THE ~ A t . OF PKrF.~ EX~JNIIIG I:~P.OCEDU~ ~ 2106 (s~t-
ing that the Patent Office readily accepts claims relating to programs as palentable).

15. See In re Iwashashi, 888 F.2d 1370, 1375 (Fed. Cir. 1989); In re Grams, 888 F.2d
835, 837-38 (Fed. Cir. 19S9).

16. ExparteLogan, AppealNo. 89-2047 (B.P.A.LFeb. 2O, t991). +:
17. Seeid. at6.
18. id. at 10.

Fall, 1991] Copyright or Patent or Both ~ 153

a number or a set of numbers would not recite what the Board calls a
mathematical algorithm and is therefore patentable. That the algorithm
has a computer as the processor "is not a proper basis for [a section 101]
rejection. ''19 An algorithm that is something more than the application of
a mathematical formula, and that is capable of being expressed in the
form of a computer program, is patentable.

Patent law also requires that the process being patented be useful. 2°
Therefore, to be the proper subject of patent protection as a process, the
patent application detailing the algorithm (or computer program) needs
to specify, among other things, the processor to be used in the process.
A processor must be defmed for an algorithm to exist, but how specific
does the description of the processor have to be? It could be argued
either that an algorithm written at a high level of abstraction is patent-
able, since it describes how a problem could be solved or that it is so
abstract that it is a non-useful or unpatentable idea. 21 The same algo-
rithm may be able to be expressed so that processors other than comput-
ers can complete the process. The consequence of granting a patent
monopoly over the use of such an algorithm would be the total restric-
tion of that task, regardless of the processor contemplated for use, even
when the processor is a human carrying out the process without the use
of a machine. I f patent law is to give coverage to algorithms and com-
puter programs, it must demand that the processor be defined in detail
'and that the scope of protection be limited to the use of that algorithm on
the specified processor. Anything else would risk overbroad protection.

B. Can Existing Patent Rules Deal with Algorithms?

One goal of patent law is to encourage the implementation of
knowledge for the creation of useful products, not just the creation of
knowledge itself. Algorithms expressed in the form of computer pro-
grams are more directly beneficial to society than algorithms existing

19. In re Gelnovatch, 595 F.2d 32, 36-37 (C.C.P.A. 1979).
20. See Patent Act § 101, 35 U.S.C. § 101 (1988); Brenner v. Manson, 383 U.S. 519

(1966).
21. An algorithm can be d~igned with more than one processor in mind or with no pro-

cessor in mind but with the intention to refine the algorithm when a particular processor is
chosen. However, the algorithm would not be "useful" until the processor is specified. It
would be wrong to conclude, in patent doctrine, that anything that was not "useful" was just
an idea. As an example, insrruC.tions to mix chemicals in a special way could be expressed
at a high level, with vague steps such as "stir until mixed." The high-level algorithm could
be refined into a more specific algorithm for use by either a machine or a human once the
details (as required by each processor) were added. The device may be specified once the
high-level algorithm is refined.

154 Harvard Journal o f L a w & Technology [Vol. 5

solely in academic texts. The algori thms are useful on ly because a

machLne can unders tand and perform such algorithms. 22 No machine as

yet can execute algori thms writ ten in natural languages. Thus, what

makes a computer a lgori thm valuable is its form of expressio'~. 23 The

difficulty in legally ana lyz ing the exclus ion o f computer programs from

patent protect ion results from trying to dis t inguish be tween algori thms

and the implementa t ion of those algori thms in the form of computer pro-

grams, where the ouly significant difference be tween the two is in the

level o f detail o f expression. Expression is not something the patent sys-

tem is designed to protect, bu t it is the valuable aspect o f the computer

program.

What one mus t definitely exclude f rom patent protect ion is high-level

or abstract ideas. Assuming that computer programs are a proper subject

matter for patent protection, can a l ine be drawn within the exist ing

patent f ramework be tween a process carried out by a cot~puter program

(which is patentable) and the abstract idea that the pro ;~am embodies

(which is no0 , to determine what computer programs (or, more

correctly, which under ly ing algori thms) warrant patent protect ion? That

l ine cannot sensibly be drawn be tween programs and algori thms 24 (as all

programs are algori thms) us or be tween useful and non-usefu l algori thms

(as by defini t ion all algori thms are useful) 26 or be tween laws o f nature

and algori thms (as no algori thms are laws o f nature) z7 or be tween

22. See Maier supra note 11, at 151 (Software has functionality that distinguishes it
from ordinary writings and "has the power to physically implement [intellectual concepts]
with the aid of a computer.").

23. Note that patent law is concerned with determining whether a process is novel and
nonobvious and not whether a process is expressed in a move useful way than it has been
expressed previously.

24. See Bradley J. Hulbert, Special Considerati~..r,~ for Obtaining and Litigating
Software Patents, 4 SOFTWARE LJ. I, 3 (1990) (high-level algorithm not computer pro-
gram).

25. See Diamond v. Diehr, 450 U.S. 175, 219 (1981) (Stevens, J., dissenting) (wanting
an "unequivocal explanation that the term 'algorithm' as used in this case . . . is
synonymous with the term 'computer program.'").

26. See Newell, supra note 1, at 1026 (stating that algorithms are designed to do some-
thing useful and that "they jump the gap to application [and therefore are] patentable").

27. An algorithm is not a natural phenomenon or abstract concept. It is a constn~on of
the human mind. Algorithms do not describe natural phenomena- See Chisum, supra note
11, at 980. However, an algorithm can he expressed at such a high level of abslracfion that
it is, practically speaking, merely an idea. For example, an algorithm to bake a cake may be
"mix ingredients, then cook until brown." Is that an idea or an algorithm giving a high-
level description of the solution? It goes without saying that a patent for a process that uses
a law of nature, such as a process bottling milk using the law of gravity, does not give the
pater holder a patent on the law of gravity.

Fall, 1991] Copyright or Patent or Both 155

mathematical and non-mathematical algorithms ~ (as most programs and

algorithms are non-mathematical and the distinction would exclude vir-

tuaUy no programs or algorithms from patent coverage). ~ There must

be criteria established to determine when an idea expressed as a com-

puter program is sufficiently distinct from the abstract idea that it

expresses to warrant patent protection of the process carried out by the

program.

However, it would be inconcsistent with the scheme of patent law to

prevent the patenting of a process simply because it is expressed in

deta i l - - in a form "simple" enough for a computer to understand. As an

example, even if a novel way were invented to spray paint a car, the idea

of spray painting the car could not be patented. Only that particular

novel process could be patented, and only if the patent claim was drafted

in enough detail to cover only the process and not the abstract idea. I f

the process were carried out by a computer, the patent claim could legiti-

mately set out as the process the instructions given to the computer.

Failure to protect a narrowly drafted patent claim in the case where a

computer is involved has no justification in the language of the patent
statute. 30

When lawyers speak of patenting a computer program (or part of a

computer program), what is generally meant is the patenting of the pro-

cess that the program carries out. 31 No one, at the patent level, is con-

cemed with the protection of the literal code: That is the domain of

copyright. It is what lawyers call the process, and what computer scien-

tists call the algorithm, that all the fuss is about. But does granting a

28. C ~ u m , ~-,ra note 11, at 960, concludes, after deciding that there need to be addi-
tional incentives for investment in computer software, that "[nlew and useful algoridxms,
including mathematical algorithms, should constitute subject matter eligible for patent pro-
tection." Chisum correctly states that algorithms can be devised to solve all sorts of non=
mathematical problems, ld. at 976.

29. "[B]ecause most software falls in this category of non-mathematical algorithms, a
significant percentage of software potentially can be patented." John R. Lastova & Gary
Hoffman, Patents: Underutilized Leverage for Protecting and Licensing Software, 6 COM-
PtrrER LAW. 7, 8 (1989). Mr. Lastova is a Primary Examiner handling computer software
applications at the PTO.

30. Differences in levels of abstraction in the. description of the algorithm in the patent
claim are to be distinguished from levels of invention---a trivial improvement, which is at a
lower level of abstraction than a patentable invention or a nonpatentable law of nature, is
not patentable and is not what the example is discussing.

31. Parent appfications are usually language-independent. The algorithm can be ex-
pressed in the form of a flow chart. See Maier, supra note 11, at 164. To make sufficient
disclosure, that flow chart must be able to be used by a programmer of ordinary skill to pro-
duce a workable code. It follows that, given tim algorithm, any coding of it is obvious.
Clearly, the patent holders am trying to protect tim algorithm and not any particular coding
or form of expression in which the algorithm is expressed.

156 Harvard Journal of Law & Technology [Vol. 5

patent for an algorithrn where a computer is the processor in effect pro-

tect expression?

The dilemma presented in the above paragraphs can be stated as fol-

lows: Patent law does not protect abstract ideas. A computer program is

not abstract, but a highly detailed and specific description of a way of

solving a problem. However, the underlying algorithm over which the

monopoly is sought may be general or abstract. The algorithm in ques-

tion can be expressed either in a highly abstract way, so that it resembles

an idea, or in a highly detailed form such as computer code. The detail

of expression gives no indication of the level of abstraction of the pro-

cess over which patent coverage is claimed. Patent law has difficulties

distinguishing between algorithms as ideas and algorithms as processes.

If an ad hoc line is drawn excluding all computer programs from patent

protection, it excludes algorithms which may be the proper subject of the

grant of a process patent. On the other hand, if to determine patentabil-

ity, a rule is used requiring the processor to be a computer and limiting

the scope of protection to the use of the algorithm by the computer,

patent law comes very close to protecting expression rather than the

underlying process.

At present, the algorithm of any computer program is capable of

receiving patent protection provided the algorithm does not simply apply

a mathematical formula and provided that the claims are expressed at a

level of detail sufficient to distinguish them from abstract ideas. Such

protection will prevent any programmer from using a more detailed

expression of that algorithm in any computer program. In effect, the

patent on the process limits the independent creation of expression.

C. Rationales for Excluding Patent Protection

Many reasons have been suggested as to why computer programs

should be excluded from patent protection. 32 Most of these are merely
;j.

32. Because of differences in definitions, not everyone has been discussing the same
thing. There are at least four possibilities for patent protection involving computer
software: A complete program, such as a Computer Aided Design program, that in a new
and novel way allows an architect to plan a high-rise building; a section of a program, such
~s code to store variables in memory efficiently or to locate an item in a database speedily,
that performs a computer operation in a new and novel way;, a solution (using a computer)
to a problem that has not been able to be solved previously, such as a program that deter-
mines whether another program is errur-fi'ee or a program that solves the unemployment
problem; and a process that has not been able to be computerized previously, such as a pro-
gram to keep track of the location of taxis, that uses a computer (and possibly other physi-
cal devices) in a new and novel way. See In re Abele, 684 E2d 902, 907 (C.C.P.A. 1982)
(A claim that was otherwise statutory, even though less useful without the algorithm,
"presents statutory subject matter when the algorithm is included."); Diamond v. Diehr, 450
U.S. 175, 189 0981) (subject matter must be statutory regardless of presence of computer).

Fall, 1991] Copyright or Patent or Both 157

objections to the patent system itself. The most common objections that

have been made to the patenting of computer programs are discussed

below.

1. In Software, Independent Reinvention Is Commonplace

Compared with other areas of science and "useful arts," it is common

for separate computer scientists to "discover" independently the same

way of solving a problem. 33 Where independent reinvention is common,

one rationale of the patent system, the encouragement o f the dissemina-

tion of knowledge through publication, loses force: Anyone who consid-

ers the problem is likely, without much effort, to arrive at one o f a

l imited number of solutions. As a patent grants a seventeen-year mono-

poly, anyone wishing to use the process for that period is forbidden to do

so, even another independent inventor. Due to the constraints a com-

puter language imposes on the expression of the algorithm, the physical

constraints o f the computer itself, and the large number o f programmers

solving problems daily, many argue that there is more repetit ion o f

invention than occurs elsewhere in science and business.

In the normal course of events, the subject matter o f patent is more

general than the subject matter of cop>Tight. Copyright protects expres-

sion, where the chance o f two people independently producing the same

expression is very small. Patent, on the other hand, "operates at the level

o f generali ty at which there is at least a plausible possibil i ty o f indepen-

dent creation o f the same invention. ''34 For this reason, patent has a

requirement of novelty, interpreted so as to prevent a patent being

granted for an invention that already exists or is obvious to those "sldlled

in the art." The more abstract the interest for which protection is given,

the more l ikely the odds that two people will independently create the

same thing.

For example, there is dispute over whether Newton invented the

33. See THE LEAGUE FOR PROGRAMMING FREEDOM, AGAINST SOFTWARE
PATENTS 8, unpublished paper of Oct. 24, 1990. The League is "a grass-roots organization
of programmers and users opposed to software patents and interface copyrights,"/d, at l,
and includes as members successful entrepreneurs, executives, independent consultants and
programmers, including Richard P. Gabriel John McCarthy, Marvin Minsky, Robert
Boycr, and Patrick Winstou.

34. THOMAS HEMNES, NOVELTY, SCOPE AND THE SHARED GEOMETRY OF
PATENT AND COPYRIGHT PROTECTION 22, paper delivered to the Computer Law Asso-
ciation at Boston, November 5, 1990. Cf. John S. Wiley, Copyright at the School of Patent,
58 U. CH1. L. REV. ll9, 182 (1991), who claims that a partial reason why patent law
requires novelty and nonobviousne~ and copyright does not is because patent innovation is
incremental while copyright authorship need not "begin with library resean:h."

158 Harvard Journal of Law & Technology [Vol. 5

system of calculus. Some claim that Gottfried Leibniz came up with the
idea first. It is l ikely, regardless of whether Newton or Leibniz had ever

studied mathematics, that someone by now would have discovered and

written about calculus. However, it is highly unlikely that anyone would

have written a book identical to Newton 's Principia Matheraatica. 35
In writing computer programs, where the idea is expressed in a highly

refined manner, why would the l ikelihood of independent reinvention be

greater? The answer to this depends on how the invention is specified.

I f the invention is the particular code in a computer program, it is true

that once an algorithm has been designed to solve a problem, the likeli-

hood that two independent programmers using the same algorithm and

programming language will write the exact same code is quite high. The

programmers are merely expressing the algorithrn at the level the com-

puter can understand, and axe not in fact inventing anything. The con-

straints o f the programming language, if a well defined language, will

not al low much room for creative thought process or variations in

expression. 36 The likelihood of independent creation o f the same pro-

gram in such circumstances is therefore high.

The inventive steps in software design almost always take place at the

level o f algorithmic creation. It is the algorithm, mad not the code, that

the inventor wishes to patent. The question then becomes whether, in

the creation o f a new and novel algorithm for use on a computer, the

l ikelihood of independent reinvention is greater than where an algorithm

or process is created in other fields. Assuming that the level o f abstrac-

tion is the same both when one is solving a problem where the processor

is a computer and where the processor is not a computer, why would the

involvement of a computer make independent reinvention o f an algo-

rithin more likely?

The League for Programming Freedom, a main proponent o f this

argument, states gentra l ly that a programmer "solves many problems in

developing each program. These solutions are l ikely to be reinvented

frequently as other programmers tackle similar problems. "37 This state-

ment is misleading in that it does not differentiate between the creative

problem-solving component (the design o f the algorithm) and the

35. SIR ISAAC NEWTON. PHILOSOPHIAE NATURAl.IS PRINCIPIA MATHEMATICA
(1687).

36. This does not mean, however, that coding an algorithm is mechanical or that all cod-
ings of an algorithm will be identical. The point is that the conswaints of the language a~
designed to limit the number of possible ways of expressing a particular algorithm. Com-
pare the process of encoding an algorithm with writing a screenplay from a novel.
Although the plot will be the same, the number of possible screenplays will be extremely
large. /

37. THE LEAGUEFOR PROGRAMMING FREEDOM.supra note 33.

Fall, 1991] Copyright or Patent or Both 159

mechanical expression of the solution in a language a computer can
understand (the coding). As previously stated, it is likely, due to the
constraints of programming languages, that there will be similarity in
coding. But, is a person who solves a specified problem by designing an
algorithm with a computer as the processor constrained in such a way
that only a small number of solutions is possible. If so, then the likeli-
hood of independent reinvention is greater where a computer is involved
~aad the rationale for patent protection, to stimulate independent creation,

is weaker.
For any problem, there are many conceivable solutions. However,

just as to fly between Boston and Washington, D.C. there are many pos-
sible routes but only a few sensible flight paths and stopover airports,
there exists only a finite number of reasonably efficient algorithms to
solve a problem. 38 A finite number does not necessarily mean a number
so small that reinvention is likely or that all efficient algorithms will be
obvious once the problem is brought to mind. As Professor NeweR, a
computer scientist, writes, "Algorithms of immense generality and scope
will continue to emerge so long as science endures. ''39 They will con-
thaue to emerge for problems not thought of today and provide better
solutions for known problems. Not including simple trivial problems, it
would be unreasonable to assume that for all known problems all
efficient solutions have been thought of and published. More research
will lead to more solutions and better algorithms in many fields. It is a
goal of the patent system to encourage such research. That there are a
limited number of solutions to a problem does not imply that the first
person discovering the solution is not worthy of a patent.

A second concern about the increased probability of independent
creation is raised by the existence of computer constraints that limit
efficient solutions. Constraints such as available memory limit the size
of programs and data, and the silicon chip in the CPU limits the speed of
calculation. With today's technology, there may only be one efficient, or
even workable, algorithm to solve a given problem. 4° To say that these
algorithms are reinvented frequently may just be a restatement that the
solutions are obvious to a person experienced in the field. The Patent

38. See Charles Walter, Defining the Scope of Software Copyright Protection for Max-
imum Public Benefit, 14 RUTGERS COMPUTER & TECH. L. J. I. 59 (1988).

39. Newell, supra note 1, at 1028. If algorithms of importance continue to emerge so
long as science endures, why is it necessary for the patent system to encourage such
research?

40. A doctrinal r e s p o ~ ~s that there is no rule in pa in t law that a patent can only be
granted to the best invention tO salve a problem or will not be granted if the invention is the
only solution to the problem. ,:

160 Harvard Journal o f Law & Technology [3/ol. 5

Act does not, in any event, allow a patent for an obvious invention, pro-

cess, or improvement. For the argument that independent reinvention is

commonplace to succeed, one further premise must be added: There are

a small number of nonobvious practical solutions to problems in the field

of algorithmic design of computer programs and therefore they axe more

likely to be reached and rediscovered independently as compared to

algorithmic design in other fields. Such a conclusion is difficult to jus-

tify. It should not be assumed that designing an algorithm for a com-

puter, as compared to an algorithm designed for any other processor,

limits the number of nonobvious solutions to a problem.

Although there may be more computer programmers solving more

problems using more accessible technology resulting in greater progress

mid more inventions (and possibly the same solutions to those multitudes

of problems) than in any other field, this phenomenon of intensive

creative effort in a developing technology is not new to patent law. At

stages of history there is often a race to be first to make a new invention,

and as existing knowledge reaches a stage where the time is ripe for such

invention, numerous people independently "discover" the same solu-

tion. 41 The patent system has previously dealt with such occurrences,

maybe not in a very satisfactory way, in its rules about priorities: 42 Only

one of the inventors wins the "patent lottery." The criticism here

amounts to no more than a criticism of the patent system having to

choose between inventors; computer scientists complain that since they

invent more, they are more adversely affected by this rule.

It can not be assumed or proven that computer programmers, just by

having a computer as the intended processor, are more creative and thus

more likely to arrive independendy at the same nonobvious solution than

would be the case for other inventors. In fact many problems are solved

without computers in mind as the processor, but the solution is later used

as the basis for a computer program. In that case, invention and any

independent re.invention of the algorithm is not affected by having a

41. For example, note the simultaneous discoveries in the glass bottle manufactming
industries, United States v. Ha_nford-Empire Co., 46 F. Supp. 541 (N.D. Ohio 1942),
modified, 323 U.S. 386 (1945), the ongoing historical dispute over who invented the air-
plane, and the 20 year dispute in the Patent Office over who invented the silicon chip.

42. See Patent Act § 102(g). 35 U.S.C. § 102(g) (1988). The genera] rule is, as between
two inventors, the first to conceive has priority, so long as the first inventor uses continuous
diligence from a time prior to the second inventor's ume of conception, and reduces the
invention to practice first. The test is ambiguous when applied beyond the two inventor
situation. This problem is avoided in other jurisdictions, such as Canada, where the patent
is granted to the first to file, not the first to invent.

Fall, 1991] Copyright or Patent or Both 161

computer as a processor. 43 This emphasizes the point that an algorithm
is not dependent on having a computer as the processor:. One would
expect the occurrences of independent recreation of algorithms to be the
same whether the algorithm is expressed in the form of a computer pro-
gram or noL

It may be true that independent reinvention is more likely in coding
an algorithm, but for algorithmic design, there is no difference in the
creative process, indicating tim independent reinvention of nonobvious
processes is more likely to occur than in other fields.

2. Most Software Developments Are Nonobvious and Not Novel

Although there is a distinction between the tests for novelty and
nonobviousness, 44 the same attack is made on both---that the tests allow
common techniques to be patented, thus hindering legitimate develop-
ments in the software industry. 4s It is claimed that the PTO has granted
patents on software too easily and without proper knowledge of what is
occurring in the software industry.

Prior art must be examined to determine whether the claimed inven-
tion is novel and nonobvious. The rapid growth and naan~ of the
software industry has resulted in the commercial success of "back yard"
companies. Developments are ad hoc and undocumented. Many new
techniques are spread through the use of electronic bulletin boards,
where they are not physically stored and where, after a period of time,
they are irretrievable or unlocatable. 46 Programmers are more concerned

43. The question of whether a person using a known algorithm in a computer program to
improve a known, as yet not computerized, process has been the main focus of cases in this
area. See, e.g., Diamond v. Diehr, 450 U.S. 175 (1981). The Supreme Court has held that
the person doing so has undertaken a sufficient inventive step for the grant of a patent. For
processes already in use, there is a strong likelihood that two people will independently try
to use that process" algorithm as the basis of a program to computerize the process. If so,
the invention is the idea of using a computer to improve a solved problem. That is not a
novel or new invention, but an improvement on an old invention. Cf./d. at 219 (Stevens,
J., dissenting). Justice Stevens wanted "an unequivocal holding that no program-related
invention is a patentable ~ under §101 unless it makes a contribution to the art that is
not dependent entirely on the utilization of a computer." Id.

44. Simply, novelty depends on what is known, and nonobviousness depends on what
the next step may be and if that step has been anticipated.

45. Newell, supra note 1, at 1026, states that "it is not poss~le to do anything in com-
puter science without having it he almost immediately related to use, with only small
efforts of the imagination Hence. where is the rewardable, risky, inventive effort?"

46. Prior art is only relevant ff it is exists " in a manner accessible to the pul; l ic. . , and
open to the people of this count ry . . , upon reasonable inquiry. ~ Galyer v. Wilder, 51 U.S.
(10 How.) 476. ~t96 (1850). The inventor must search with reasonable diligence for materi-
als that could be located by a person ordinarily skilled in the subject matter. Unpublished,
uncataloged materiais do not, therefore, fall within the category of prior m-t. See In re Hall.

781 F.2d 897, 900 (F-ed. Cir. 1986). For computer programs it is likely that most of the

162 Harvard Journal o f L a w & Technology [Vol. 5

wi th c o m p l e t i n g con t r ac t s than p u b l i s h i n g a c a d e m i c papers : " S o m e -

t imes it is poss ib le to pa t en t a t e c h n i q u e tha t is no t n e w prec ise ly because

it is obv ious - - - so o b v i o u s tha t n o one wou ld h a v e p u b l i s h e d a p a p e r

a b o u t iL "47 D e t e r m i n a t i o n o f w h a t the p r io r ar t is or was a t any par t i cu-

l a r t i m e is no t the on ly p rob lem. M a t t e r s are e x a c e r b a t e d b y the P T O ' s

i nexpe r i ence in dea l ing wi th c o m p u t e r so f tware 4s and its inab i l i ty to

c o m p a r e p a t e n t app l i ca t ions i n v o l v i n g c o m p u t e r so f tware wi th the p r io r

a l l 49 T h i s resul t s in pa ten t s b e i n g incor rec t ly g ran ted in bo rde r l i ne

cases .

A s e c o n d a t tack o n the cu r r en t s i tua t ion is tha t the " s t a n d a r d o f obv i -

ousness d e v e l o p e d in o the r fields is i nappropr i a t e fo r so f tware "5°

because the na tu re o f p r o g r a m m i n g e n c o u r a g e s the app l i ca t ion o f t ech-

n iques u sed to so lve one p r o b l e m in the so lu t ion o f a c o m p l e t e l y separa te

p rob l em. 51 Fo r e x a m p l e , sub-p rocedures , such as sor t ing rou t ines , a re

used o v e r and o v e r in a var ie ty o f p r o g r a m s as a s tep in a c c o m p l i s h i n g

the u l t ima te goal o f the p rog ram. A s p r o g r a m m e r s are t ra ined to

genera l i ze , i t is o b v i o u s to t h e m to use or adap t d i f f e ren t t e c h n i q u e s to

d i f f e ren t set t ings . 52

Where the p r o g r a m m e r is j u s t c o d i n g a n a lgo r i thm, i t is d i f f icul t to

r ega rd the c e d i n g o f a n a l g o r i t h m as c rea t ing s o m e t h i n g n e w or i nvo lv -

ing a n i nven t ive s tep: 53 it is j u s t e x p r e s s i n g a n a l g o r i t h m a t a d i f f e ren t

existing prior art will not be able to be found "upon reasonable inquiw" and the Patem
Office will grant pazems over preexisting processes. Cf. Wiley, supra note 34, at 142.

47. THE LEAGUE FOR PROGRAMMING FREEI~M, supra note 33, at 2-3 ("[M]any
commonly-used software techniques do not appear in the scientific literature of computer
science. Some seemed too obvious to publish while others seemed insufficiently general;
some were open secrets."). See also Hulbert, supra note 24, at 13, who states that it may be
difficult to mount a defense for lack of novelty or for obviousness as "so many of the previ-
ously created programs (prior art) may be undocumemed, stored only on disk."

48. "The Patent Office refused until recently to hire Computer Scietme graduates as exz
amine~, and in any case does not offer competitive salaries for the fieldY THE LEAGUE
FOR PROGRAMMEC, G FREEDOM. supra note 33, at 2.

49. See D. Lee Ant t~ & Theodore A. Feitshans, Is the United States Automating a
Patent Registration System for Software?. 72 J. PAT. & TRADEMARK OFF. SOC'Y 894
(1990).

50. Tim LEAGUE FOR PROGRAMM~G ~ , ' ~ supra note 33, at 3.
51. Cf Walter, supra note 38, at 84. ("Software develops incrementally;, subsequent gen-

erations of computer programs axe usually obvious and seldom based on novel processes.").
52. Hulbett, supra note 24, at 4, claims that under the c.n'tent law, a patent "may reach

far beyond the pa.,'ficulax software patented and may ~late to other methods that may be
useful on far different types of softwme." It is argued by people opposed m patents for
software that such a patent should not have been granted in the first place as in all likeli-
hood it is not a new process but is itself borrowed from elsewhere.

53. Compare the process of u'anslatmg a patent application from French to English.
There is nothing novel or inventive in doing so. As ano~.r example, a baker who apples
tlm laws of physics to invem a new way of making lxead is rewarded by a patem nmm~l~; -
when he expresses that tn'ocess in a pamm applk:afion and the pam~ is grained. Onthe
other hand, a computer scientist who develops a successful program may either code an

Fall, 1991] Copyright or Patent or Both 163

level of abstraction. I f the number of feasible codings is limited by the
constraints of the programming language, then it could also be argued
that the resulting code is obvious. The automation of the previously
manual steps of a process is obvious. 54 Therefore, no patent should be
granted to a computer scientist who takes a known algorithm and
encodes it in a computer program.

At the higher level of algorithmic design, more complex issues arise.
The question shifts to whether or not the "discovery" (and subsequent
coding) of a novel and nonobvious algorithm can be distinguished from
the simple coding case. 55 As an algorithm may be expressed in many
different ways, and used in many disjoint fields, the F r o , as a practical
matter, may have limited its inquiry to whether the algorithm in its
encoded form is new and nonobvious, ff that is the case, then despite the
fact that the manifestation of an algorithm as a computer program is
always obvious to a computer scientist, what is being protected is the
computer code in other words, expression.

If an idea is direcdy related to computer programming techniques,
such as controlling screen displays or memory management, the algo-
rithms behind such programming "tools" raise similar problems to those
raised by simple coding techniques: The algorithm is constrained by the
computer's physical construction. However, since the algorithm is not
useful where a computer is not involved, the computer becomes both the
processor and the object of the process. Most programming tools are
likely to be obvious once the the problem surfaces---most innovations
occur soon after a new computer is invented, s6 The criticisms that t h e

algorithm already in existence into a form a compoter can understand or create a revolution-
a r y n e w ~ a n d c o ~ t h a t idea. Thc second case is morelike that of ~e baker. I n ~ e
firsz case, it is difficult to see why the programmer should be given a monopoly--what was
done was the creation of a new expression of an old idea, which is the domain of copyright
prote~on. Making a distinction betwcon "translating" an algor/thm and "inventing" an
algoridun, where both arc al~Eed in a useful way, would be a 6me-consuming and difficult
task for a courE to undertake.

54. C f Parker v. Hook. 437 U.S. 584 0978) (obvious post-solution ~-~livity not
sufficient to transform an unfmamtable principle into a patentable process).

55. Id. at 594, setting out the ~point of novelty" test: A process is unfmtentable if the
point of novelty lay in the formula or algorithm in the claim. This care has been described
as file "low point for patent protection of software invenfionsY Maier, supra note I 1, at
154. The point of novelty tes~ was rejected by the Supreme Com't in Diamond v. Diehr,
450 U.S. 175, 189 (1981), which stated that the claim mast ne consider~ as a whole.

56. For example, the use of backing store to store the contems of hidden windows was
first developed at MIT, on a Lisp .Machine. "The Lisp Machine was the first computer to
use this technique only because it had a larger memory than earlier machines that had win-
dow systen~. ~ THE LEAGUE FOR PROGRA_~LMING FREEDOM. supra note 33, at 4. A
claim by a computer hardware manufacaa~ that a programming technique for one of its
new machines is new and nonobv/ous must be regarded with salspicion: The technique may
on!y be new because no one has had the opportunity to write any programs for such a
machine and it is likely, if history is any guide, to be obvious to a D'ogranmm- using that

164 Harvard Journal of Law & Technology [Vol. 5

prior art is not easily discoverable and that programmers regard the flexi-

bil i ty o f programming tools as obvious become even stronger when these
types o f algorithms are considered.

The PTO must be strict in its application o f the tests o f novelty and

nonobviousness to software inventions. Where there is doubt, the safer

path in the field o f computer programming may be to withhold the

patent: the nature o f the industry being such that there is a high likeli-

hood that what is claimed is nonobvious and not n o v e l : 7 Secondly,

there must be a rule that the mere coding o f an existing algorithm or the

computerization o f a preexisting process (as producing nothing new and

only what is obvious) should not lead to the grant o f a patent over the
algorithm. 58 In other words, no patent should be granted for an algo-

rithm solely due: to the fact that it is expressed in a computer language.

At what level of abstraction should the PTO and the courts look to see i f

the algorithm is novel and nonobvious? I f the PTO and the courts should

not look at the algorithm expressed as code, they must chose a higher

level o f expression o f the algorithm. The higher the level examined, the

less l ikely it it is to be novel and the wider the scope o f possible cover-

age. The closer the level o f expression is to computer code, the more the

patent system looks as i f it is protecting expression. That is the role o f

copyright. These concerns suggest that patenting is not the optimal form

of protection for computer programming innovations.

3. There is No Need for Incentives to Invent in the Software Industry

In 1980, when the law in this area was more uncertain and i t was gen-

~-ally bel ieved that there was no patent protection for computer pro-

grams, a lawyer wrote that "the industry is growing in leaps and bounds

without [copyright or patent protection]. "s9 He further suggesled that

patent protection would stifle competit ion whereas continuation o f the

status quo would encourage software developers to improve their pro-

machine once he is given the chance to use the new mar.hin¢.
57. IBM'Australia, who~e Uaiml States parent holds many software patents, submir, ed

to the Australian Cop~ght Law Review Committee ("ACLR") that "patent taw has only a
minor role to play in sofr~varv prvtection---as most software is insafficicntly novel and

missions, on file at the Harvard Law School I.a'btm~) ~ Collecfionl.
58. "Iris not at the coding phase where the primary ~ t y is expr~sed in the writing

of a computer program." Brief of Am/cus Cur/ae. ADAPSO, in Whdan Assocs, Inc. v.
Jaslow Demal Lab., Inc., 797 F.7~ 1222 (3d C'm 1986), cert. demed, 479 U~. 1031 (1987).

59- Genfignani, supra note 4, at 309.

Fall, 1.991] Copyrigh~ or Patent or Both 165

duets constantly. ~° In 1991, the industry is much more developed and
patents have been granted to computer-related processes. 6t No study has
been conducted to determine whether the perceived change in the law
has enhanced or encouraged innovation or led to an increase in output.
If additional incentives are unnecessary, patents will add nothing of
value to society, but rather increase costs by granting a monopoly over a
useful product or process.

It is not only difficult to quantify the extent to which the patent system
encourages innovation t l~ z would not otherwise occur;, 62 it is a fmmid-
able challenge to distingaish the software industry from an unknown
general position. This Article merely outlines the arguments that the
patent system impedes innovation in software development.

F'~rst, it is claimed that there are many other incentives to invent new
software apart from the chance o f being granted a patent. When there
was no patent protection, the industry grew rapidly. ~ Many successful
developers never attempted to apply for patents but still produced
software for commercial gain or intellectual satisfacdonf ~ Innovation, it
is claimed, often occurs by accident in solving problmus where invention
was not the goal o f the programmer. ~

Secondly, it is the market that determines whether an innovation will

/

60. Id. at 31 I.
61. See, e.g, Chismn, supra note 11, at 1021-22. The Appendix lists examples o f the

patents granted, including the technique of using an exclusive-or to write a cm.sor onto a
screen (par.enl: ~ 4,197,590), a technktuc to allow several programs to .~axe the same
piece of memory (~ cow-on-write segne~ts: patent number 4,742,450), a process for
the use of backing store to allow hidden windows to be rcnicvcd quickly (patent number
4,555,775), a menu system for a word pcocessing program (patent ntmal~, 4,_'.'.'.'.'.'.'.'.'~8,582), an
algorithm for solving linear programming problems (paxent n ~ 4,744,028) and a pro-
tess for conveying source code into an object program, lidgatml in ROf~: lnt ' l IJxL v. Lotus
Dev. Corp., 131 F.R.D. 56, 57 (S.D.N.Y. 1990).

6 ! Cf George L. Priest. What Economists Can Tell Lawyers About Intellectual Pro-
perry: Comment on Cheung. 8 RES. L. & ECON. 19, 21 0986).

63. In 1972, the Supreme Court believed the FTO's claim that there was suffieL-mt
~xowth in ~ : industry in the al~scnce o f par~m prot~:~ou. Only copyright protection wus
then available for c o m p u ~ programs. Gottschalkv. Bermon.409 U.S. 63,72(1972). See
a/so PRESID-------------------~TS COMMISSION ON THE PATENT SYS'I'E~ TO PROMOTE THE PRO-
GRESS OF . . . USEFUL ARTS 13 (1966), which recommended denying patenta/~ity to
software as. wirbo~ the patent ~ the software indm~'y was "doing ~aell " Gottschalk.
409 U.S. at 72- The recommend~ous o f th~ Commission were ignored by Congress.
64. The pace of ~ development made inventions obsolet~ quickly, and so it waz

thcmght any patent eventlmlIy granted wottld [m3vkle no economic retm'm
65. "Much software innovmion comes from prog:-.mnmers solving problems while

developing software, not from projects whose specific ~ is m make inventions and
o~tain patems. In o~ht~r words, these ianovations axe ~ of softwa~ develolmae~"
THE LEAGUE FOR PROGRAMMING FREEDOM, supra note 33, at 9.

166 Harvard Journal o f Law & Technology [Vol. 5

be successful , not the granting o f a patent. ~ Deve lopmen t s occur so

swif t ly that patented programs are o f little commerc i a l value in them-

selves, 67 and any patent will impede possible improvements that could

be made to the program by other developers . The lead t ime a sof tware

deve lope r has in the marketplace gives that deve loper enough c o m m e l -

cial advantage so that the additional incent ive o f a monopo ly o v e r the

invent ion is not needed. ~ However , some sof tware deve lopments can

be quickly and cheaply copied and distributed, reducing this lead t ime

advantage, E v e n when literal copying is not involved , sof tware is dif-

ferent f rom other products. Softwexe is inexpens ive to design and easy

~o manufacture compared with a hardware sys tem with the same number

o f components . 69 As sof tware is not des igned r ~ i n g real components

that have to be physical ly assembled and testefi~ i~nd not manufactured in

large pia.ats that have to be equipped and to<.i,ied, but buil t f rom well

defined mathemat ica l objects , the reverse engineer ing o f sof tware wil l

take less t ime than other products. 7°

There is the additional factor that the ho lder o f a patent m a y l icense

the process. This m a y be an incent ive in i t se i f to create sof tware o r to

66. Motorola. a computer chip manufacturer lost a key manet by delaying the introduc-
tion of new products due to ~-~n obsession with technological excellence." Smphen K.
Yoder, Motorola Loses Edge in Microprocessors by Delaying New C.~ips, WALL ST. J.,
Mar. 4, 1991, at AI.

67. "Companies no longer wait for l~-nt authorities to award them ~mchallengeable first
crack at a market. Competition decides who ge~; the fiou's share of the market Patents, as
they arrive, are swapped for royalties or other patents. Instead of" eing the arbiter of com-
petitive position, patents are becoming just another tradable commodity, like bonds or base-
ball cards Given today's shortening product cycles, the ability m create a steady flow of
unique, innovative products is far more profitable than trying to stake a claim to any single
idea." The Point of Patents, ECONOMIST. Sept. 15, 1990, at 19-20. The article presents
the example of Mr. Gilbert Hyan, a self-employed invefitor whose patent claim on the
microprocessor took 20 years to be granted. If a company waited on such a patent, it would
be "irredeemably behind." ld. at 20.

See also Tim W. Ferguson, Liberating Inventors or Shackling Progress with Paper-
work?, WALL ST. J., Mar. 5, 199L at AI7. Mr. Hyatt claims that "a h~-,ndful o f . . . major
companies . . . tried to appropriate his work" and that hmovators "have been routinely
ripped off by lawyer-~iven, bureaucratic companies and as a result are holding back break-
throughs that could transform life on earth." ld.

68. Even if a process is imitated and marketed spee0ily by rival firms without the
resea~h overheads, competition in that market may be weak so that prices are not driven
below a level where "development costs cannot be recovered. Cf. Stephen Breyer, The
Uneasy Case for Copyright: A Study of Copyright in Books, Photocopies, and Computer
Programs, 84 HARV. L. REV. 281, 345 (1970) (arguing that an imitator will need to
develop technical suppcrt for copied computer sof~rare, thus giving the initial programmer
sufficient "lead time" to recover development costs).

69. THE LEAGUEFOR PROGRAMMING FREEI~I~q. supra note 33, at 4.
:~:~0: A computer program may still be complex and require a large amount of testing time

to see if it performs~.'orrectiy. An industrial product, with a similar number of components,
it is suggested, would be far more complex to design and test. ld. at 5.

Fall, 1991] Copyright er Patent or Both 167

acquire patents on software that others have been induced to create. In
the hardware field, revenues from license fees have been high. For
example, Texas Instnunents Inc. in 1987 decided to raise the license fee
on its chiF~!to five percent, generating 281 million dollars of income in
two years from protesting rivals/t

Ttfirdly, software is often designed by universities as part of research
or through government subsidized programsf z The resulting inventions
are not due to the incentives of the patent system. On the other hand,
universities often patent and develop the results of research, and the
investment by private enterprise in such ventures would be unlikely
without the knowledge that the product or process was patented. 73 A
reply may be that such institutions are inefficient in their development of
marketable software and that the large amounts of money spent take
resources away from more socially desirable or efficient projects.

Without further study and economic analysis of the patent system, no
final :solutions can be reached. The issues that computer software inno-
vation present, due to the infancy of the industry and the different ::

methods of production used, wili put a gloss on any general findings
about the patent system. In the long term, there is no reason to believe
that the ratio of innovation in the software industry because of the patent
system to innovation in spite of the patent system will be different from
that in other industries.

At present, the expression in software is protected by copyright.
Whether patent should provide protection to programs in addition or as
an alternative to copyright is examined in the Conclusion. However, due

71. Panla Dwyer et al., The Battle Raging over "Intellectual Property," BUS. WK., May
22, 1989, at 79.

72. An example is ADA, a computer language designed by the U.S. Defeme Depart-
merit.

73. For example, the British Technology Group CBTG") claims to be "the world's lead-
ing tec~hnology transfer organization, licensing and financing products worth over 600 mil-
lion pounds in annual sales." Universities, polytechnics, and goveznmem research estab-
lishments in the U.K. are BTG's most important inventive sources. See BRITISH TECH-
NOLOGY GROUP, THE WORLD'S LEADING TECHNOLOGY TRANSFER ORGANIZATION,
firm brochure, un~)ed. The point is that the academic may invent regardless of incentives,
but the financier will not risk the possibility of imitation by rival firms when deciding
whether to invest in further development and construction, The countervailing arguments
arc that not all sociaily valuable inventions are given patent monopolies and am still
developed, and thal research by universities or government subsidized bodies is inefficient,
producing only a tiny fraction of worthwhile products compared with the amounts invested.
BTG's promotional materials do not say what percentage of their patent portfolio consists
of software patents, and state that for some inventions copyright is the preferred folm of
protection. It would be useful to know if companies readily invest in software projects
wbe~ the only inlcllecmal propezly protectioa is copyright. BTG recently opened an office
in the United States.

168 Harvard Journal of Law & Technology [Vol. 5

to the fact that software can be copied easily, one may assume that the

incentive to write programs would be less if no protection were provided

at all. This Section has considered only whether protection of

computer-related algorithms by the patent system encourages or stifles

program creation. One should note in conclusion that since it is only

recently that the PTO has granted patents on software, most innovation

in the industry has not occurred because of patent protection. 74

4. Licensing of Software Patents Does Not Work

There are three common arguments why licensing of computer

software inventions is harmful to the software industry and the commun-

ity. Although these may be valid complaints, this Section will only show

that they are not unique to software patents: It will be left for others to

prove (if it is possible) that the patent system does not fulfill its claim of

promoting efficiency by enabling others to license existing inventions.

The first argument is that patents of computer programs are hard to

find, and if found, are impossible to understand. The PTO has no

classification for software or computer related inventions. They are filed

everywhere and anywhere, "most frequently classified by end r e s u l t s . . .

but many patents cover algorithms whose use in a program is eatirely

independent of the purpose of the program. ''7s Even a diligent invent0r~

who did not wish to infringe another's patent might be unable to find o u [

whether a patent exists over a certain process. 76

When a possible patent is found, even though it is meant to disclose to

the world the new invention or process, it is often difficult or impossible

to understand. Another computer scientist, reading a patent, would have

problems in establishing if the patent covered his or her invention, and as

the patent owner is likely to assert a wider patent than actually exists, 77

74. See generally Hans A. yon Spakovsky et al., The Limited Patenting of Computer
Software: A Proposed Statutory Approach, 16 CHMB. L. REX'. 27, 44--45 (1986) (noting
that the computer industry has grown in the absence of patent protection and suggesting
that such protection may act as a disincentive for innovation). In addition, yon Spakovsky
et al. claim that patenting softwa~ would encourage mediocrity. "The first new nonobvi-
ous program performing a particular function.., would be patentable.., regardless of . . .
how efficiently it ran." Id. at 45.

75. THE LEAGUE FG~. PROGRAMMING FREEDOM, supra note 33, at 6. See also
Gottschalk v. Beason, 409 U.S. 63, 72 (1972) (citing report of the President's Commission
on the Patent System which stated that the 171"O could not patent computer software due to
a lack of classification).

76. The answer to this argument is not to prohibit the patenting of computer programs
and algorithms, but to provide a comprehensive and easily searched register of such patents,

77. But cf Walker Process F.qaip?Inc. v. Food Mach.& Chem. Corp.. 382 U.S. 172
(1965) (Maintaining and attempting to enforce a patent procured by fraud may itself violate
the Sherman Act and entitle the injured party to recover treble damages.), i

~,

Fall, 1991] Copyright or Patent or Both 169

would be hesitant to proceed with possible conflicting works. On the

other hand, how can a judge, not technically trained, be expected to deal

with issues involving computer patents.'? Such complaints arc not new or

limited to computer software patents. 7s

Secondiy, as most commercial programs arc large and developed

using many software techniques and algorithms, an inventor of new

software will be unable to search the patent register for every process

used in the new program since each patent search costs over a thousand

dollars and the new program may have thousands of danger points. If a

royalty had to be paid to each patent holder, the marketing of the

program would be unprofitable. For example, if a program contained

twenty previously patented inventions, each licensed at a rate of one

percent, the second programmer would be at a large commercial disad-

vantage breaking into the market. It would be worse if the program

contained one hundred patented processes, which is possible for large

programs if patents continue to be grant~y the Patent Office for

computer software.

This leads into the third complalnt--4hat existing firms can stifle com-

petition, and therefore innovation, by obtaining licenses over many dif-

ferent inventions, and keep rivals out of the market by refusing to

license, by charging excessive license fees, or by forcing rivals to waste

resources inventing inferior processes that accomplish similar results in

less efficient ways 79 The problem is worse for small time programmers,

as many existing patents are invalid and will be declared so if tested in

the courts, s° These programmers do not have the money or legal

78. E.g., Nyyssonen v. Bendix Corp., 342 F.2d 531,533-34 (1965) C[W]e cannot read
[the patents] intelligently Mo~over, we have great difficulty in understanding, even in
a general way, The technical testimony and the discussion of that testimony by counsel.").

79. A further method of reducing competition is the threat of high damages in patent
suits, which some authorities have claimed "makes the patent system a 'tool of extortion'"
with claims up to 3.3 billion dollars. Joseph M. Fitzpatrick & Robert H. Fischer, Patent
Damages, ELECrRONIC AND COMPUTER PATENT LAW 737, 760 (Practicing Law IusL
Course Handbook Series No. 292, 1990). With regard to determining damages, the authors
state that as "software patent claims typically must include limitations and/or steps in addi-
tion to the algorithm in order to claim patentable subject matter.., it is possible to imagine
a royalty base for a patented software program including a computer selling at tens or hun-
dreds of times the price of the program." ld. at 759.

80. During the 1960s, fewer than 40% of patents were upheld by the courts. See IRVING
KAYTON. THE CRISIS OF LAW IN PATENTS. Table A-2 (1970). See also PHILLIP
AREEDA & LOreS KAPLOW, AN'rrrRuST ANALYSIS. PROBLEMS, TEXT, CASES

186(d) (4th ed. 1988) (The PTO "often seems to resolve doubts about patentability in
favor of issuance," especially in close cases so that the examiner's decision is not
appealed.). However, these criticisms apply to the patent system generally, and not just in
relation to computer software patents.

170 H a r v a r d J o u r n a l o f L a w & T e c h n o l o g y [Vol. 5

resources to cha l lenge the b ig sof tware firms. 81

The p rob lem is worse when it is cons idered that the ho lder o f a patent

may have little incent ive to l icense sof tware to rivals. Patent p ro tec t ion

a l lows a sof tware deve loper to introduce a p rogram into the market

without hav ing to l icense it and expand the ne twork o f rivals. A firm

with brand recogni t ion thus wou ld reap increased rewards by prevent ing

a r ival reducing the wel l recognized f i rm 's marke t share. A compulsory

l icense may be the solut ion to this problem, especia l ly cons ider ing that

society benefits f rom the expanded network. The purpose o f such a

compulsory l icense is said to be to reduce the extent to which patent

ownership o f the process conveys monopo ly power . 82

These "abuses" o f patents, i f the strict en fo rcement o f a gove rnmen t

granted monopo ly can be regarded as an abuse, are not new or solely

sof tware related. Fo r example , the Uni ted Shoe Machinery Corporat ion,

in the 1950s, had 3,915 patents that, to some extent , b locked potent ial

compet i t ion in the shoe-making business, s3 Where patents are abused to

create monopol ies o r to restrain trade, the antitrust laws m a y ~.,:rovide the

des i red remedy, s4 Further, a smal l f irm m a y be granted a patent for its

81. Worse still, the big firms may use the threat of the (possibly invalid) patent to close
down or purchase a rival's business. See, e.g., Hatfford-Fanpire Co. v. United States, 323
U.S. 386 (1944), and discussion of the case in AREEDA & KAPLOW. supra note 80, at
463--67. However, the engineers that formed the Hartford Company did so only to profit
from the patent system and were not intereswd in glass manufacture as an example of the
patent system encouraging innovation. Cf United States v. Gen~.~-al E~ec. 7.~,, 272 U.S.
476 (1926) (Holder of a valid patent, subject to continuous legal challenges anti infringe-
ments, decided that the easiest way to control the industry/market was to license all appli-
cants and infringers.), See also AREEDA & KAPLOW, supra note 80, at 428 n.2.

82. See Jane C. Ginsburg, Creation and Commercial Value: Copyright Protection of
Works oflnformation, 90 COLUM. L. REV. 1865, 1924--27 (1990).

83. United States v. United Shoe Mach. Corp., 110 F. Supp. 295, 333 (D. Mass. 1953),
af fdper cur/am, 347 U.S. 521 (1954). "Ihe court, in compelling the defendant to grant any
applicant a nonexclusive license at a "reasonable royalty" under an~ipatent now or subse-
quently acquired from a nonemployee, stated that the defendant wa~'-~ "not being punished
for abusive practices respecting patents." ld. at 351.

84. See, e.g., United States v. United States Gypsum, 340 U.S. 76 (1950): Transparent-
Wrap Mach. Corp. v. Stokes & Smith Co., 329 U.S. 637 (1947); United States v. General
Elec. Co., 82 F. Supp. 753 (D.NJ. 1949). But see SCM Corp. v. Xerox Corp., 645 F.2d
1195 (2d Cir. 1981), cert. denied, 455 U.S. 1016 (1982); Louis Kaplow, The Patent-
Antitrust Intersection: A Reappraisal, 97 HARV. L. REV. 1813 (1984); Lasercomb Am.,
Inc. v. Reynolds, 911 F.2d 970 (4th Cir. 1990) (anticompetifive language in software pro-
gram license amounted to misuse of copyright and barred infi'ingament even ff misuse was
not antitrust violation); Clarifying the Copyright Misuse Defense: The Role of Antitrust
Standards and First Amendment Values, 104 HARV. L. REV. 1289, 1299 (1991)
("[W]hether copyrighted computer programs are likely m enjoy market power---and thus
whether a finding of misuse based on antitrust standards is more likely--will depend on
how the courts define the scope of protection for computer softwa~.").

!

Fall;: 1991] Cop) r ight or Patent or Both 171

invent ion and so have the ability to enter a concentra ted marke t success-

ful ly and compe te where it o therwise would not be able to do so.

5. Software Developments Build on Previous Developments

Large sof tware projects are often bui l t f rom the components o f o ther

programs and use techniques deve loped for o ther applicat ions but

modif ied o r adapted to fulfill the new pro jec t ' s goals, ss Nove l successful

programs can be deve loped f rom s imilar less successful programs, so as

to add a more congenia l user interface, or to add new features, s6 o r to

run on more popular machines o r wi th more accessible operat ing sys-

tems, s7 o r to run faster 88 or to use less memory : The under ly ing a lgo-

r i thm is the same but o ther features o f the program are enhanced, s9

I f patents were granted for the the underlying algor i thm, these

advances, which of ten m a k e the p rogram comme~:cially successful ,

would not be permit ted to occur wi thout the pem~ss ion o f the patent

holder. Inventors may be deterred f rom further research by the real iza-

t ion that improvements cou ld no t be m a d e wi thout infr inging the or iginal

patent. This m a y lead to doubly wasteful results: The original invent ion

may, a l though superior, be ignored in the marketplace , and the n e w

inventor wil l , to compete , have to waste resources invent ing around the

original patented algori thm.

Consumers invest large amounts o f m o n e y in part icular sof tware sys-

t e m s , both in purchase costs and, more particularly, in s taf f training

costs. One reason that consumers so invest is that they are p romised that

the sof tware wi l l be upgraded and enhanced by the manufacturer:. The

consumer wil l a lways have the best sof tware wi thout having to repur-

85. In fact, most new useful inventions are based on products produced from original
inventions, and not on the original invention itself. See Newell, supra note 1, at 1034.

86. E.g., a speUing check program is used in conj,.mction with a word processor that
modifies the screen display by adding another pull-down menu.

87. Cf Richard H. Stem, Copyright Infringement by Add-on Software, 31 JURIMETRICS
J. 205 (1991) (The program "Masquerade" makes programs written for IBM mainframes
appear to be written for the Macintosh.).

88. Cf Attic Int'l Inc. v. Midway Mfg. Co., 704 F.2d 1009 (7th Cir.) (involving a speed
up kit for a video game), cert. denied, 464 U.S. 823 (1983).

89. This problem is different from the conventional improvement problem in that the
underlying algorithm may be used when "adding-on" features to existing programs. An
add-on feature could be a separate program that runs concurrently with the main program,
or modifies,the code of the main program when running, or it could incorpotam the main
program and the add-on in the one program presale. Possibly only the hast example would
infringe the patent of the algorithm of the main program. Alternatively, the new program
could take a successful feature from an existing program and add it to the new program,
thus using the algorithm in a different context or in a superior way (for example, with a
more useable interfmm).

172 , Harvar t . ! Journa l o f L a w & T e c h n o l o g y [Vol. 5

chase new systems or retrain staff each time a technological improve-

ment is made. If the firm producing the software is either infringing an

existing patent or unable to upgrade due to a patent on the "enhanced"

process, the consumer will lose. The choice will be to remain with the

outdated software or retrain staff on new software. This software may

itself become outdated and the company manufacturing it may be

prevented hy another patent from enhancing that software.

The p;I icy question that arises is whether society will benefit more by

providing a wider scope for protection for the original inventor, and thus

encouraging that inventor to risk more due to the possible rewards of the

licensing of enhancements, or by encouraging subsequent inventors to

improve existing software. The question is "whether allocating the

incremental value of the new technological use to the original or to the

subsequent entrepreneur will lead to more creation and marketing of

technological advances. ''9° It is a question that can be asked for all

derivative works and is examined in detail elsewhere. 9t

D. Conc lus ion on P a t en t s

The criticisms presented above do not indicate a clear answer to the

question of whether patent protection should be denied to computer pro-

grams. The criticisms, when examined closely, either present old prob-

lems in a new form or, with sensible arguments both ways, leave a pol-

icy choice to be made. The consequences of such a choice could have a

long-term effect on the software industry.

It has been suggested that, as the pre-patent software industry had "no

problem that was solved by patents" there should be a complete elimina-

tion of software patents. As the answers to the questions presented

a b o v e are not clear, the former simple posi t ion--granting no software

patents---should be adopted in case the answers to the questions turn out

90. Stern, supra note 87, at 212. The ,author concludes that "society gains more from
rewarding the subsequent entrepreneur than the original one." The original entrepreneur
did not foresee or market the new technology and its possible existence was not an incen-
tive to produce to that person. The subsequent entrepreneur will have little incentive to
develop an imlnovement if the law could be used .'.o ~hut him down. See also Wffliam M.
Landes & Richard A. Posner, An Economic Anaiysis o f Copyright Law, 18 J. LEGAL
STUD. 3Z ~;. 332 (1989) (more extensive copyright protection would raise cost of creating
new works and reduce number of works created).

91. See Commission of European Communities, Green Paper on Copyright, at 172,
¶ 5.2.9. June 7. 1988 (stating that the real profit for the software house is in adding value to
the original ~ software by adapting it for each u~r). See Robert P. Merges & Richard R.
Nelson, On the Complex Economics of Patent Scope 90 COLUM. L. REV. 839 (1990).

Fall, 1991] Copyright or Patent or Both 173

tO be against the protection o f software developments by patents. 92

A second solut ion i t to clarify the posi t ion to definitely al low patents

for software, l ike other processes, pend ing a detailed review o f the patent

system. I f a process is otherwise patentable, it should be irrelevant that a

computer is the in tended processor. I f an algori thm implemented in

hardware is patentable, why should it no t be patentable it" it is imple-

mented in software?

To review, a computer program is a detailed and precise expression of

an algori thm. A n algori thm is a set o f instruct ions to carry out a pro-

tess , 93 and processes that are nove l and nonobvious are patentable. 94

When one talks of patent ing a computer program, it is not the expression

that is the subject o f the patent, bu t the under ly ing algori thm. The

expression is jus t that---a way o f art iculat ing the algori thm so that some-

one or something, a programmer, a patent examiner , or a computer , can

comprehend the algori thm. 95 Thus, to fol low the a rgument through, al l

computer programs that express a nove l and nonobvious algori thm

should be patentable, o r rather, the patent should be granted over the

algori thm represented by the program. A n y o n e desir ing to carry out that

process in that way can be prohibited. It is i rrelevant that a computer is

used as the processor. :~

At this point one m a y conclude that all novel and nonobvious algo-

r i thms implemented in a useful way with a computer processor should be

granted patent protection. A nonexclns ive test to determine patentabi l i ty

o f subject mat ter would be easy: Can a computer unders tand and carry

out the algofithna? I f so, then the algofit,hrn is expressed at a sufficient

level o f detail and is patentable subject matter.

92. See THE LEAGUE FOR P R O G ~ G FREEDOM, supra note 33, at 9. ("If it is
ever shown that software patents are beneficial in exeeptiot-ml cases, the law can be c.lmaged
again at that time--if it is important enough. There is no reason to continue the present
catastrophic situation uatil that day."). The League would only allow patents for "imple-
mentations in the form of hard-to-design hardware" but not implementations of patented
processes in software, ld. at 10. Simply, the distinction they propose is between algo-
rithms implemented in hardware and algorithms implemented in software.

93. See Chisum, supra note 11, at 975 (The current definitions come close to equating
algorithm with a "process in the patent law sense of a sequence of specifically defined
operations that a~complish a useful result.'3.

94. See Newell, supra note 1, at 1031 (After stating that all inventions, including the
transformation of matter, may occur by the invention of algorithms, the author concluded,
"li]f methods and processes over large technological domains become an exercise in algo-
rithms, then it is extraordinarily dangerous not to patent algorithms.'3.

95. Cfi W'fley, supra note 34, at 123. ("lAin idea inevitably becomes a concrete expres-
sion as soon as a human states it. That is, an idea cannot be defined or eommonieated to
another person without becoming an expression, a particular and precise collection of
meaningful symbols."). An "idea" communicated to a computer in the form of a program
could not therefore be an abstract idea according to W'fley's logic.

174 Harvard Journal of Law & Technology [Vol. 5

However , this p roposed subject mat te r test leads to difficulties. As

compute r sc ience progresses, computers wil l be able to carry out more

processes and understand h igher levels o f expression, even possibly

natural languages such as Engl ish. The scope o f protect ion wou ld there-

fore increase o v e r t ime to include algor i thms expressed in more vague

and general ways. The more genera l the express ion o f the a lgor i thm, the

more appfications that the a lgor i thm covers.

Secondly , people wou ld code an a lgor i thm jus t to get patent protec-

t ion o v e r the algori thm. An inventor o f a process which m a y otherwise

be unpatentable as an abstract idea wou ld need only to code it to have a

patent ove r the process. The resul t ing compute r program i tself wou ld be

o f little use. ~ I f the scope o f the patent was l imi ted to applicat ions

where a compute r was the processor , then o ther inventors wou ld be free

t ° bui ld machines that were not computers that used the a lgor i thm to

accompl i sh the same results wi thout infr inging the process patent.

The proposed subject mat ter test in reali ty only determines i f the level

o f express ion o f the a lgor i thm is sufficiently detai led to g ive the a lgo-

r i thm patent protect ion. 97 But w h y should a subject mat ter test for patent

l aw say anything about levels o f express ion? The point o f the subject

mat te r test in relat ion to processes is to make sure that the process is not

par t icular ly abstract. A n abstract process is barred f rom patent protec-

t ion because, a l though the inventor was the first to art iculate the metho-

do logy , it is so basic a process that it could be regarded as naturally

occurr ing. An abstract process is unpatentable because it e f fec t ive ly

96. A related problem is that if computer programs were patentable, due to the large
numbers written daily, the costs involved in administering the patent examination system
would be burdensome. With many applications in which fine distinctions had to be made,
the likelihood of error eous decisions (and the resulting costs to society) would be high.

97. If the patent application describes the program at a high level of expression, then as a
consequence it could be regarded as too wide in scope to catch programs expressed in lower
level languages where the detail of expression has changed and the processor has become
less sophisticated. Alternatively, the patent on the algorithm may cover the use of that
algorithm in all programming languages in which that algodt.hm could be expressed,
regardless of the form of expression, prohibiting the use of any progrmn in any language
performing that task in that way. See Gottschalk v. Benson, 409 U.S. 63, 72 (1972) (The
patent "would wholly pre-empt the mathematical formula and in practical effect would be a
patent on the algorithm itself."). The middle ground is that it only catches programs written
using that algorithm in the language in which the patent application is expressed. This
would be close to what copyright protects: the form ofexpresslon.

To comply with disclosure requirements, the patent application must describe the pro-
ceas in detail to enable an ordinary, skilled programmer to draft a workable code with no
more than a reasonable degree of difficulty. Disclosure is usually by flow diagrams, which
are language-independent See Maier, supra note 11, at 164. All programs, in vjhamver
language, using that algorithm, would be within the scope of such a patent. Alternatively,
if the patent application disclosed the exact code, it might have a"bug" in it. and lead to the
argument that the disclosure is not enabling or is of a useless process.

Fall, 1991] Copyright or Patent or Both 175

includes too much within its scope. The proposed test mistakenly looks
at the level of expression of the algorithm, not the level of abstraction. 9s
For example, a new algorithm to find the average of three numbers is
regarded as too abstract for patent protection even though it can be
expressed easily in computer code. If, to prevent the patenting of
abstract ideas, the algorithm were limited to where a computer was the
desired processor, what in fact was protected would be the algorithm
expressed in the form of a computer program. If copyright protects the
expression of algorithms there is no need for patent to do the same.

As has been seen previously, the patent system should not give pro-
tection to the coding of a preexisting algorithm or the computerization of
a preexisting process. What would be left for the patent system to pro-
tect and encourage is the design of novel and nonobvious algorithms.
The courts would have a difficult task deciding into which of these
classes a program/algorithm falls. One cannot tell just by looking at the
code alone whether the programmer coded an existing algorithm or
created a novel nonobvious algorithm. 99 At the end of the day, there
may be few algorithms, where the computer is the desired processor, that
pass such tests. One doubts whether the patent system is in the best posi-
tion to make such determinations.

Whether the intellectual effort of algorithmic design should be pro-
tected by the grant of a patent cannot be decided without first examining
the scope of the copyright regime. For if copyright protects all that is
worthwhile without any of the bad side effects that it is claimed that the
patent system has, it would be inefficient to give protection under both
r e g i m e s .

9"& Patent law says to ignore the level of expression of the algorit]km and examine only
the algorithm. It is a philosophically difficult problem to ignore the expression o f some-
thing that only exists once expressed. Is an algorithm that carries out the same process in
the same way but expressed at a different level of ~ o n the same algorithm after all?
Can one distinguish the ~ancer from the dance?

99. A court would also have to det.-'rmine whether different codings were of the same
algorithm. The court would have to look in detail into the different programming
and c o ~ and understand how both the algorithm and programming language worked.
A court could not look only at the result or output of the program. Different algorithms can
be used to produce the same results. Therefore, Maier, supra note I I, at 158, is overbroad
in saying that a patent protects ",,he functional aspects of s o f t w a ~ ~ Cf. Pttrsche v. Arias
Scraper & Eng. Co.. 300 F.2d 467, 482 (9th Cir. 1961), (The alleged infringing invention
must have substantial identity of function, means, and results), cert. denied, 371 U.S. 911
(1962L

) , ' >,~,

! ,

176 Harvard Journal of Law & Technology [Vol. 5

HI. COPYRIGHT

Copyright protection, like patent protection, exists on the theory that
"the public benefits from the creative activities of authors; and that the
copyright monopoly is a necessary condition [for] such creative activi-
ties. "l°° Copyright does not protect an idea alone, but the tangible
expression of an idea is protected, provided that that expression consti-
tutes "the fruits of intellectual labor 'q°~ and has not itself been copied
from elsewhere, x°2 An algorithm can be expressed in the form of a com-

puter program. Copyright will prevent, at the least, literal copying of the
computer program. However, as the algodthra of the program can be
expressed in different languages and at different levels of abstraction, it
is not clear to what extent cop)night prevents others from expressing that
algorithm in different ways.

A. The Scope of Protection

Copyright protects more than the literal expression. The plot of a
novel, la3 the characters in a movie, 1°4 and the melody of a song l°s arc all

protected. A computer program is presently regarded as a literary
workJ ~ Thus, unless there are reasons to the contrary, the nonliteral
elements of a computer program should be protecmd as well. This is in

fact the way the law has progressed in the United Stores: Courts have

protected a program's structure, sequence and organization, ~°v user

I00. MELVRJ_E B. NIMMER & DAVID NIMMER. I NIMMER ON COPYRIGHT
§ 1.03[A] (1990 & Supp. 1991).

I01. The Trademark Cases, I00 U.S. 82, 94 (1879).
102. See NIMMER & NIMMER, supra note I00, § 1.08[CI.
103. See, e.g., Nichols v. Universal Pictures Corp, 45 F.2d I19, 12i (2(I Cir. 1930);

Holland v. Vivian Damon Prods. [!926-45] MacG. Cop. Cas. 69 (ChD).
104. See, e.g., Ideal Toy Corp.' v. Kenner Prods. Div., 443 F. Supp. 291 (S.D.N.Y.

1977); Sid & Marry Krofft Television v. McDonald's Corp, 562 F.2d 1157 (9th Cir. I977);
Waraer Bros. v. Coinmbia B ~ g Sys., 216 F.2d 945 (9th C'm 1954); Walt Disney

v. Air Pirazes, 581 F.2d 751 (9th Cir. 1978); c f Kelly Cinema Houses [1928-35]
M~G. Cop. C.~. ~ 2 (ChD).

105. See Bright Tunes Music Corp. v. Han'isongs Music, 420 F. Supp. 177 (S.D.N.Y.
1976).

106. In the United States. see H_R. REP. NO. 1476, 94th Cong., 2d Sess. 54 (1976);
Whelan Assocs. v. Jaslow Dental Lab., Inc_ 797 1::_2(:1 1222, 1243 (3d Ch'. 1986), cert.
den/cal, 479 U.S. 1031 (1987). In Australia, see Copyright Ac~ § 10 definition of literary
works that includes "(b) a compua:r program or a compilation of computer programs." See
also Dyason v. Azaode.~,Inc.. 96 A .LR . 57. 83 (Full Federal Court 1990).

I07. See Whe/a~ 797 F.2~ • 1240, 1248; SAS Inst. v. S & H Comptm~ Sys., 605 F.
Supp. 815. 330 (M.D. Term. 19~5); Jolmsoa Controls v. P1menix Con~ol Sys , 706 F.2d
1 i73, l ~':5 (9th Cir. "989); Telemarketing Resources v. Symante¢ Corp., 12 U,S.P.Q.2£1
(BNA) 1991. 1993 (N.D. CaL I989) (holding that plaintiffs may not claim copyfigh~ pro-
tection of eXlx~sion that is, if not standard, then commonplace in the software indus.).

,:!J Fall, 1991] Copyright or Patent or Both 177

interface, 1°8 and screen displaysJ °9

1. Expressions Are Protected, Not Ideas

Given that the idea-expression distinction is the fundamental test in
copyright law to determine the scope of protection, N° computer pro-
grams and algorithms ~11 be analyzed within that framework to see if
consistent and practical rules can be devised to decide what forms of
expression should be protected.

The current state of the law in this area will be examined in the
jurisdictions of the United States and Australia. Both are common-law
countries that have the same basic copyright framework embracing the
idea-expression distinction.UZ "l"be copyright legislation H2 in both coun-
tries has been enacted by the federal lawmaking body under somewhat
similar grants of power in their respective constitutions. It3 Both coun-
tries are members of the Berne Copyright Convention. However, the
copyright laws of Australia and the United States reflect differences of
analysis that affect computer software copyright. There is no policy rea-
son why the protection provided should differ, since the same software is
sold in these cotmtries and they have similar laws. This Article, after
disposing of two unhelpful docttines, will ~ tests that can be used
in both jurisdictions to produce sensible .,¢sults consistent with the poficy

of copyright law.

2. The State of the Law

The law in this area is not stable. In Australia, the Copyright Law
Review Committee, under a reference from the Attorney General, is

Contra Plains Cotlon Coop. v. ~ Computer Servs., 807 F.2d 1256, 1262 (5th
Cir. 1987).

108. Lotus Dev. Corp. v. Patg'rbac.kSoftware Int'L 740 F. Supp. 37 (D. Mass. 1990).
Oue of the invemors of Lotus 1-2-3, M/mh Kapor, referring to the Lores case at a forum at
M1T, Intellecwal Protection of Software, Oct. 30, 1990, said "I sometimes feel hTr~ Dr.
Franken~e~" Kapor is a software mininmlist, war,ring protection only of the Iheral ele-
mints in the source and object code.

109. Manufacuum's Technolosies. it,,:, v. CAMS, Inc~ 706 F. Supp. 98-¢, 993 (]3. Conn.
1989~. Telemarketing Resources, 12 U.S.P.Q.2d (BNA) at 1993; Broada4amd Software,
Inc. v, Unison World, Inc~ 648 F. Supp. 1127, 1133 (N.D, CaL 1986).

110. See NIMMER & NIMMEIL supra note 100. § 1.03[D].
I lL See Blackie & Sons Lzd_ v. The Lothian Book Publishing Co. Pty. LRL 29 C.LR.

396, 400 (1921); HoUinrake v. TrasweU, 3 CIL 420 (1894); Baker v. Selden, t0t U.S. 99
(1879}.

112. U.S.: 17 U.S.C.(I976); ,~mst: Cop~igh~Act 1968.
113. U.S.: U.S. CONST.ar,_L§8,cLS;Aus~AUST. CONST.§5I(xvifi).

178 Harvard Journal of Law & Technology. [Vol. 5

currently deciding whether the existing Copyright Act "adequately and
appropriately protects computer programs. "114 The High Court of Aus-
tralia has granted special leave to appeal the leading Australian computer
copyright case, Dyason v. Autodesk lnc. H5 This case provides an illus-
tration of the difficulties involved in applying copyright protection to
computer programs.

In the United States, the protection of user interfaces is strongly con-
tested by various members of the software industry, tl6 One side is con-
centrating its efforts on expanding the scope of protection through court
action, H7 while the opposing side is lobbying for legislative changes to
limit copyright protection of user interfaces.

B. Two Unhelpful Doctrines

In cases involving infringement of copyright in computer programs,
the United States courts have used two doctrines to help resolve the
difficult issues that have arisen. The doctrines are "merger of idea and
expression" and "no protection for useful articles." This Section will
show that these doctrines are unhelpful in computer program copyright
c a s e s .

1. UsefuI Articles

In the United States, pureIy utilitarian objects are not subject to copy-
fight protection; the utilitarian aspects of useful articles us are not works
of authorship in which copyright can exist.

I14. Reference o f ~ General of Australia, Oct_ 1988, to Anstralian Copyright
Law Review Committee.

I15. 96 A.L.R. 57 (1990) (Fun F e d a ~ Court ~ o m ~La;than, Stzppatd, & Bean-
mont, JL), special leave granted Nov. 16, 1990 (Mason C J , Gandron & McHugk, JL).
Sheppa~ L ts Chairman of the Cop~ght Law Rev/e~ C ~ .

116- A computer user must commun/cate whh the program and the prognun must corn-
man/care wilh the user. This communicat/on is via wha~ computer sdent / s~ call a user
interface. The ~ is partially ~ as pan o f the program's output, usually on
tl~ compumr's sa ' ec~ Should dm Iaw prevem the c c p y i ~ of a program's interface given
that no part o f the computer Im3gr, an producing the output and us/rig the ~ has been
copied?

117. See, e.g, Loo~ Dev. Corp. v. Paped~k Software Int'L 740 F. ST~l~F= -'~l (D. Mass.
1990); Xerox Corp. v. Apple Computer. Inc., 734 F. Supp. 1542 (N.D. CaL 1990); Apple
~ , Inc.v. Microsoft Corp, 759 F. Supp. 1444 (N.D. CaL 1991); Midmel B. B/xby,
Synthesis and Originality in Computer Screen Displays and User Interfaces, 27 WIL-
LAMEITE L REV. 31 (1991).

I18. "A "useful article" is an article having an intrinsic ufilitaxian ~ that is not
m~rely to ixa'ttay the appearance o f the azticle or to convey infotmaxiom" I7 US.C. § 101
(1988).

Fall, 1991] Copyright or Patent or Both 179

The United States Copyright Act gives copyright protection to works

o f anthorship, including "pictorial, graphic, and sculptural works. "119

Such works are defined as including "works o f artistic craftsmanship

insofar as their form but not their mechanical or utilitarian aspects are

concerned. " n ° The a:tistic features must be able to exist independently

of, and be identified separately from, the utilitarian aspects o f the article.

The scope of exclusive rights in pictorial, graphic, and sculptural

works is l imited by section 1130) . This subsection refers back to the

law existing prior to the commencement o f the 1976 Act: Simply, the

copyright in a pictorial, graphic, or sculptural work, portraying a useful

article as such, does not extend to the manufacture o f the useful article

itself. The owner o f the copyright in a drawing k.as no copyright over

the useful article portrayed in the drawing. A useful article built from a

two-dimensional drawing does not infringe the copyright in the drawing.

Second, a three-dimensional object only has copyright protection for

its form; there is no copyright protection for any ua~nl feature o f the

work. I f the article is purely utilitarian it has no copyright protection. TM

A three-dimensional object which is an architectual work, however, is

protected by copyright even though it is useful, tzz

The leading ca.te prior to the 1976 Act is Maizer v. Stein, tz3 where the

S, . -eme Court held that works o f art that had been incorporated into the

dcsi~.,s of useful articles were copyrightable. In that case, an artistic

female B ~ dancer statuette was used as a lamp base. I t was

h'relevant that the artist had the intention m mass-produce the design as

part o f a commercial article and t h ~ the design lacked aesthetic value.

Congress enacted the basic rule o f Maizer v. Stein in the 1976 Copyright
Ac tJ 24

Later cases have interpreted section 113(b) as requiring the functional

concerns o f the article to have no influence on the work ' s aesthetically

pleasing appearance, t ~ There. L~ no copyright protection i f the form o f

119. '[d. § 102(aXS).
120. ld. § 101. :
12I. Cf. T~k cf d~e Town Pry. L ~ v. ~ 99 ~ 130 (I991).
122. An. as yet ~ b/ll would anm, d th~ law m allow copyrigh~ of archi~--nn-,d

works. C ~ g h t ~ Act of 1990, HR. 549g, 101sz C~nR., 2d Se~ (1990).
The old law is s~ar~[in ~ v_ ~ 680 E Supp. 658 (S.Da~.Y. 198~):
D'Av'[d ~ S~[~"y. Copyright Dro~c'r[on for Arcl~cr~ra[Wor~. 37 S.C.L. Rffv. 39~
(i~6).

123. 347 u.s. 2ol (1954).
124. 17 U.S.C. § 113 (197,6).
t25. See. e.g~ Bmudir Im.'l v. ~ Pac. ~ Co~ 8'34. F.2d 1142 (2d C'n". 198"7)

(form of an undulating robe bicycle rock inseperablc: f-rum its fu~'~n)_

180 Harvard Journal of Law & Technology [Vol. 5

the artistic work is dictated by its utili tarian function. 126 "lhe artistic ele-

ments of the wozk must be physical ly 127 or conceptual ly separable from

the utili tarian aspects of the work. 12s Where the design e lements can be

identified as reflecting the des igner ' s artistic j hdgmen t exercised

independent ly of funct ional influences, conceptual separability exists,

and the artistic e lements are copyrightable. Copyrightable art does not

lose its copyright jus t because it is put to a function, but if the design of

the art is changed to make it more functional , then the cases hold that

copyright protection ceases.

Computer programs that conta in no errors are useful. It is not correct

to say that useful works are not subject to copyright protection: Maps n9

and music, both useful in the same sense that computer programs are

useful, are clearly the proper subject matter of copyright and have been

so since 1790 and 1831 respectively. A n argument , which is constant ly

made in this area, 13° is that a computer program is a useful article and so

has no copyright protection. This a rgument misunders tands the useful

article doctrine; computer programs are not "pictorial, graphic or sculp-

tural works." Even works that are funct ional , such as houses, are g iven

copyright protection.

A more refined a rgument is that a screen display is a useful pictorial

or graphic work, or is part of a useful work, and is therefore no t pro-

tccte.d by the Copyright Act. However, the computer display is not a

useful article made from an artistic work. The computer program is not

an artistic work. A screen display can not be regarded as be ing made

from a representat ion of the screen in the computer program in the same

126. A jump rope, a billiard ball, and a contact lens are examples of items where the
function dictates the form.

127. For example, a sculpture attached to the front of a boat is separable from the utili-
tarian function of the boat.

128. See Carol Barnhart Inc. v. Economy Cover Corp., 773 F.2d 411 (2d Cir. 1985)
(clothes mannequins not copyrightable since artistic features are inseparable from use; it is
irrelevant that the mannequin is pleasant to look at.); Keisclstein-Cord v. Accessories by
Pearl, Inc., 632 F.2d 989 (2d Cir. 1980) (belt buckle made out of sculptural design is copy-
rightable).

129. The definition in 17 U.S.C. § 101 of "Pictorial, graphic and sculptural works"
specifically includes maps, and by inference, does not include maps within the later temi
"works of artistic craftsmanship," so a map would be copyrightable, reg~diess of whether
the graphic fearures can be identified separately from the utilitarian aspects. A map is not a
"useful article" as it must have an intrinsic function other than to convey information itself.

130. Contra Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 58 (D.
Mass. 1990) ("A more sensible interpretation of the statutory mandate is that the mere fact
that an intellectual work is useful or functional--be it a dictionary, directory, map, book of
meaningless code words, or computer program--does not mean that none of the elements
of the work can be copyrightable."). The same argument was used in Apple Computer, Inc.
v. Microsoft Corp., 759 F. Supp. 1444 (N.D. Cal. 1991).

Fall, 1991] Copyright or Patent or Both 181

way as a machine part is made from a representation of the part in a

technical drawing. Finally, a screen display is not an "article." It is a

transient work in two dimensions. It is not like a statuette, belt buckle,

or bike rack. Analyses of computer programs under the useful article
doctrine give far too broad a reading to a narrow, limited rule.

2. Merger

In the United States, the courts have formulated the mysterious

merger doctrine. When courts examine computer programs, they often

confuse this doctrine with the idea-expression distinction, the rule

against the copyright of systems, and the copyright of minimalist
works. TM The logic is as follows.

I f the same idea can be expressed in a plurality of different manners,

a plurality of copyright may result. 132 However, copyright protection

will not be given to a form of expression necessarily dictated by the

underlying subject matter, t33 If the idea can only be expressed in one

way, then what is being expressed is not expression but an idea , and is

not the proper subject matter of copyright. It is said that the expression

and idea have merged where there are few or no ways of expressing a

particular idea. TM One reason for l imiting the scope of copyright where

there are few forms of expressing an idea (assuming it is possible to

determine that the different expression is of the same idea) is to stop one

person from cop}righting those few forms of expression by reducing to

writing all possible forms of expression and taking the idea out o f the

reach of the public. 135 However, this assumes that the second person

wishing also to express that idea has access to all the copyrighted expres-

sions: I f the second person independently comes up with the same

expression, which is l ikely if the means of expression are limited as the

doctrine supposes, then there has been no copyright infringement.

For computer programs, as shown in the previous section on patents,

131. See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253
(3d Cir. 1983).

132. See Dymow v. Bolton, 11 F.2d 690, 691 (2(:1 Cir. 1926).
133. See, e.g., Freedman v. Grolier Enters., Inc., 179 U.S.P.Q. (BNA) 476, 478

(S.D.N.Y. 1973).
134. Apple Computer, 714 F.2d at 1253, referring to Mordssey v. Procter & Gamble

Co., 379 F.2d 675, 678-79 (lst Cir. 1967). See also Lotus Dev. Corp., 740 F. Supp. at
58--59 ("When a particular expression goes no farther than the obvious, it is inseparable
from the idea itself.... It is only a slight extension of the idea of 'obviousness'--and one
supported by precedent---to reach the . . . concept 'merger.' If a particular expression is
one of a quite limited number of possible ways of expressing an idea, then the expres-
sion is not copyrightable.").

135. Morrissey, 379 F.2d at 678-79.

182 Harvard Journal of Law & Technology [Vol. 5

the constraints of a programming language do not allow much room for

variations in expression. Therefore, courts have looked at the computer

program in issue, tried to determine its idea, and then examined whether

that idea could be expressed in other ways. 136

This test has problems. Courts in practice equate "idea" with "algo-

rithm." But, as previously seen, the algorithm can be expressed at dif-

ferent levels of abstraction. There is no one algorithm for any program.

Different programmers may state the algorithm of a program at many

levels of abstraction and all be correct. For every program, its "idea"

can always be expressed in many ways. Examples of differing expres-

sions of an algorithm may include computer code, machine code, high-

level pseudo code, and complex or simple flow charts.

Even if one only looked at computer code, the answer depends on

what level of abstraction of the underlying idea is chosen. One can not

say that the expression used is the only way of expressing the idea of the

program. It may be the only way of expressing an idea as a program, but

if one looked at the idea from another level, it could be expressed in

other ways.

The test, if it is ever workable, encourages complex programs. All

computer programs can be expressed in more than one way. To be safe,

a programmer will express a simple algorithm in a roundabout way to

show that there is more than one form of expression and that the form of

expression chosen is more than an expression of the idea. 137

The merger doctrine has expanded to catch cases where there are few

forms of expression of the idea. But how does one determine how many

is a few? If there is more than one way of expressing an idea, the court

must decide which are really expressions of the idea at issue and which

are expressions of a second idea. This is the same as determining if two:

136. See, e.g. Apple Computer, 714 F.2d at 1253 ("The idea of one of the operating sys-
tem programs is, for example, how to translate source code into object code. If other
methods of expressing that idea are not foreclosed as a practical matter, then there is no
merger."); Digital Communications Assocs. v. Softldone Distrib. Corp., 659 F. Supp. 449,
458 (N.D. Ga. 1987) ("Since the work at issue is the status screen, the court must determine
what is the 'idea' behind the status screen and then determine whether the expression of the
status screen is 'necessary' to that 'idea'.... Thus, 'idea' is the process or manner by
which the status screen, like the car, operates and the 'exp/ession' is the method by which
the idea is communicated to the user.).

Taking from a program those elements that are essential to its purpose is regarded as
taking of an idea and not infringement. See also M. Kramer Mfg. Co. v. Andrews, 783
F.2d 421,436 (4th Cir. 1986) (Normally all computer programs will be expressions not
ideas.).
137. Under the merger doctrine, would directions to run the Boston Marathon be copy-

rightable, even though there was only one path to run? What if the directions included

nonessential information, such as good places to rest?

Fail, 1991] Copyright or Patent or Both 183

forms of expression are substantial ly similar. In other words, the merger

doctrine states a conclusion. It is not a test.

To make matters worse, it is often alleged in cases in this area that the

plaint i ff is t rying to copyright a system; that is to say, the plaint i ff is try-

ing to protect a procedure to carry out a particular task by c la iming copy-

right over the instructions for the task 13s or over a form to be completed

while accomplishing the task. 139 It is clear in copyright doctrine that it is

only expression, and not a method or a system, that is the subject matter

o f copyright. 14° Even so, the reasoning in such cases is often that what is

c la imed as copyrightable is "so straightforward and simple" that "copy-

right does no t extend to the subject mat ter at all. ''141 In other words, the

forms or instructions themselves are not the proper subject mat ter o f

copyright in such cases, for protecting them is tantamount to protecting

the system since there are few ways of expressing that system. 142

B a k e r v. Se lden 143 i s t h e fe"nda t ion case in this area. Its holding is

confused. The plaintiff, b~, ,: ~ : : / !ght ing a book conta in ing bookkeeping

forms and instructioi,~ ::" ,~:~,:: those forms, c la imed copyright in the

method of bookkeepir '/he Supreme Court, reasoning that "[t]he

copyright o f a work on mathemat ical science cannot give to the author

an exclusive right to the methods of operation which he propounds, or to

the diagrams which he employs to explain them, so as to prevent an

engineer f rom using them whenever the occasion requires," concluded

that "no one has a right to print or publ ish [the plaint iff 's] book, or any

material part thereof . . . [but] any person may practice and use the art

138. See, e.g., Morrissey, 379 F.2d 675, where the plaintiff claimed, unsuccessfully,
copyright over instructions to enter a competition.

139. See Bibbero Sys. ':. Colwell Sys., 731 F. Supp. 403 (N.D. Cal. 1988) (a blank form
to determine procedures and diagnoses to be performed by doctors is not copyrightable),
affd, 893 F.2d 1104 (9th Cir. 1990). Cf Applied Innovations, Inc. v. Regents of the Univ.
of Minnesota, 876 F.2d 626 (gth Cir. 1989) (computer software infringed copyright in test
consisting of short simple statements; test data expression of process or facts).

140. In the 1976 U.S. Copyright Act, 17 U.S.C. § 102 (1988), this is made clear by
§ 102(b) which stops copyright extending "to any idea, procedure, process, system, method
of operation, concept, principle, or discovery, regardless of the form in which it is
described."

141. Morrissey, 379 F.2d at 679.
142. The court in Morrissey rejected the reasoning that as "the substance was relatively

simple, it must follow that the plaintiff's [instructions] sprung directly from the substance
and 'contains no original creative authorship,'" but held that as the "subject matter is very
narrow, so that 'the topic necessarily requires' . . . only a limited number [of forms of
expression] . . . the subject matter would be appropriated by permitting copyrighting of its
expression." Both tests lead, as a practical matter, to the same result. Id.

143. 101 U.S. 99 (1879).

184 Harvard Journal o f Law & Technology [Vol. 5

itself which [the piaintiff] has described and illustrated" in the book. 144

However, the court ruled that "b lank account-books are not the subject

o f copyright; and that mere copyright of [the plaintiff 's] book did not

confer upon him the exclusive right to make and use a c c o u n t - b o o k s . . .

i l lustrated in said book. ''14s This is the foundat ion of the so-called rule

that b lank forms are not copyrightable subject matter. Even literal copy-

ing, in this cour t ' s view, would not be a breach of copyright. 146 The

court dist inguishes the text of the book (which was copyrightable) from

the forms shown in the book (which were not copyrightable). Nothing is

said in Baker about the case where only one way to express the system

or to design the forms exists, or where the expression merged into the
idea. 147

The Code of Federal Regulat ions Section 202.1 prohibits copyright o f

b lank forms "which are designed for recording informat ion and do not in

themselves convey information," names, titles, slogans, and lists of

ingredients and contents. 14s This regulat ion is said to be founded on the

rule o f Baker v. Selden. 149 But it is not correct to say, as some courts

have held, that b lank forms and the like cannot be copyr igh ted- - the

correct rule is that b lank forms may be copyrighted " i f they are

sufficiently innovat ive that their a r rangement of informat ion is itself
informative. ''tSo

Baker v. Selden has been expanded to computer software cases to

claim, since the screen display resembles a b lank form, that the screen

display is an unprotected idea. This raises the issue whether g i v i n g

144. ld. at 103--434.
145. Id. at 107.
146. Would the result be the same today'? Part of the court's reasoning was that in 1859

the copyright legislation then in force only gave copyright over "books, maps, charts, musi-
cal compositions, prints, and engravings." Today, the 1976 Act gives protection to
"graphic" works. If blank forms conveyed information, thus not being useful articles, they
could be regarded as graphic works, and the forms themselves would be copyrightable.
However, if a form were not regarded as an "article" but only as a "work," then it would not
even need to convey information to be copyrightable. This latter interpretation seems the
most sensible.

147. Cfi Educational Testing Servs. v. Katzman, 793 F.2d 533, 539 (3d Cir. 1986) ("It is
on the basis of the merger principle that copyright has been denied to utilitarian ideas, such
as forms.").

148. 37 C.F.R. §202.1(c) (1991).
149. See, e.g., Bibbero Sys. v. Colwell Sys., 731 F. Supp. 403,404 (N.D. Cal. 1988),

aft& 893 F.2d 1104 (9th Cir. 1990). The regulation also prohibits copyright for tables
containing public information, calendars, and tape measures, as they contain no original
authorship.

150. Digital Communications Assocs. v. Softldone Distrib. Corp., 659 F. Supp. 449, 461
(N.D. Ga. 1987) (quoting Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1243
(3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987)).

Fall, 1991] Copyright or Patent or Both 185

copyright to the program in effect impermissibly protects a blank form.

These claims misinterpret Baker v. Selden. The screen always gives

information to the user. The only valid test, relying on this line of cases,

should be whether the screen display contains enough expression to

amount to an original work. Secondly, relying on Baker, because the

computer program carries out a process, it has been suggested that the

programmer should not be given copyright over the expression, as doing

so would give the author the exclusive right over the process. TM The

validity of this argument will be examined below.

The merger doctrine has not reached Australia. When the subject

matter of an action allows little variation in the form of expression, Aus-

tralian courts usually decide that copyright subsists in the work. How-

ever, a precise similarity must be shown to exist between the two works

before there will be a finding of infringement. 152 As an example, the

design of a simple house is likely to have standard-height ceilings and an

entrance hall adjacent to the front door. Copyright infringement will be

found in Australia only if the plan of those features is copied exactly. 1s3

The merger doctrine in United States law, by contrast, does not give any

copyright protection, even against literal copying, in circumstances

where there are few ways of expressing the idea. In Australia, it is clear

that copyright protection is given for the particular expression used by

the author explaining a mdthod of operating a system or using an

apparatus or playing a game. The courts have not regarded this as giving

copyright over the process carried out. It is irrelevent, in regard to the

process, system, or game, whether the resulting expression is obvious. TM

Thus, not all arguments used in the United States will be available in
Australia when dealing with computer software copyright. 155

The merger doctrine should be abandoned by the courts for all copy-
right cases.

151. See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1250-52 (3d. Cir. 1983). Cf Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp.
37, 54--58 (D. Mass. 1990).

152. Compare Dorsey v. Old Surety Life Ins. Co., 98 F.2d 872, 874 (10th Cir. 1938) ("a
showing of appropriation in the exact form or substantially so") with Continental Casualty
Co. v. Beardlsey, 253 F.2d 702, 705 (2d Cir. 1958) ("a stiff standard for proof of infringe-
ment").

153. See, e.g,, Dixon Invs. v. Hall, unreported, Federal Court of Australia (Pincus, L).
154. See, e.g., Meccano Ltd. v. Anthony Horden & Sons Ltd., 18 N.S.W. St. R. 606

(1918).
155. As the law currently stands, one would feel it would be. harder to protect the nonli-

teral elements of computer programs in the United States than h; Australia. But this has not
been the case. The courts in the United States have decided, mostly on what seem like pol-
icy grounds, to give wide protection to computer programs and other aspects associated
with the use of computers, such as interfaces.

186 Harvard Journal of Law & Technology [Vol. 5

C. The AutoCAD Example

No court has yet found infringement where neither the underlying
algorithm of the program nor the user interface had been copied. The
nearest courts have come is in the Australian Autodesk case. x56 The
plaintiff, an American software company, wrote a complex Computer
Aided Design ("CAD") program, AutoCAD. Part of this program con-
mined another program, called "Widget C," which regularly sent a signal
to a hardware device (called a lock, but really a key) attached to the
computer 's serial port. Unless the lock was attached, no display would
appear on the screen and no printout of any drawings or calculations
could be made. 157 The signal sent to the lock by Widget C was a series

of electrical impulses, represented in binary by ones and zeros, which the
lock processed. The lock then replied to the Widget C program: If the
reply was the one expected, the CAD program continued to run as nor-
mal. The lock was a hardware device which included as components a
clock, a shift register, an XOR gate and switching circuitry. The lock
stored no computer program in the sense commonly understood by the
computer industry, lss Although the CAD (and therefore the Widget C)

program was easy to duplicate, the lock was not. 159
The object of the lock was to prevent the CAD program from running

correctly if illegally copied. Copies run without the lock would not func-
tion. The lock did this by receiving a binary input and returning a binary

output.
The defendant produced a software version of the lock (the "Auto-

Key lock") which had the same function as the plaintiff's lock. How-
ever, the algorithm used by the defendant's lock to reply to the Widget C
signal was completely different from the hardware components in the
plaintiff's lock. The defendant determined how the lock worked by e x a -

mirting the output of the plaintiff's lock with an oscilloscope; conse-
quently the defendant had no need to examine the Widget C program or

156. Dyason v. Autodesk Inc., 96 A.L.R. 57 (1990) (Full Federal Ct. Decision). Oral
argument in the appeal took five days.

157. Id. at 68. Thus the lock prevented unauthorized use of the AutoCAD program that
retails for A$5,700. Autodesk permits adaptation of its program under license and has done
so approximately 100 times in Australia. See Autodask's submission to ACLR, Collection,
supra note 57.

158. Id. at 93.
159. Cf Vault Corp. v. Quaid Software Ltd., 847 F.2d 255 (5th Cir. 1988), commented

on in Deborah Kemp, Limitations upon the Software Producer's Rights: Vault Corp. v.
Quaid Software Ltd., 16 RUTGERS COMPWIER & TECH. L. J. 85 (1990) (Software lock
that unlocked plaintiff's protection program did not infringe copyright in the protection
program.).

Fall, 1991] Copyright or Patent or Both 187

the components making up the plaintiff 's lock. The devices had the

' same function but used different algorithms to achieve their results.

They had the same interface and they produced the same output given

the same input.

The trial judge found there was copyright infringement 16° because:

Each lock contained a computer program, the function of the plaintiff 's

program had been reproduced in a material form by the defendant, and

the form of the reproduction was irrelevant.

The Full Federal Court reversed. Its findings were: (1) Copyright in

computer programs resides in the expression of a set of instructions that

cause a specified device to perform a particular function; but copyright

does not reside in the function of the device or program itself. 161 (2) The

lock, looked at in isolation, was neither a computer program nor a device

which contained a computer program. 162 The information--the

voltages---sent by the Widget C program to the lock was not an instruc-

tion to stop or proceed. The Widget C program decided whether to stop

or proceed from the information returned from the lock. (3) The Widget

C program and the defendant 's lock were an integrated system, which

constituted a computer program. 163 (4) The defendant did not reproduce

any part of the Widget C program. 164 (5) The defendant 's lock, whether

it was a program or not, 165 was not a reproduction or adaptation of the

plaintiff 's Widget C program. 166 There was no reproduction because the

only similarity was in the function of the locks, not the defendant's lock

and the plaintiff 's program. 167 (6) As the algorithms were different, the

defendant's lock was not an adaptation or variant of the combination of

160. Dyason v. Autodesk Inc., 15 I.P.R. 1, 27 (1989).
161. Dyason, 96 A.L.R. at 65.
162. ld. at 78, 105.
163. ld. at 78.
164. "IT]he expression of the set of instructions being Widget C was not reproduced in

the hardware lock ['[']here was only one relevant computer program in the present case.
This was the AutoCAD program itself." ld. at 104.

165. Sheppard, J., was responding to the plaintiff's submission that "Widget C was itself
the program but a substantial part of that program was reproduced in the lock. Thus the
computer had the program Widget C in it and the lock had part of Widget C in it. In other
words Widget C was a program and each of the locks was a reproduction of that part of the
program so that the comparison was Widget C and each of the locks." ld. at 76. However,
if the lock had part of Widget C in it, it would contain a computer program, which the Court
found was not the case. The submission assumes that a program can be infringed by a
piece of hardware replicating the function of pan of the program.

166. The court relied on Australian Copyright Act § 14, which allows the court to see if
the defendant's work infringed a substantial pan of the plaintiffs work, in this case the
Widget C program, ld. at 78-83, 105-436.

167. "[W]hat is contained in the Auto-Key lock is not a substantial pan of the program
because, in substance and in form_, it is essentially different." ld. at 83 (Sheppard, J.)

188 Harvard Journal of Law & Technology [Vol. 5

the pla int i f f ' s lock and Widge t C program. 168

The result o f the case may be c o r r e c t - - t h e defendant copied funct ion

not expression. The defendant " inven ted" his a lgor i thm independent ly

and did not copy the pla int i f f ' s algori thm, and, therefore, any compute r

program f rom the plaintiff. However , some o f the reasoning of the court

is suspect.

1. Can Hardware Be Software?

First, is the cour t ' s reasoning for not ca tegor iz ing the lock as contain-

ing a compute r p rogram 169 correct under Austra l ian law? By definition,

an object can not be both a compute r program and a computer . 17° I f a

compute r program can be reproduced f rom any form o f storage, whether

the p rogram is vis ible or not whi le stored, then what is stored, or more

correct ly the fo rm of storage, is a reproduct ion or an adaptat ion o f the

compute r program reproduced. Therefore , i f the a lgor i thm that causes

the lock to conver t the input into the output is s tored in the lock and can

be " rep roduced" f rom that storage, then the lock contains a reproduct ion

o f a compute r program. It is not correct, as the court did, to look at the

reaso.rl the lock exis ted (to stop the ef fec t ive operat ion o f the A u t o C A D

~,rogram i f not at tached to the computer) and conclude because the lock

d i d n o t do this directly, but jus t p roduced automat ic responses, that it

was not a program. The lock ' s funct ion was to take binary input and

168. Id.
169. "'[C]omputer program' means an expression, in any language, code or notation, of

a set of instructions . . . intended, either directly or after either or both of the following: (a)
conversion to another language, code or notation; (b) reproduction in a different material
form, to cause a device having digital information processing capabilities to perform a par-
ticular function." Australian Copyright Act § 10.

170. The Australian Copyright Act requires that a program cause a device (here a com-
puter) to perform a particular function. This prevents a hardware device from being pro-
tected under copyright as a computer program. However, according to the Australian
Copyright Act, a hardware device can "contain" a computer program, stored in hardware, if
the program can be reproduced from the hardware. The form of storage containing the pro-
gram is a "reproduction in a different material form" of the reproduced expression.

Charles Babbage, who died in 1871, designed a "difference machine" that could gen-
erate mathematical tables of many kinds. It operated by thousands of swirling intricate
geared cylinders interlocking in incredibly complex ways. The machine used an algorithm,
the "method of differences," which was physically built into the machine. Such an algo-
rithm, unless it could be "reproduced" from the m~chine, would not be a computer program
under the Australian Copyright Act. Compare Babbage's "analytical engine" that stored
numbers and made decisions under the control of a program contained in punch cards. See
DOUGLAS R. HOFSTADTER, GODEL, ESCHER, BACH: AN ETERNAL GOLDEN BRAID
25 (1979). See also Computer Edge Pry. Ltd. v. Apple Computer, Inc., 161 C.L.R. 171,
194 (1986). Hardware and software are logically equivalent. ANDREW S. TANENBAUM,
STRUCTURED COMPUTER ORGANIZATION 11 (2d ed. 1984).

Fall, 1991] Copyright or Patent or Both 189

produce binary output. TM This function may be carded out by a com-
pute: program 172 or by a piece of hardware, which although using an
'algorithm does not conh~in a reproduction of a computer program. 173
Determining the function of a device does not determine what it is.

The court instead determined that the lock and the Widget C program
together constituted a computer program. But if the lock was not a com-
puter program and did not contain a computer program itself, as the
court determined, how can the lock, in combination with a computer pro-
gram become a computer program? It is like saying that a piece of
hardware, such as a computer keyboard, which operates in conjunction
with a computer program, is part of the program.

The correct view is that the plaintiff's lock is just a piece of hardware.
It is not a program and does not contain a program. It can not reproduce
a program from any storage: It contains no form of storage apart from
the shift register. It does, through its circuitry, follow an algorithm, just
as a washing machine follows an algorithm, but this algorithm is not, in
Australian copyright law, a literary work in a material form.

It should be the case, both in Australia and the United States, that the
function a machine performs is not protected by copyright. That is the
domain of patent. It is sensible that copyright does not protect function.
To do so would give too a wide a scope to copyright. Preventing copy-
ing of functions would prevent anyone from creating a road map, recipe
or spreadsheet: works whose functions have already been invented.
Function does not involve expression. However, if a machine can repro-

duce a form of expression that causes a machine to perform a function,
in the narrow sense that it can store and then reproduce (print out) the
instructions that cause the machine to operate, that expression should be

171. In this case, the binary code transmitted was not a set of instructions (to stop), but
input or output data, which Widget C acted on. There is nothing to stop a hardware device
from mmsmitting to another hardware device a computer program (a set of instructions) in
the form of binary code, such as a program sent via a modem to a computer from another
computer, which causes the receiving computer to act in a certain way.

172. The lock could be attached to the printer port. A printer receives instructions from
a con~puter program, called the operating system, to print certain data. The printer tells the
progratn, by binary code, when it has finished this task. How is this different from the lock
in this case? Many printers have a separate computer program installed in them in ROM to
enable the printer to communicate with the operating system. In Star Micronics Pty. Ltd. v.
FiveStar Computers Pry. Ltd., unreported, Federal Court of Australia, Oct. 9, 1990 (Davis,
J.) (holding that computer program embedded in computer chip in printer was protected by
copyright).

173. The algorithm could be expressed, for example, in pseudo-code. See Dyason v.
Autodesk Inc., 96 A.L.R. 57, 75 (1990) (Full Federal Ct. Decision).

190 Harvard Journal of Law & Technology [Vol. 5

copyrightable. TM Otherwise computer programs would be deprived of
protection in their most useful form.

2. Can Hardware Be a Copy of Sof.'ware?

Secondly, assume arguendo that the plaintiff's lock contains a com-
puter program. If the defendant's lock does not contain a computer pro-
gram, could the defendant's hardware infringe a copyright on the
plaintiff's program? The Full Federal Court, in asking the question
whether the defendant's lock was a reproduction of a substantial part of
the Autodesk program, assumed that a piece of hardware may, under
some circumstances, infringe the copyright of a computer program. The
court indicated that infringement occurs when there is similarity in the
sets of instructions constituting the programs. 175 But how can there be
such similarity when one object being compared does not contain a set of
instructions. True, the defendant's lock operates in accordance with
instructions that could be written as an algorithm, but the expression of
that algorithm is not determined by the workings of the lock. A piece of
hardware, not containing a computer program, can never be a reproduc-
tion of a computer program, whether that computer program is written
down or is stored and can be retrieved from another piece of hardware.

The Full Federal Court then examined whether the defendant's lock, a
piece of hardware not containing a computer program, was an adaptation
of the plaintiff's Widget C program. 176 The Australian Copyright Act
defines "adaptation" in this context as "a version of the work (whether or
not in the language, code or notation in which the work was originally
expressed) not being a reproduction of the work. ''177 It is implied in this
definition, and the definition of "material form," that the work in ques-
tion must be a form of expression. The forms of expression are exam-
ined to determine whether there has been a copying of expression--to
see if one form of expression is a version or variant of the other form of

174. But see Davies & Co. v. Comitti, 54 L.J. Ch. 419 (1885); STANIFORTH RICKET-
SON, THE LAW OF INTELLECTUAL PROPERTY ¶ 5.34 (1984).

175. Dyason, 96 A.L.R. at 66, 82, 105.
176. Cf. United States definition of"derivative work": "a work based upon one or more

pre-existing works, such as a translation, musical arrangement, dramatization or any
other form in which a work may be recast, wansformed, or adapted." 17 U.S.C. § 101
(1988).

177. Australian Copyright Act § 9.

Fall, 1991] Copyright or Patent or Both 191

expression. As the lock expresses nothing, it could never be an adapta-
tion of a computer program.~7s

It is also incorrect to examine whether the lock is a three-dimensional

reproduction of a two-dimensional computer program or algorithm. 179

Computer programs and algorithms are not artistic works. An analogy

can not be made to the Australian house plan caseslS°---although both a

house plan and an algorithm tell a "processor" how to accomplish a task

(how to build a house or respond to binary input). The house results

from following the algorithm and is an artistic work itself protected by

copyright. The lock does not result from carrying out the algorithm;

rather it performs the algorithm. It would be ridiculous to say that a
house executes a house plan.

The law should be clearer: A machine that performs the same func-

tion as a computer program should never be a copy, reproduction, adap-

tation, or derivative of the computer program. A machine that uses the

same algorithm as expressed in a computer program can never be a copy

of the computer program. In both cases, there is no copying of expres-
sion.

The current copyright laws in Australia and the United States raise

several concerns over their applicibili ty to the growing field of computer

programming. Below is a proposed test that would correct the problems

inherent in the two countries ' systems. The test 's application to the

AutoCAD case will illustrate its advantages.

D. When Are Two Computer Programs the Same? A Proposed Test

If the defendant 's lock did contain a computer program, then the court

would have to decide i f there was substantial similarity between the

plaintiff 's program and the defendant 's program. The Australian court

was c o r r ~ t in holding that functional similarity is not sufficient for

copyright infringement: Copyright protects expression, not function, lal

178. Cf Computer Edge Pry. Ltd. v. Apple Computer, Inc., 161 C.L.R. 171,186 (1986)
("An adaptation must itself be a 'work.'").

179. An artistic work in Australia is deemed to have been reproduced, in the case of a
two-dimensional work, if a version of it is produced in a three-dimensional form, or, in the
ease of a three-dimensional work, if a version of it is produced in a two-dimensional form.
Australian Copyright Act § 21(3).

180. See, e.g., Collier Constrs. Pty. Ltd. v. Foskett Pry. Ltd., 97 A.L.R. 460 (1991);
Dixon Invs. v. Hall, 18 I.P.R. 490 (1990). See also Hart v. Edwards Hot Water Sys., 159
C.L.R. 466 (1985).

181. But note the court went too far in Vault Corp. v. Quaid Software Ltd., 847 F.2d
255, 268 (5th Cir. 1988), holding that if two programs had the same code, but different
functions, they would not be substantially similar.

192 Harvard Journal o f Law & Technology [Vol. 5

But what if the two programs, in addition to carrying out the same

function, use the same algorithm, although expressed in different ways?

If different computer languages were used, and the court was able to

determine that what was expressed was the same algorithm, then one

work would be a reproduction or adaptation of the other. For example, a

program in Pascal and a compiled version of that program are the same

program, in the same way that Crime and Punishment is the same novel
whether in Russian or English (even though there may be variations of

expression between two English translations). It is a similar analysis

where the Pascal program is translated, line by line or construct by con-

struct, into another language at the same level of abstraction. But what

if, like the defendant in the Autodesk case, the defendant never saw the

plaintiff 's expression, but rather "guessed" the algorithm used and wrote

a program in a different language that used that algorithm. In other

words, should copyright protect an algorithm expressed in the form of a

computer program and prevent others from expressing that algorithm in
another way?

To restate the problem, copyright protects more than the fiteral expres-

sion, but does not protect ideas 182 or function. Two computer programs

may use the same method to accomplish the same goal. That method is

not protectedJ 83 Copyright does not protect an algorithm, but only

expression of the algorithm. Although not protected by copyright, a

program's algorithm must be examined to determine i f there is copying of

expression. I f algorithms are ignored and function is not examined, there

is no way to determine if two programs, expressed in different languages

or at different levels of abstraction, are similar: A computer programmer

will usually look to see if, taking the same input, the same output will

result (functional similarity), or if the algorithm that each program uses is

the s ame) 84 As copyright ignores function, the test for substantial simi-

larity between two programs written in different languages must be, at a

minimum, whether the underlying algorithms are the same.

No test should give copyright protection to algori thmsJ 85 An

182. See Ashton-Tate Corp. v. Ross, 916 F.2d 516, 52l (9th Cir. 1990) (to be author of
spreadsheet, one must contribute more than the idea).

183. See 17 U.S.C. § 102(b) (1988); Cf Brigid Foley Ltd. v. Elliot, [1982] R.P.C. 433,
434.

184. There are many programs that translate from one language to another. Th,,~ pro-
gram translated may just be one of a number of possible translations; a program could be
copied from another program but when the original program is translated, a different ver-
sion is likely to result. In each case the algorithm will be the same.

185. Algorithms, being equated with methods or processes, are not expressions and are
not copyrightable. Compare the Japanese position that does not give copyright protection
to "methods of solution" Ckaihoo"), which Japanese courts have interpreted as including
algorithms. See Dennis S. Karjala, Japanese Courts Interpret the "Algorithm" Limitation
on the Copyright Protection of Computer Programs, 31 JURIMETRICS J. 233 (1991).

Fall, 1991] Copyright or Patent or Both 193

alternative test to those currently used must meet this goal. A computer

program should be protected as expression. The algorithm, if written

down in the form of a flow chart or pseudo-code, does not cause a com-

puter to perform any particular function, and should not be copyrightable

as a computer program, tat The algorithm, expressed in this form, may

be copyrightable as an artistic or literary work in its own right, just as a

house plan or a recipe may be copyrightable. This copyright does not

prevent the builder or chef from using the plan or recipe. 187 However,

for this algorithm to be used by a computer, it must be "translated" by

the programmer into another form of expression, the computer program,

and one might argue that the program (as a translation) infringes the

copyright in the flow chart ~88 or pseudo-code. As a result, any program-

mer who uses the flow chart or pseudo-code to write a program infringes

the copyright in the flow chart or pseudo-code. 189 Further, if a second

programmer deduces the algorithm from the original program, and uses

it to write a program, there is indirect reproduction of the first

programmer's flow charts and pseudo-code. 19° Therefore one may

decide that in effect the algorithm is copyrightable.

To prevent this, but to allow courts to look at the underlying algo-

rithm to determine if two programs are substantially similar, computer

programs must be partitioned from other works in the copyright regime.

Computer programs should not be regarded as literary works. 191 The

copyright of a literary work, artistic work, or any other work, should not

be infringed by a "computer-program work" and vice versa. 192 A com-

puter program is a work whose intention is to cause a computer to per-

form a certain task. Therefore, a novel stored on a computer disk is not a

computer program, as it does not cause a computer to do anything. An

algorithm expressed in the form of a diagram is copyrightable as an

186. However, in Australia, such expression of the algorithm is copyrightable as a com-
puter program. See Australian Copyright Act § 10 (definition of"computer program").

187. See Cuisenaire v. Reed [1963] V.R. 619, 736.
188. "Flowcharts... are works of authorship in which copyright subsists, provided they

are the product of sufficient intellectual labor to surpass the 'insufficient labor hurdle'."
CONTU FINAL REPORT 43 (1978), cited with approval in Lotus Dev. Corp. v. Paperback
Software Int'l, 740 F. Supp. 37 (D. Mass. 1990).

189. Cf. Synercom Teclmology, Inc. v. University Computing Co., 462 F. Supp. 1003,
1013 n.5 (N.D. Tex. 1978) (coding "detailed description of particular problem solution,
such as flowchart" was violation of copyright); Data Cash Sys. Inc. v. JS&A Group Inc.,
480 F. Supp. 1063, 1067 n.4 (N.D. Ill. 1979).

190. Cf. Solar Thompson Eng'g Co. Ltd. v. Barton. [1977] R.P.C. 537; Purefoy Eng'g
Co. Ltd. v. Sykes, Boxall & Co. Ltd., 72 R.P.C. 89 (1955).

191. R is interesting to note that Autodesk, in its submissions to ACLR, Collection,
supra note 57, at 3, states that "computer programs should not be treated as literary works."

192. In other words, a non-computer program can not be a derivative work of a
computer-program work. But see Williams v. Amdt, 626 F. Supp. 571 (D. Mass. 1985).

194 Harvard Journal o f Law & Technology [Vol. 5

artistic work, but a program written using that algorithm does not
infringe the copyright in the diagram. A piece of hardware that uses an
algorithm to carry out its task, but does not allow the storage and
retrieval of the algorithm, does not infringe the copyright in a computer
program that uses that algorithm. 193 Only computer programs can
infringe the copyright in computer programs.t94

The reason for this limitation is the idea-expression distinction. To
determine if there is copying, one must compare expression. If the rule
allowed comparison between an algorithm expressed as a computer pro-
gram and an algorithm expressed as a diagram, it would be too much like
a comparison of ideas. As the expressions and levels of expression
would be substantially different in virtually every case, there can be no
infringement.

Computer programs are different when they use different algorithms.
But they are not always similar when they use the same algorithm. A
test of substantial similarity of expression must do more than determine
whether the underlying algorithms of two programs are the same.

The same algorithm can be expressed at different levels of abstrac-
tion, from a general high-level description of the method of completing
the task, to a detailed low-level description. Or looking at it another
way, each program's algorithm can be expressed at different levels of
abstraction, from the high level (read in data, process data, or print
monthly report) to the low level (a computer program written in assem-
bler language.) Again, the idea-expression distinction becomes useful.
So far most courts in the United States have used this dichotomy, and,
unfortunately, the merger doctrine, to determine if what is expressed is
essential to the program's function. Alternatively, if there are various
means of expressing the function of the program, then what is chosen by
the author as expression is protected expression. But there is always

more than one way of expressing the function of a program.
What the courts should concentrate on is the level of expression. 195

The algorithm of the program can be expressed at various levels, but not
all those levels should be infringements of another program's expression.

193. Cf Note, Computer Intellectual Property and Conceptual Severance, 103 HARV.
L. REV. 1046, 1055 (1990) (Distinguishing hardware and software is meaningless.).

194. A narrower and unsatisfactory argument was used by the defendant in Computer
Edge Pry. Ltd. v. Apple Computer Inc., 161 C.L.R. 171 (1986), that a reproduction must be
in the same form or nature as the original form in which the alleged reproduction is made.
That is, a reproduction of source code written on paper could only be infi'inged by the same
source code written on paper. The proposed test in the text above says computer programs
can only be infringed by similar computer programs.

195. But see Demds S. Karjala, Copyright, Computer Software, and the New Protection-
ism, 28 JURIMErRICS J. 33, 87-92 (1987).

Fall, 1991] Copyright or Patent or Both 195

Clearly, the level of expression that the author uses to express the algo-
rithm, which is in effect the literal code, is protected from copying. The
translation of this code into a more detailed level of expression by a
computer's compiler is a copy of the program: It is necessary to do so to
run the program, and the low-level code results directly from the
programmer's expression. The high-level description of the algorithm,
which a computer cannot execute without the further efforts of a pro-
grammer, should not be regarded as a copy of the program. This expres-
sion is not a computer program, but an idea for a computer program.
Any computer program that uses that high-level algorithm should not
breach the copyright of another program that uses the same algorithm.
For programs where the levels of expression differ but the algorithms
used are the same, the test of substantial similarity should ask whether
the differences in level of expression are such that the expressions them-
selves are different. This test is one of degree.

The test implicitly takes into account the idea-expression distinction.
In difficult cases, the court should first determine the algorithm each pro-

• gram uses. If the algorithms are different, the inquiry should end there:
There is no similarity of expression as what is being expressed is dif-
ferent. If the algorithms are the same, the court then decides at what
level of abstraction they are the same. If it is at such a high level of
abstraction that when the algorithm is expressed a computer could not
execute the algorithm without the assistance of a programmer refining
the level of abstraction, what the court is comparing for copying is not
expression, but idea. Thus, there is no copyright infringement. I f the
algorithms are the same at a level of abstraction that a programmer can
directly use to write the same program, without substantially changing
the level of abstraction, then the two programs have expressed the same
algorithm, although in different languages or styles. Thus, there is sub-
stantial similarity.

E. The Proposed Test in Action

Under such a regime, Autodesk is an easy case. There is no copyright
infringement. The defendant's lock is hardware only, and cannot
infringe the copyright of the plaintiff's computer program. Secondly, the
algorithm the defendant used was different, so even if the locks each
contained a computer program, they are not substantially similar so as to
result in a finding of infringement.

What about Whelan? 196 There the court held that copyright

196. Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F,2d 1222 (3d Cir. 1986), cert.
denied, 479 U.S. 1031 (1987).

196 Harvard Journal o f Law & Technology [Vol. 5

protection of computer programs may extend beyond a program's literal

code to its structure, sequence, and organization. 197 A witness for the

plaintiff testified that the file structures and s c r ~ n outputs o f the two

programs were virtually identical and that five important subroutines

within both programs performed almost idefftically in both programs. A

witness for the defendant testified that there were substantive differences

in programming structure, in algorithms, and in data structure, but that

both programs had overall structural similarities. 198 The court regarded

the programs as utilitarian works and decided to treat as irrelevant to its

inquiry (as b e i n g idea) the purpose and function of the programs and

everything necessary to that purpose or function. 199 But the evidence the

court quotes 2°° does not make it clear that the court did look at the struc-

ture of the programs rather than the function certain parts of the pro-

grams per formed? °1 Further, the court did not examine the two works in

whole, but only those parts identified as being similar by the plaintiff. 2~

The Third Circuit decided that the programs were substantially similar.

The strongest case for the plaintiff is that the two programs used the

same high-level algorithm for the programs' overall design, and the

same algorithm i n five parts of the programs. Even if these five subrou-

fines were copied, that is not enough to show that the defendant breached

the copyright in all of the plaint iff 's program: It would only be so i f

those five parts were a substantial part of the work as a whole. Secondly,

the evidence was that the basic structures of the two programs were the

same, but that the algorithms differed substantively. What this may

mean is that, at a very high level, the programs performed the same tasks

in the same order and that the algorithrns in their most abstract form

were similar. That being the case, on the above analysis, there is no

copyright infringement. The structure of a program (in this case another

name for the high-level algorithm) must be refined before a program can

be written, and so both programs having the same high level algorithm

197. ld. at 1237-38; see Peter S. Menell, An Analysis of the Scope of Copyright Protec-
tion for Application Programs, 41 STAb/. L. REV. 1045, 1084 (1989) ("IT]he Whelan court
naively reasoned that because a function could be performed in more than one way, its
structure, sequence, and organization is expressive and therefore copyrightable.").

198. See Whelan, 797 F.2d at 1228.
199. See id. at 1235-38.
200. See id. at 1246--48 (the court highlighting the testimony "if we look at the functions

done by the programs in order, we find that they are the same").
201. See Walter, supra note 38, at 132-33.
202. Whelan, 797 F.2d at 1245--46. Cf. Atari Games Corp. v. Oman, 888 F.2d 878,

882--83 (D.C. Cir. 1989) (rejecting component by component analysis and ruling that the
court must focus on the "work as a whole").

Fall, 1991] Copyright or Patent or Both 197

but different expressions of that algorithm are not substantially similar.
Therefore, there is no infringement.

The Eastern District of New York recently refused to follow the
Whelan test for substantial similarity, calling it "inadequate and inaccu-
rate. ''2°3 The court instead applied what it called the "abstractions test,"
examining each level of generality of the alleged infringing computer
program (the object code, the source code, and the "general outline") for
substantial similarity with the same level of generality as the copyrighted
program. 2°4 Where the program was found to be substantially similar at
any level of generality, the court then examined that level to see if it was
"important. ''2°s If not, the court decided that there was no substantial
similarity. 2°6

The court was correct to abandon the Whelan test. The reasoning of
the court was, first, that a program cot:!d include more than one idea. 9-°7
Thus, determining what was non-essenlial or unnecessary to that idea
might be impossible. In addition, each program was made up of subpro-
grams which had separate ideas and could be individually copyrighted.
Thus, the court discredited the use of the merger doctrine in computer
software cases. Secondly, the court divided "the structure of the pro-

gram," a term used in the Whelan decision, into two components: the
smile structure (the strut;ture of the program as text) and the dynamic
structure (the order of execution of the program's instructions). 20s The
court decided to examine only the static structure of the program--the
dynamic structure being equivalent to a "process, system, [or] method of
operation," which under section 102(b) does not receive copyright pro-
tection. 209

In examining the static structure of the program, the court looked for
substantial similarity at each level of generality. One version of the
defendant's program directly copied thirty percent of the plaintiff's
source code. Infringement was found. 21° With regard to a second ver-
sion of the defendant's program, rewritten to avoid direct copying, the

203. Computer Assoc. Int'l, Inc. v. Altai, Inc., 1991 Copyright L. Rep. (CCH) ¶ 26,783,
24,611 (E.D.N.Y. Aug. 9, 1985).

204. Id. at 24,612 (citing Nichols v. Universal Pictures, 45 F.2d 119, 121 (2d Cir. 1930),
cert. denied, 282 U.S. 902 (1931)).

205. Id. at 24,613.
206. Id. at 24,614.
207. See id. at 24,61 I.
208. ld. at24,611-12.
209. ld. at 24,612.
210. See id.

198 Harvard Journal of Law & Technology [Vol. 5

court found no infringement. TM When looking at the source code, the
importance of the code copied, and not the number of lines copied, was
examined. However, as the defendant had rewritten the code, there were
no lines of code identical to those in plaintiff's program. The court
therefore found no similarity at this level. 212 At the next level of gen-
erality, the interface with the operating system, the court found similari-
ties, but held them to be "dictated by external factors" and not infring-
ing. 213 Finally, the high-level structure was not substantially similar as
"it was not important, because it was so simple and obvious to anyone
exposed to the operation of the program. ''214

The court should not have limited itself to examining whether the
lines of code were identical. A work may be substantially similar even
though there is no literal copying of any particular element of the work.
By ignoring the flow of control (the dynamic structure) of the program,
the court ignored an important factor in determining the quality of the
parts copied. It was as if the court, in determining whether a piece of
music was copied, ignored the sound produced and only looked at the
way the notes were arranged on the sheet music. When there is no literal
copying, the flow of control, or more precisely, the algorithm of the pro-
gram, must be considered. If it is the same, there may be copying of
expression. As the algorithm was expressed at the same level in each
program, the court should have determined, first, if it was the same algo-
rithm being expressed, and second, if the expression was substantially
similar, not if the expression was identical.

The court should not have considered whether the higher-level
features copied were simple, obvious, or dictated by external factors
while determining if what was copied was substantial. The words of a
song may be simple, and a map may be dictated by external factors, but
literal copying of those works is copyright infringement. When examin-
ing the high-level structure of the program (the high-level algorithm) the
court would have been more correct if it found non-infringment on the
ground that the high-level structure was an unprotected idea. That is,
the court could have determined that since the algorithm required more
refinement before a program could be written, the high-level structure
was akin to idea, rather than expression.

211. Seeid. at24,613-14.
212. Seeid.
213. ld. at 24,613.
214. Id.

Fall, 1991] Copyright or Patent or Both 199

I V . A P P L I C A T I O N O F T H E N E W T E S T

A. User Interfaces

This Section uses the foregoing analysis and proposed test to address

legal protection of user interfaces. The first Subsection defines user

interfaces and distinguishes between interface specifications and inter-

face implementations. Succeeding Subsections describe an example of a

copyright dispute concerning a user interface and explore various

rationales for providing user interfaces with copyright protection. The

final Subsection applies the proposed test and concludes that only user

interface implementations should be accorded copyright protection.

1. User Interfaces Dejined

A user interface is a set of rules or conventions allowing a human to

communicate with a computer program. In analyzing user interfaces, it
is important to distinguish between interface specifications and interface

implementations. To illustrate the distinction, consider a user working

with a word processing or spreadsheet program.

The interface specification is a set o f abstract rules that might be

implemented in any number of ways. For example, a rule that pressing

the F1 key causes the word processor or spreadsheet to save a file to disk

is an element of an interface specification. This rule is general; it says

nothing concerning how the user 's pressing the F1 key is processed by

the word processor or spreadsheet. An interface implementation, on the

other hand, is the computer code that translates the interface

specification rules into action. The interface implementation is itself a

compater program that stands between the human user and the word pro-

cessor or spreadsheet. 215 When the user presses the F1 key, the interface

implementation translates that action in a particular way into commands

that cause the word processor or spreadsheet to save the file to disk. 216

215. Besides user interfaces, there are several other types of interface programs which
act as intermediaries between different components of a computer system. For example,
communications interfaces allow remotely situated computer systems to communicate by
setting a common communications protocol. See Fujitsu Australia Ltd., submission to
ACLR, Collection, supra note 57, at 127.

216. The distinction between interface specification und interface implementation can be
central in resolving disputes between parties concerning fights to user interfaces. One
example is the IBM-Fujitsu operating system dispute. The dispute was resolved by arbitra-
tion on November 29, 1988, allowing Fujitsu to derive specifically defined interface infor-
mation from new IBM programming materials, in return for payment of an annual access
fee. Fujitsu was given access only to interface information (to allow it to design applica-
tion programs for the IBM operating system environment) that describes the program's
function, not its implementation. The specifications shared "do not describe the Program's

200 Harvard Journal of Law & Technology [Vol. 5

As the interface implementation will work to translate the user 's

pressing the F1 key into the "save to disk" command with either the

word processor or the spreadsheet, it is independent of those pro-

grams. 217 The interface specification, which is the set of rules or princi-

ples underlying the interface, defines the operation of the interface

implementation, which is the code used to implement the interface

specification. 218 This Article concludes that only the implementation

deserves copyright protection, the specification being non-protected
idea. 219

B. Legal Protection of User Interfaces: The Lotus Case

The extent to which the law should protect user interfaces has been

highly controversial. '!'his Subsection will focus on the copyright dispute

concerning the user interface of the popular spreadsheet program "Lotus

1 -2-3 . " In the Lotus case, the District Court of Massachusetts ruled that

the defendants were liable for breach of copyright because they "copied

protected nonliteral elements of expression in the user interface and the

underlying computer program." According to the plaintiff, the user

interface of the program included such elements as "the menus (and their

structure and organization), long prompts, the screens on which they

appear, the function key assignments, [and] the macro commands and

language. ''22° The court explicitly stated that it did not hold the defen-

dants liable for copying the screen displays of the spreadsheet.

To resolve the issue of copyrightabili ty, the court examined the work

structural or detailed design, internal component or module interfaces or other implementa-
tion details." Unpublished Arbitration Decision at 3. The decision also states if "an operat-
ing system's interfaces have been clearly defined, then relatively little information beyond
that defined by one vendor as its products' customer interface specifications may be needed
to independently develop a compatible operating system that allows customers to run exist-
ing application programs written for the original operating system." ld. at 11.

217. "For the most part, interfaces are defined at design levels higher than and indepen-
dent of a product's implementation in detailed design or code." ld. at 12.

218. The rules contained in the interface specification convey no information about the
contents of a particular interface implementation. For example, AT&T, SYSTEM V
INTERFACE DEFINITION MANUAL (freely made available by AT&T) says "The System V
Interface Definitions specifies an operating system environment that allows users to create
application software that is independent of any particular hardware The functionality
of components is defined, but the implementation is not."

219. See, e.g., Wandy J. Gordon, Merits of Copyright, 41 STAN. L. REV. 1343,
1446--48 (1990).
220. Lotus Dev. Corp. v. Paperback Software Int'l, 740 E Supp. 37, 80 (D. Mass. 1990).

Note that Lotus based its program on that of Visicaic, whose copyright was obtained by
purchasing the corporation owning the Visicalc copyright. See SAPC, Inc. v. Lotus Dev.
Corp., 921 F.2d 360, 361 (Ist Cir. 1990).

Fall, 1991] Copyright or Patent or Both 201

tO see where along the scale of abstraction of ideas the idea of the work
fell. The court then determined whether the expression of that idea
included elements of expression not essential to every expression of the
idea, and if those elements were a substantial part of the work. The
court did not use the "look and feel" concept to distinguish between non-
literal elements of a computer program that are copyrightable and those
that are not: "Look and feel" is a conclusion, the court said, not a test. 221

The court considered a number of ideas in the work, including ideas such
as "an electronic spreadsheet," "a two line moving cursor," and the
"designation of a particular key as a command key. ''222 The ideas of an
electronic spreadsheet, a structured menu, and a two line moving cursor
may be expressed in numerous ways. These ideas were functional, obvi-
ous. and widely used. However, because the ideas may be expressed in
a variety o f ways, the court concluded that particular expressions of
those ideas are copyrightable. 22a The designation of a " / " as a command
key and the resemblance of the screen display to a paper spreadsheet,
however, were present in most expressions and thus not "a copyrightable
element of a computer program. ''224

The court did not look at the algorithm that the plaintiff's program
used to implement these features. Instead, certain features of the out-
ward appearance of the program when running were said to be originrd
expression. As they were essential to a user's operation of the program,
these features were copyrightable. Here the court treated the implemen-
tation of several of the features of the user interface as part of a literary
work. Using this reasoning, a new type of lens for a movie projector,
designed for a movie filmed in a particular way, is only one o f the many
lenses that could be used in a projector, and would be copyrightable
because it is essential to the showing of a particular motion picture. The
Lotus court was not concerned that the interface was not itself a literary
work or independent computer program. 225

Nor did the court decide if the literary work, the spreadsheet program
itself, was copied. The plaintiff's program and the defendants' programs
both had the same command tree and similar menu structures, and the
court concluded that the defendants copied the expression embodied in

221. Lores, 740 F. Supp. at 62---63.
222. ld. at 65-68.
223. ld. at 66-67. The court also said "That the defendants went to such trouble to copy

[the user interface] is a testament to its substantiality," Lotus, 740 F. Supp. at 68.
224. ld. at 66.
225. Cf. Computer Edge Pty. Ltd. v. Apple Computer Inc., 161 C.L.R. 171,214 (1986)

(Executing the program's insU'uctions does not reproduce or adapt the actual written pro-
gram in which copyright subsists.).

202 Harvard Journal of Law & Technology [3/ol. 5

the Lotus 1 -2 -3 menu hierarchy. 226 The court did not, however, analyze

the program implementing the menu heirarchy or other features of the

interface. As the AutoCAD case demonstrates, a similarity of function

does not necessarily imply a similarity in implementation. Thus, the

Lotus defendants may have used completely different algorithms and

programs to implement the interface features of Lotus 1-2-3 . Although

the defendants used Lotus 's interface specification, the court did not

determine whether they copied Lotus ' s interface implementation.

C. Rationales for Legal Protection of User Interfaces

A complex user interface contains much original expression, takes

many hours to develop, and is essential to the operation of a sophisti-

cated computer system. This does not, however, lead to the conclusion

that the copyright of the program producing and using that interface has

been violated when its interface specification is copied. 227

Since the Lotus decision, there has been much debate in the software

industry as to whether user interfaces should be legally protected at all.

Apart from where the computer code of the interface implementation has

been directly copied, many software producers believe that a user inter-

face is public property. This Subsection examines justifications for

legally protecting user interface specifications.

1. Protection Needed to Promote Development

One argument for protecting interface specifications is that much

work is put into designing such specifications and that consumers place a

high value on good specifications in selecting programs. Much of the

cost of creating a user interface is incurred in formulating the

specification. 22s Only twenty percent of the cost of creating a computer

226. Lotus, 740 F. Supp. at 70. The menu hierarchy is one element of the Lotus 1-2-3
user interface.

227. A Lotus employee, referring to the Lotus 1-2-3 user interface, stated the work "is
in the detail and the degree." The implementation of the interface, rather than its func-
tionality, he said, should be protected. The Lotus court did not look at the program imple-
menting the interface to see if it was copied. Frank Ingari, Forum at MIT on Intellectual
Protection of Software (Oct, 30, 1990). At the same forum, the chief counsel of Lotus said
Lotus only sued people who copied the whole interface.

228. See LOtus Dev. Corp., submission to ACLR, Collection, supra note 57 ("[I]t is
widely recognized that the design of the user interface is a task which often requires greater
creativity, originality and insight than the actual writing of the code. To deny copyright
protection for the user interface would allow the misappropriation of those aspects of the
computer program which entail the greatest investment in material and intellectual
resources and which, in the case of Lotus 1-2-3, are the elements which have most contri-
hated to its success."). See also Lotus, 740 F. SulrP. at 68.

Fall, 1991] Copyright or Patent or Both 203

program (including the program's user interface component) is spent
expressing the algorithm in the form of computer code. 229

One response is that much effort is put into writing a history book.
Indeed, it may take considerably more time and effort to do the research
than actually to write the book. Nevertheless, it is only the book itself
(the expression) and not the research effort that copyright protects, z3°
Protection of a user interface presents a somewhat more difficult prob-
lem, however, because screen displays and other components of inter-
face specifications give computer users information in a particular way
about how to use a computer program. Because the information could
be expressed in a different way, part of the interface specification is in
fact an expression of a particular method of interaction between the pro-
gram and the user.

2. The Need for Incentive

Another argument for legal protection of user interface specifications
is that if such protection is not given, the incentive to develop new inter-
faces will decline sharply. TM The plaintiffs in the Lotus case assert that
"the tremendous growth and success of the U.S. software industry is the
direct result of the creative and original efforts of its software develop-
ers, laboring under the protection of the copyright laws. Innovation has
been the key to market success....,,232 The plaintiffs also argued that
the copyright laws protect "the lonely and defenseless developers work-
ing out of their dens and basements ''~33 from having their work purloined
by heartless corporations. Thus, the argument runs, if user interfaces are

229. WERNER L. FRANK, CRITICAL ISSUES IN SOFTWARE: A GUIDE TO
SOFTWARE E, CONOMICS, STRATEGY, AND PROFrrABmITY 22 (1983).

230. See, e.g., Miller v. Universal City Studios, Inc., 650 F.2d 1365 (5th Cir. 1981);
Nash v. CBS, Inc., 899 F.2d 1537 (7th Cir. 1990); International News Serv. v. Associated
Press, 248 U.S. 215 (1918); Nichols v. Universal Pictur~ Corp., 45 F.2d I19 (2d Cir.
1930). Cf. Jartold v. Houlsto~: 59 Eng. Rcp. 1294, 1298 (Chancery 1857).

231. See generally Australian Information Industry Association, submission to ACLR,
Collectiun, supra note 57 ("intellectual property primarily results from the application of
human capital [C]opyright is related to improving market mechanisms by ensuring that
owners or licensees of intellectual property achieve an adequate return on investment and
effort. If protection were not provided, market mechanisms may not produce an adequate
or desirable amount of intellectual property [T]he critical downstream impact on the
economy of software as a production tool would be lost.").

232. Plaintiff's Post-Trial Brief at 75, Lotus, 740 F. Supp. 37. It adds, "The history of
this industry has been one of creative designers who identify an unfilled need in the market
and then design and build a superior product to fill that need [TJhe developers' ability
to realize substantial rewards for their creative efforts has depended entirely upon the legal
protection copyright has afforded their work."

233. ld.

204 Harvard Journal of Law & Technology [Vol. 5

not protected, the biggest losers would be the small developers.
This argument is not entirely satisfactory, however, because whether

or not copyright laws have encouraged software innovation generally, TM

they are far from the only incentive that software developers have for
creating novel user interface specifications and implementations. Many
improvements in interface design have been prompted not by copyright
protection but instead by advances in hardware technology. The
development of mouse-based graphic user interfaces, for example,
depended on the availability of the high-resolution display screen. 235
Moreover, some computer users may value the interface specification
more highly than the underlying algorithm of the program. 236 Therefore,
competition among software developers to sell programs would provide
incentive to create more attractive user interface specifications and
implementations, independent of copyright law. Two competing
software developers with equivalent programs would innovate interface
specifications to gain a competitive edge. 237

In response, an advocate of cop)right protection for interface
specifications might argue that without legal protection, competition
among developers will not result. Consider the situation in which two

developers each design programs performing the same function, but
using different algorithms. Assume that each developer has used pre-
cisely the same amount of resources in developing its program. Suppose
further that the second developer copies the first's interface specification
(but nothing else) and thus incurs only the costs associated with integrat-
ing the interface specification into its own program. The first developer
has expended resources innovating the interface specification, while the
second is a free-rider. Having incurred no costs in developing a new
interface specification, the second developer may now sell its product

234. See, e.g., Gordon, supra note 219, at 1446--48.
235. Bill Curtis, Engineering Computer "'Look and Feel," 30 JURIMETRICS J. 51, 77

(1989).
236. This valuation does not itself provide a reliable indicator of the desirability of

copyright protection. The mere fact that a consumer values a particular aspect of a com-
puter program has not traditionally been used to determine the availability of legal protec-
tion. For example, consumers value program upgrades and clear reference manuals, which
copyright laws protect. On the other hand, most consumers also value the accuracy of a
program's results, its speed, and the reputation of its manufacturer, which copyright laws
do not protect.

237. Bull HN Information Systems claims that having standard operating syslem inter-
faces increases competition, by allowing users to be able to choose computer elements from
different suppliers and still be able to have them work as an integrated system, preventing
the user from being tied involuntarily to one supplier. See submission to ACLR, Collec-
tion, supra note 57, at 4. A similar argument is that retraining costs involuntarily tie a user
to one software-user interface, decreasing competition.

Fall, 1991] Copyright or Patent or Both 205

more cheaply, thereby gaining a price advantage in the market. The first

developer would therefore rationally divert resources to other program

features which are harder to copy or which are legally protected. 238

Therefore, without copyright protection of interface specifications, new

programs will be produced, but they will contain no improvements in
user interface design. 239

This reasoning is superficially plausible, but it ignores several factors.

First, although the costs of program design significantly exceed the costs

of program implementation, it may be that the costs of interface design

are only a small portion of the costs of developing a new program. 24°

Thus, any price advantage gained by a developer copying another 's

interface specification may be small. This advantage would be reduced

or even eliminated if a developer copying an interface specification

incurs greater costs in creating a corresponding interface implementation

than the creator does.

The creator of the specification also obtains lead-time advantages. By

being the first to market, the creator will, for some period, enjoy a mono-

poly on sales of the new user interface. Moreover, the creator indirectly

benefits i f its interface specification becomes the industry standard

because o f the larger market acceptance of its product and its enhanced

reputation. TM Thus, a desire to sell more copies o f a new program, the

opportunity to reap additional profits while other software companies

play "catch-up," and the minimal advantage accorded free-riders all

encourage innovation of new user interface specifications independent of

238, Note that this argument would apply even if demand for the new program or inter-
face were created by the innovation of computer hardware. Once high-resolution screens
are invented, for example, it still pays the second developer to wait for the first developer to
innovate a new interface specification.
239. A similar line of reasoning is used to justify giving copyright to derivative works.

An author writes a novel due to the incentive of film, play, and other derivative rights:
Without the possibility of these rights the author would not have bothered to even write the
book. See Ginsburg, supra note 82, at 1910-I I. With interfaces the situation is distin-
guishable: Programs need interfaces to operate, but a book is a work in itself.
240. "In fact, the effort spent designing the user interface of a computer program is usu-

ally small compared to the cost of developing the program itself." THE LEAGUE FOR
PROGRAMMING FREEDOM, AGAINST USER INTERFACE COPYRIGHT 4 (Sept. 24, 1990)
(unpublished paper).

241. It is interesting to note that IBM allows 15,000 third parties to write application
programs for its MVS operating system. See Arbitration Decision, supra note 216, at 28.
IBM Australia claims that copyright owners "have significant incentives to publish, and do
publish interfaces to encourage others to write application programs for their systems.
IBM, for example, has published 300-400 interfa~s " IBM, submission to ACLR,
Collection, supra note 57, at 9. IBM, along with DEC and Hewlett-Packard, established
the Open Systems Foundation in 1988 in order to develop an open software environment.

206 Harvard Journal o f Law & Technology [Vol. 5

copyr ight law. 242 Even in the absence o f any copyright protect ion for

user interface specifications, some level o f innovat ion would be

expected. 243

3, Protection Needed to Increase the Number o f Interfaces

Even if some level o f innovat ion could be expected without legal pro-

tection o f interface specifications, the advocate o f such protection might

argue that legal protect ion will result in a greater number o f interfaces on

the market. If a p rogrammer is prevented f rom copying another ' s inter-

face, the p rogrammer will expend creat ive effort trying to design a better

interface. This will lead to more interfaces for the communi ty to choose

from, and hopeful ly each wil l be an improvement over the last. Insist ing

on the use o f creat ive effort in this case is different f rom the case where

energy is used fruitlessly invent ing around a successful, but protected,

product: The users o f interfaces are humans, each o f w h o m may prefer a

different way of communica t ing with a computer . It is not obvious until

tried whether a user will l ike an interface, so the more created the

better, z*4

In response, it may be argued that at least some degree o f standardiza-

tion o f user interfaces is desirable. 245 Consis tency in interfaces promotes

ease o f use and reduces the costs o f retraining when new applicat ion pro-

g rams are released that use a preexist ing interface. 246 As more users are

242. The distinction between interface specifications and implementations is particularly
important in this context. Protection of interface implementations is desirable even when
interface specifications are not protected. A competitor could very quickly and inexpen-
sively copy an interface implementation simply by copying the computer code itself.
Allowing such copying would greatly increase a copier's price advantage in the market and
would virtually eliminate the creator's lead-time advantage.

243. For example, Lotus markets its programs with the same interface in countries such
as Germany, where there is no interface protection. See also David W. Kaye, Colloquy on
Copyright Protection of Computer Software, 31 JURIMETRICS J. 165, 169 (1990)
("Exploiting a copyright is, no doubt, an incentive, hut is is hardly the only incentive. If a
competitor comes up with a significantly better interface on its program, then it can sell
more of its product.,).

244. Apple would not have invented and successfully marketed its Macintosh interface
if it followed the industry standard or if all consumers wanted one interface. Other inter-
faces apart from industry standards succeed.

245. Cf. Landes & Posner, supra note 90. at 352 ("The mere fact that a particular set of
symbols has become the industry standard is a tribute to the expressive skills of the particu-
lar manufacturer and should not be deemed to convert expression into idea."). But see
Kaye, supra note 243, at 169 ("lilt is not the success of the product that precludes the copy-
right. It is the nature of the product.").

246. A user interface is a method of communication with a computer program, not a
literary work. Reading the book is the point of the book. Learning an interface is done as a
means of operating a program. A familiar book is not re-read but an interface is only useful
when familiar.

Fall, 1991] Copyright or Patent or Both 207

trained on a given computer system, more software is likely to be written
for that system. 247 If interface specifications are protected by copyright
law, developers other than the creator are forbidden to use any imple-
mentation of the interface's features. Such a prohibition means that only
the inventor may produce products with the interface's unique features
and that other developers must expend resources to create entirely new
and incompatible interface specifications. 248 In contrast, if only interface
implementations are protected, each developer may develop its own
implementation of an industry standard user interface specification.
Such a developer will only need to write and improve the implementa-
tion of a common specification. This, in turn, will reduce developers'
costs, reduce barriers to entry, and provide users with a wider variety of
products compatible with their existing interface.

As users invest considerable resources in training, they are less likely
to change to a new product that uses a different, but superior, user inter-
face. Many users will value compatibility over the benefits of the new
standard. This may be seen as a negative effect of standardization. ~9
However, to a lesser degree, permitting copyright protection of interface
specifications will achieve the same result. The term of protection
expires, but the other producers who were forced to develop incompati-
ble products in the meantime will not easily change to the superior inter-
face, or convince their customers to change, when the copyright period
ends. Those who argue for a shorter period of protection for interfaces
ignore the problem that users will be locked into the incompatible non-
standard interface from the moment of initial purchase.

Customers who have decided on a user interface will want a continu-
ing supply of products compatible with that interface. If the so 'ware
developer is given a legal monopoly on all implementations of an inter-
face, it may charge monopoly prices for all new products with the inter-
face. The customer would prefer new developers to be in competition
with the original supplier. Merely allowing cross-licensing of user inter-

247. Joseph Farrell, Standardization and Intellectual Property, 30 JURIMEI'RICS J. 35,
36 (1989).

248. But see Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 77-79 (D.
Mass. 1990), where the court rejected the standardization argument, stating that the defen-
dants could have sought e. license for the Lotus interface or sold their advanced features
directly to Lotus, but then said Lotus could arbitrarily refuse such schemes. It was also
suggested that the defendants market their product as an "add-in," causing users to purchase
two products instead of one.

249. Mcneil, supra note 197, at 1070, states that this inertia can retard innovation and
slow or prevent adoption of improved interfaces."

208 Harvard Journal o f Law & Technology [Vol. 5

face specifications may result in cartel-like price fixing or tacit price

cooperation among competitors. 25°

Moreover, the existence of an industry standard user interface

specification does not mean that there will be only one available inter-

face. Because consumers have different preferences, there will be

~demand for different user interfaces. Users desiring an interface that

does not use a mouse or pull down menus will create a market for that

product. The result will be a proliferation of different interfaces to

attract consumers with different needs. Industry standard interface

specifications will also result in competition in interface implementa-

tions. Users of the industry standard interface will want faster imple-

mentations of the industry standard.
In addition, consumers who do not wish to relearn a new interface for

each application program they use will benefit from the ability to pur-

chase an implementation of a standard user interface. Such consumers

will not be tied to one software developer. However, a user who decides

on an interface that does not become a standard will find its network

benefits diminishing as innovation in products with the standard interface

increases. Finally, as described above, the developer of a user interface

that becomes an industry standard will suffer little detriment and may in

fact realize benefits from creating a widely used interface specifica-

tion. TM

Overall, it is a reasonable assumption that users have invested more

money learning to use the interface than developers have creating it.

Society would be better off allowing interface standards. 252 Many in the

250. See United States v. General Elec. Co., 272 U.S. 476 (1926) (allowing a patent
licensing agreement to set a price schedule for sale of the product); United States v. Line
Material Co., 333 U.S. 287 (1948) (holding that two patentees cross-licensing their inter-
dependent patents to secure additional mutual benefits violates the Sherman Act); United
States v. United States Gypsum Co., 333 U.S. 364, 400-01 (1948) (holding that industry-
wide license agreements under which price control was exercised established a prima facie
case of conspiracy). Cf Kaplow, supra note 84.

251. One solution to encourage standardization and still provide an incentive to produce
is the compulsory license. It is a solution somewhat similar to that arrived at in the IBM-
Fujitsu arbitration. See SCHERER, THE ECONOMIC EFFECTS OF COMPULSORY LICENS-
ING (1977); Venit, Technology Licensing in the EC, 59 ANTITRUST L.J. 485,496 (1991).
In antitrust litigation, compulsory licensing of patents is an available remedy. See
Hartford-Empire Co. v. United States, 323 U.S. 386, 417 (1945); United States v. Glaxo
Group, 410 U.S. 52 0973); see generally AREEDA & KAPLOW, supra note 80, ¶¶ 190,
284.

252. For an economic analysis of the tradeoff between production costs and consumer
value, see William W. Fisher, III, Reconstructing the Fair Use Doctrine, 101 HARV. L.
REV. 1659, 1703--04 (1980).

Fall, 1991] Copyright or Patent or Both 209

computer industry do not want interface protection, z53 They bel ieve that

use of an industry standard would be more beneficial for everyone.

D. A p p l y i n g the P r o p o s e d Tes t

Analys is o f the justif ications for copyright protection of interface

specifications indicates that copyright law should not pro'Ade monopoly

power to the creator o f a new specification. Al though protection for

interface specifications might increase the incentives for innovat ion,

such innovat ion would cont inue even without legal intervention. More-

over, refusing to protect interface specifications would allow develop-

men t of industry standard interfaces, with all the at tendant benefits of

standardization. TM

These conclusions do not dictate that no protection be afforded to user

interfaces. Instead, the proposed test focuses on expression. The inter-

face specification is a set o f rules, independent o f expressive content

unt i l implemented in a part icular way. Thus, the proposed test would not

extend copyright protection to interface specifications. The interface

implementat ion, however, is composed of computer code. It is a specific

expression of the ideas embodied in the specification and should there-

fore receive copyright protection. 255

::,Therefore, if a software developer obtains a computer program from a

r ival and decides to integrate the interface into its own program, it could

carry out the fol lowing procedure 2s6 w i t h o u t infr inging the other

253. For example, firms such as Unisys (advocating specific exemptions in copyright
legislation for interface SPeCifications), Sun Microsystems (submitting that the "look and
feel" of a program should not be protected by copyright), Fujitsu (arguing for an explicit
"interface" exclusion), Bull HN Information Systems (recommending that interface
specifications should not be protected by copyright and copying of these specifications
should be permissible), McDonnell Douglas (concluding that extension of copyright protec-
tion to specification of interfaces would have a devastating effect on industry development).
Submissions to ACLR, Collection, supra note 57. See also Pamela Samuelson & Robert J.
Glushko, Comparing the Views of Lawyers and User Interface Designers on the Software
Copyright "Look and Feel" Lawsuits, 30 JURIMETRICS J. 121,121 (1989)(79% of indus-
try respondents opposed to "look and feel" protection).

254. For a summary of the adverse impacts of permitting protection of user interface
specifications, see MeneU, supra note 197, at 1071.

255. A similar analysis would be used in applying the proposed test to any individual
element of the user interface. A screen display, for example, is part of a user interface.
However, it is an element of the specification because the specification dictates the layout
of elements onto the screen. Thus, the screen display itself is not protected. Under the pro-
posed test, if programmer A uses a screen design from programmer B, programmer A has
not violated programmer B's copyright.

256. A clean room procedure is used to develop a clone of a program where the pro-
gramming team independently develops a complete program. The procedure described
above is different from the expensive clean room described in David S. Elkins, A Guide to
Using "Clean Room" Procedures as Evidence, 10 COMPUTER L.J. 453, 480 (1990). See

210 Harvard Journal of Law & Technology [Vol. 5

developer's copyright. The developer wishing to create a new interface
implementation would create two teams of programmer's. One team
would decompile the rival's program and determine the interface
specifications. This team would then pass the specifications on to the
second team. The second team would, without any knowledge of the
interface implementation used by the rival, code an implementation of
the rival's interface specification. The new implementation could then
be integrated into new programs, z57

This procedure would pass the proposed test since only the non-
protected interface specification is duplicated; the protected interface
implementation is not. This solution does result in some inefficiencies.
If stz2adardization is beneficial, why have firms independently exerted
effort to recreate an existing interface implementation? The answer is
pragmatic. There must be incentive to motivate creation of new user
interface implementations. Developers spend time and effort expressing
an interface in error-free code. If that code is protected, the first firm to
innovate a new interface specification will get a head-start in the
market. ~8 Rivals will incur costs in coding and testing new implementa-
tions of the standard interface specified and will receive decreased price
advantages over the specification's creator. Application of this solution
fits neatly into the copyright scheme, as all computer code can be equally
protected. It is a solution that balances the need to provide incentives for
development with the desire for the benefits of standardization.

E. Conclusion on Copyright

This Section has proposed a scheme to solve copyright problems
involving computer programs. It is a scheme that can be applied to the
current problems in this area: protection of interfaces, output; and func-
tion. It can be applied in Australia, and also in the United States instead
of the merger doctrine.

To consolidate, the scheme is as follows. Computer programs should

also Jorge Contreras et al., Recent Development, NEC v. Imeh Breaking New Ground in
the Law of Copyright, 3 HARV. J. L. & TECH. 209, 218-21 (1990) (describing the costs of
clean rooms).

257. Similarly, if a programmer designed a program with expression substantially shni-
lar to another interface without any knowledge of it, there is no copyright infringement.
See also Conference, Last Frontier Conference Report on Copyright Protection of Com-
puter Software, 30 JURIMETRICS J. 15, 23 (1989).

258. Cf. Vance F. Brown, The Incompatibility of Copyright and Computer Software: An
Economic Evaluation and a Proposal for a Marketplace Solution, 66 N . C . L . REV. 977,
1009 (1988) (Protection of software should provide monopoly protection only for the
developer's legitimate lead time.).

/i

Fall, 1991] Copyright or Patent or Both 211

be separate works under the Copyright Act. 259 Computer programs can
only infringe the copyright in other computer programs. Only computer
programs can be derivative works of computer programs. If a form of
expression is not detailed enough for a computer to execute it without
farther human intervention, it is not a computer program. To determine
if there is copying, the expression to be examined is the algorithm in the
form of computer code. Function, output, and specifications are to be
ignored. Literal copying is infringement. 26° A low-level version of the
code that a computer uses to execute the program is protected: Copying
this would infringe the copyright in the programmer's code. When exa-
mining code expressed in different languages, the algorithms expressed
as code at a level of abstraction comparable to that chosen by the pro-
grammer to express the algorithm must be substantially similar. If dif-
ferent algorithms are used to achieve the same result, or if the algorithms
are similar only when expressed at a level far higher than the code at
issue, then there is no infringement. These tests assist in the application
of the idea-expression distinction to computer programs. In the end, in
hard cases, the question is one of degree: At what level of abstraction
should the algorithms be examined to see if they are the same? The dis-

259. But cf Glyrm S. Lurmey, Jr., Copyright Protection for ASIC Gate Configurations:
PLDs, Custom and Semicustom Chips, 42 STAN. L. REV. 163 (1989) (There should be no
difference in hardware and software protection so the market can control levels of invest-
ment in each.).

260. Mcneil, supra note 197, at 1082, concludes that "legal protection for application
progranas should not extend much, if at all, beyond protection against literal copying,
except for new, useful, and nonobvious improvements." The main reason for such protec-
tion, he states, is similar to that given above: to ensure that the lead time will be significant
to recover development costs, ld. at 1086. Instead of extending protection beyond literal
copying to copying of the underlying algorithm, Mcneil has imported the patent standard
into copyright law. The problems that patent law faces using this test have been discussed
above. Importing the patent requirement of novelty and nonobviousness is described as
"simpleminded" in Wiley, supra note 34, at 145. See also Fred Fisher, Inc. v. Dillingham,
298 F. 145, 150 (S.D.N.Y. 1924) (Hand, J., distinguishing copyright from patent).

Mcneil elaborates the test, stating that limiting copyright to expression means that the
expressive aspects of the structure of the program that are not functional attributes should
be protected. The court is required to separate the functional aspects from a program's
expressive aspects. Mcneil, supra note 197, at 1085. Under this test, only comments
directed to the programmer would be protected---all error-free computer programs are func-
tional. Mcneil says his test is consistent with copyright tests for architectural plans, busi-
ness forms, and game rules, ld. at 1085 n.231. This is not so. Architectural works are pro-
tected by copyright, as are forms if they convey information. These works are functional.
Rules of a game, as long as they are written down, are copyrightable regardless of whether
they describe a game that is functional, efficient, fair, or foolish. Expression that allows a
function to be carded out, such as a recipe or a computer program, is copyrightable. Copy-
ing the result of carrying out the instructions, the cake or the user interface, is not an
infringement of the instructions.

212 Harvard Journal of Law & Technology [Vol. 5

tinctions that a judge would have to make would be no different from
those made in deciding other difficult copyright cases.

C O N C L U S I O N

This Article has examined patent and copyright protection of algo-
rithms expressed as computer programs. The focus was on applying a
knowledge of algorithms to issues currently in dispute. It was assumed
that protection of some sort is needed for computer programs' intellec-
tual components. As copyright is the preferred vehicle for protection
internationally, and has been so for a number of years, the scope of
copyright protection was examined. The idea-expression distinction was
applied to determine what should be protected as a computer program
and what should constitute copying.

The inquiry into patent law was different. The Article examined the
objections currently made by software developers to the patenting of
computer programs and concluded that those objections were no dif-
ferent from objections that could be made to the patent system generally,
albeit in a more extreme form in some instances. Secondly, as a com-
puter program is both expression of a process and the means to carry out
the process, the Article showed that the patent rules come close to pro-
tecting what copyright protects, expression. If high-level algorithms are
not protected (being abstract ideas) and protection is not given to algo-
rithms expressed directly in computer code (being the domain of copy-
right), then patent is left to protect algorithms where a computer is the
desired processor but the algorithm is expressed in such a way that it
could be used in many programming applications and various program-
ming languages. The court would then have to determine whether a
program's coding used that algorithm. On this Article's proposed test of
substantial similarity, the courts would use a similar analysis to decide
whether there is breach of copyright. In other words, copyright and
patent would cover the same subject matter. Copyright does it more
efficiently.

No patent protection should be provided for computer software.
Copyright protection is adequate. It would be inefficient to have dual
coverage of one product to achieve the one goal of promoting innova-
tion. Protection is needed to stop rivals from taking the intellectual
effort in the software created and using it in a similar product sold at a
reduced price. The copyright system can more efficiently and fairly pro-
vide the protection needed.

Fall, 1991] Copyright or Patent or Both 213

First, the copyright system has fewer formalities. No registration or
disclosure is required. There is no waiting period.

Secondly, the copyright system is fairer. There is no fight to deter-
mine who was first. If two people independently code a program in the
same way, as is likely to occur in coding algorithms in computer
languages, both are protected. No monopoly is granted, which in a
rapidly expanding field seems like a lottery prize to the lucky program-
mer with the best lawyer. People are encouraged to create, knowing that
what they create will be protected.

Thirdly, the patent system cannot efficiently decide whether an algo-
rithm or program is novel. Most programs written are not novel and are
obvious. Less than one percent of computer programs, it is claimed, are
patentable. 261 It would be an expensive and far-reaching inquiry to
determine if an algorithm is novel and nonobvious, as algorithms have
existed for centuries and are used in a variety of fields. With so much to
examine, a wrong result is likely in many cases. Assume that a limita-
tion was put on the search, so that only the application of the algorithm
had to be novel. To computer scientists, using an algorithm in a com-
puter program is always obvious. Additionally, protection would be
given to the application of the algorithm, in this field, the expression of
the algorithm as a computer program. Isn' t that what copyright protects?

Fourthly, programs have a short life, but the algorithms used in a pro-
gram can be used repeatedly in a variety of applications. Alg -ithms are
the building blocks of computer science. Lock up algorithms and
development will cease. One need only protect the product and not the
tools in order to encourage creation of the product.

Fifthly, if new algorithms continue to be discovered as long as sci-
ence endures, what need is there for incentive? The incentive should
promote application of the algorithm. If applied in a computer program,
the expression is protected. Inventions and processes do not "contain"
any expression for copyright to protect, so alternative protection, gen-
erally that of patent, is required. For example, in the creation of a better
mousetrap there is no expression to protect. The opposite is always the
case for computer programs.

The copyright regime gives adequate protection to encourage innova-
tion and reward inventors. What is valuable in software is its use; unlike
in other areas, the form of expression is used directly to perform a task.
There is no need to give additional protection to the algorithm if the most
valuable form of the algorithm, the computer program, is protected.

261. See Duncan M. Davidson, Protecting Computer Software: A Comprehensive
Analysis, 23 JURIMETRICS J. 339, 357 (1983).

214 Harvard Journal of Law & Technology [Vol. 5

Copyright does not go too far, so as to protect function. To do so would
be to provide patent-like protection with less stringent tests. As con-
eluded in the user interface area, some protection is needed, and that is
provided by giving protection to the expression implementing the inter-
face. As can be seen in the large amount of public, domain software
available, over which no copyright is asserted, providing copyright pro-
tection to software to encourage innovation may be erring on the side of
caution.

The legal rules necessary to implement this proposal are simple.
Copyright will be given to computer programs as a separate category of
works within the copyright system. Patent coverage will be denied for
such programs. Any algorithm expressed as a computer program will
not be patentable. An algorithm may be patented where no software is
involved. That patent cannot be infringed by using the algorithm in a
computer program. The simple result: Patent law will protect hardware,
and copyright law will protect software.

